
Around Cooper’s Algorithm with Maple

, Ontario Research Center for Computer Algebra

The University of Western Ontario, Canada

Recommended Reference Format:
. 2024. Around Cooper’s Algorithm with Maple. 1, 1 (July 2024), 8 pages. https://doi.org/10.1145/nnnnnnn.

nnnnnnn

1 Introduction
Given a system of linear inequalities in 𝑥 , 𝑃 (𝑥), ∃𝑥𝑃 (𝑥) ↔ 𝑡𝑟𝑢𝑒 ∨ 𝑓 𝑎𝑙𝑠𝑒 can be solved by the

following: Integer hull computation; Integer Linear Programming (ILP) [4]; integer point counting

using Barvinok’s Algorithm [1] for counting integer points in polytopes as applied by M. Köppe

and S. Verdoolaege [9]; the Omega Test [13]; and Integer Point Decomposition [6].

Now, given systems of linear inequalities 𝑃 (𝑥,𝑦) and 𝑄 (𝑦), ∃𝑥𝑃 (𝑥,𝑦) ↔ 𝑄 (𝑦), where the values
of 𝑦 that make 𝑄 (𝑦) true are exactly those that make ∃𝑥𝑃 (𝑥,𝑦) true, can be solved by: Parametric

Integer Linear Programming [4]; parametric integer point counting using Barvinok’s Algorithm

(forthcoming); the Omega Test [13]; and Integer Point Decomposition [6]. More linear algebra

methods, like Hermite Normal Form (HNF), should be used to handle explicit or implicit equalities

in P(x) and P(x, t).

The system of inequalities (and sometimes equalities also), can be expressed in the language of

Presburger Arithmetic. However, computing with such an arithmetic is costly as there is a doubly

exponential algebraic complexity lower bound in terms of the length of the input formula for any
non-deterministic algorithm used to determine the truth of the formula; however, this is for the

worst-case where the input formula has an alternation of existential and universal quantifiers [5].

Furthermore, a decision procedure like Cooper’s Algorithm [2] has a triply exponential upper bound

in terms of the the length of the input formula [11]. As a result, [3, 8, 12] look at the possibilities of

using multicore parallelism.

First, we will look at Cooper’s algorithm, followed by general considerations regarding its

parallelization. Next, comes parallelization using the MAPLE language in both the Task and Grid

ProgrammingModels.We follow this upwith experimental results, to end finally with improvements

and optimizations.

2 Cooper’s Algorithm
The steps in Cooper’s algorithm by [12] are

• Steps 1 - 3: Normalize formula.

• Step 4: Get lcm of coefficients (calculate 𝛿).

• Step 5A : Substitute comparison constraints with True and False.

• Step 5B: Substitute using lower-bound literals: for-loop for |𝐿 | substitutions, where 𝐿 is the

set of lower bound constraints (of the form 𝑏𝑖 < 𝑥 where 𝑏𝑖 is 𝑥-free).

• Step 6: Gather results

Author’s address:, Ontario Research Center for Computer Algebra

The University of Western Ontario, 1151 Richmond St, London, Canada, cmaligec@uwo.ca.

Permission to make digital or hard copies of all or part of this work for any use is granted without fee, provided that copies

bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored.

© 2024 Maple Transactions.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: July 2024.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2

Step 5 is divided into two parts as it is the result of a case distinction from Theorem 1.

Tasks 1 - 4 above can each be estimated as being comparable to 𝑙 , the number of literals (algebraic

expressions) in the formula [12] (e.g., getting the lcm of coefficients requires reading each literal).

Task 5 requires a for-loop with upper limit |𝐿 |, so we have an estimate of |𝐿 | ∗ 𝑙 , where 𝐿 is the set

of constraints of type 𝑏𝑖 < 𝑥 (where 𝑏𝑖 is x-free for all 𝑖), and task 6 can be ignored [12] as it simply

requires bounding the results of task 5 with a big disjunction with upper limit 𝛿 .

The algorithm removes quantifiers using the following logical expression [12]

∃𝑥𝐹 (𝑥) ≡
𝛿∨

𝑘=1

𝐹−∞ (𝑘) ∨
𝛿∨

𝑘=1

∨
𝑏𝑖

𝐹 (𝑏𝑖 + 𝑘) (1)

where 𝑏𝑖 is x-free, and 𝛿 is the least common multiple of the coefficients of 𝑥 and of the divisors

of the divisibility constraints in 𝐹 , and 𝐹−∞ (𝑘) is false if there is at least one inequality of the

form 𝑏𝑖 < 𝑥 ; otherwise, it is the conjunction of the divisibility constraints [2]. The first half of the

formula corresponds to Step 4, while the second half corresponds to Step 5. What follows is the

algorithm for the serial implementation of Cooper’s Algorithm.

Algorithm 1: Serial Cooper’s Algorithm
Input: An existentially quantified conjunction of inequalities (and maybe equalities), F.

Output: A boolean indicating whether there are integer solutions.

1 Eliminate negation;

2 Normailize comparison operators;

3 Normalize coefficients;

4 Calculate 𝛿 ;

5 FTruth := true;

6 for f in F do
7 if f has the form x < a then
8 FTruth := FTruth and true;

9 else if f has the form a < x then
10 FTruth := FTruth and false;

11 lowerbounds := [op(lowerbounds), a];

12 else
13 for i from 1 to 𝛿 do
14 FTruth := FTruth or evalb(f(i)) ⊲ Where f is a divisibility constraint.

15 if Ftruth = true then
16 return true;

17 for i from 1 to 𝛿 do
18 for j from 1 to num(lowerbounds) do
19 b := lowerbounds[j];

20 arg := b + i;

21 cTruth := true;

22 for f in F do
23 cTruth := cTruth and evalb(f(arg)) ;

24 if cTruth = true then
25 return true;

26 return false;

, Vol. 1, No. 1, Article . Publication date: July 2024.

Around Cooper’s Algorithm with Maple 3

Bottlenecks: (i) There is expression swell as the number of disjuncts becomes huge after a number

of quantifier eliminations (each elimination generates at least |𝐿 | + 1 disjuncts). One way to manage

this is to expand big disjuncts only when necessary [12]. (ii) The number of lower-bound constraints

grows quite large with eliminations; however, there is a dual version of Cooper’s Algorithm using

upper-bound constraints instead of lower-bound ones, and we can always pick the version that has

the fewer number of constraints [2, 12].

3 Parallelizing Cooper’s Algorithm
The main source of parallelization is obtained from Formula (1) itself [12]. If 𝐿 is the set of 𝑎𝑥 > 𝑡

constraints in 𝜙 , then there are |𝐿 | + 1 substitutions of this constraint required, and as these

substitutions are independent, they can be done in parallel [12, 3]. This parallelization is what is

attempted in this paper. An optimization would be to push existential quantifiers within disjunctions,

so that we can have disjunctions of quantified formulas, each one individually more likely to fit into

cache before moving on to the next round of eliminations subject to Formula (1) [12]. Note that |𝐿 |
increases greatly with each elimination of a quantifier, so memory usage can increase dramatically

[3]. This optimization is not attempted as we only implement a univariate version of the algorithm.

Parallelization Factor: The following results were obtained in [12]:

- The Work W = 𝑙 + 𝑙 + 𝑙 + 𝑙 + |𝐿 | ∗ 𝑙 = (|𝐿 | + 4) ∗ 𝑙 .
- As the two "getting" tasks (2 and 3) can be performed in parallel as well as the two "substitut-

ing" tasks (4 and 5), the Span S = 𝑙 + 𝑙 + 𝑙 = 3𝑙 .

Therefore, for one round of quantifier elimination, the Parallelization Factor [12] is PF = (|𝐿 | + 4)/3.
After eliminating the ith quantifier, the cumulative parallelism factor [12] is

𝑃𝐹 =

∑𝑛
𝑖=1 (|𝐿𝑖 | + 4) ·∏𝑖−1

𝑗=1 (|𝐿 𝑗 | + 1) · 𝑙∑𝑛
𝑖=1 3 ·

∏𝑖−1
𝑗=1 (|𝐿 𝑗 | + 1) · 𝑙

≈ |𝐿𝑛 | + 4

3

(2)

As after each quantifier elimination at least |𝐿 | + 1 disjuncts are produced, the formula

∏𝑖−1
𝑗=1 (|𝐿 𝑗 |+

1) · 𝑙 is an estimation of the number of literals after the ith quantifier elimination [12]. As |𝐿𝑖 | >>
|𝐿𝑖−1 | due to the rapid growth in formulas after each elimination,

|𝐿𝑛 |+4
3

is a good approximation of

the LHS in formula (2) [12].

4 Parallelization in theMAPLE Programming Language
In the case of theMAPLE programming language, we can use two types of parallel programming:

the Task Programming Model (which executes multiple tasks in a single process), and the Grid

Programming Model (which uses multiple processes) [10]. In Task Programming, tasks work

together using shared memory, but one must be careful that code running in one task must not

interfere with that running in other tasks [10]. As this model is new, much of MAPLE ’s core

functionality cannot yet be used in a task-based code, unlike Grid Programming, where each process

has its own independent memory [10]. However, as the processes are independent, they need to

communicate via sending and receiving messages, the cost of which can be high, and balancing

work over multiple processors can be difficult [10]. In this paper we use both models for comparison

with serial execution.

4.1 The Grid Programming Model
The material covered in this subsection can be found in [10]. To start a grid computation one

uses the Grid : −Launch() command, which starts multiple copies of MAPLE ’s computation

engine, called nodes. Each node is independent and does not share memory with the others,

, Vol. 1, No. 1, Article . Publication date: July 2024.

4

so communication between nodes requires the use of messages. Grid : −NumNodes() gives the
number of nodes launched, and Grid : −MyNode() indicates the executing node (which can be

from 0 to Grid : −NumNodes() - 1). When the function that executes in node 0 completes, node 0

returns to Launch, which returns the result, and all other remaining node executions terminate.

Thus, Grid : −Barrier() can be used to assure that no node passes until all others complete. As

metioned earlier, nodes can send messages to each other by using Grid : −Send(x, y) where 𝑥 is the

node that will receive the message, and 𝑦 is the expression that is the message. Grid : −Receive(x)
receives messages only from node 𝑥 , while Grid : −Receive() receives messages from any node.

Receive returns the message received.

What follows is the author’s version of Cooper’s algorithm using the Grid model where lcm is

the lowest common multiple of all of the lhs of the divisibility constraints (i.e., lcm = 𝛿).

Algorithm 2: Cooper’s Algorithm Grid Model

Input: An existentially quantified conjunction of inequalities (and maybe equalities), F.

Output: A boolean indicating whether there are integer solutions.

1 n := Grid:-NumNodes();

2 me := Grid:-MyNode();

3 step := floor (lcm / n);

4 if me = 0 then
5 start := 1;

6 endp := step;

7 else if me = n-1 then
8 start := step*(n-1)+1;

9 endp := lcm;

10 else
11 start := step*me+1;

12 endp := step*(me+1);

13 PC := Parallel_Cooper(F, start, endp);

14 Grid:-Barrier();

15 if me = 1 then
16 local z := Grid:-Receive(0, PC);

17 Grid:-Send(0,PC or z);

18 else if me = 0 then
19 Grid:-Send(1,PC);

20 Grid:-Receive(1) or . . . or Grid:-Receive(n-1);

21 else
22 Grid:-Send(0,PC);

4.2 The Task Programming Model
Everything we will talk about in this subsection regarding the Task Model can be found in [10].

A task consists of a procedure (function) combined with a set of arguments. TheMAPLE kernel
can automatically schedule tasks and distribute them to available processors. As an example of the

Task Model in action, take the followingMAPLE procedure:

𝑓 := 𝑝𝑟𝑜𝑐 () 𝑓𝑐 (𝑓1 (𝑎𝑟𝑔𝑠1), ..., 𝑓𝑛 (𝑎𝑟𝑔𝑠𝑛)); 𝑒𝑛𝑑 𝑝𝑟𝑜𝑐 : (3)

, Vol. 1, No. 1, Article . Publication date: July 2024.

Around Cooper’s Algorithm with Maple 5

Each 𝑓𝑖 (𝑎𝑟𝑔𝑠𝑖) can be executed by a task 𝑡𝑖 , with the procedure of the task being 𝑓𝑖 and the associated
arguments, the 𝑎𝑟𝑔𝑠𝑖 . However, just as 𝑓𝑐 needs to wait for all the 𝑓𝑖 (𝑎𝑟𝑔𝑠𝑖) to return, so 𝑡𝑐 needs
to wait for the 𝑡𝑖 to complete before it can execute. The procedure associated with 𝑡𝑐 is 𝑓𝑐 , while

the associated arguments are the values returned by the 𝑡𝑖 . Here, the parent task is 𝑡𝑐 , while the
child tasks are the 𝑡𝑖 . The task 𝑡𝑐 is called the continuation task. It is so called, because when a

task 𝑡 creates a continuation task, it can finish executing without waiting for the child tasks to

complete as the continuation task will handle the return. Therefore, any task can replace itself with

child tasks and a continuation task. Furthermore, as child tasks can also create more tasks, this

forms a task tree. Leaf tasks can run at any time as they do not need to wait for any child tasks,

and their parents may in turn become leafs as a result. To start a task computation, one uses the

Threads : −Task : −Start() command.

What follows is the author’s version of Cooper’s algorithm using the Tasks model, where lcm is

the lowest common multiple of all of the lhs of the divisibility constraints (i.e., lcm = 𝛿), where the

sub-routine, cont, gives the combined results of the returns from all the tasks, and where 𝑛 is the

number of tasks.

Algorithm 3: Cooper’s Algorithm Task Model

Input: An existentially quantified conjunction of inequalities (and maybe equalities), F; an

int n.

Output: A boolean indicating whether there are integer solutions.

1 if lcm < threshold then
2 Serial_Cooper(F);

3 step := floor(lcm/n);

4 Threads:- Task:-Continue(cont, Tasks=[Parallel_Cooper, seq([i*step+1, (i+1)*step)], i =

0..n-2), [(n-1)*step+1, lcm)]]);

5 Experimentation
These three versions of Cooper’s Algorithm have been implemented without negation, for &

connectives only, and for one variable. The experiments were run on an HP Laptop 15-dw3xxx,

Intel Core i3-1115G4, 1 Processor, 2 Cores, 4 Threads, 2.99 GHz. The cache specifications are as

follows: L1 Instruction 32.0 KB x 2, L1 Data 48.0 KB x 2, L2 1.25 MB x 2, L3 6.00 MB x 1. The results

are based on the following systems of inequalities (and equalities in some cases, where the equality

is transformed into two inequalities): the first eleven test cases are to test correctness, for which all

passed, and the cases following those are for performance. Note: 𝐿 stands for ≤, while 𝐺 stands for

≥.

5.1 Correctness Tests
- s1 := "x=34": (equality)

- s2 := "5*x G x - 34": (greater than or equal to)

- s3 := "x L 2": (less than or equal to)

- s4 := "x > 34": (greater than)

- s5 := "3*x+1 = 34": (non-unitary coefficient)

- s6:= "5*x + 1 G 34 & 8*x + 3 > 35": (system of two inequalities)

- s7 := "3*x - 6 G 7 & 5*x + 9 > 8 & 2*x < x + 1": (system with an inequality with the variable on

both sides)

- s8 := "x+1 < 3*x & x L 2": (system often used as a running example)

- s9 := "2*x = 7 & x < 5 & 14*x < 6": (system of an equality and inequalities)

, Vol. 1, No. 1, Article . Publication date: July 2024.

6

- s10 := "2 < x & 3 < x & 4 < x & x G 5": (system of four inequalities)

- s11 := "2 < x & 3 < x & 4 < x & x G 5 & 6 < x & 7 L x & 8 < x & x G 9 & 10 < x & 11 < x & 12 < x

& 13 L x & 14 < x & 15 L x & 16 < x": (large system to test step 5B - consists of 15 constraints)

5.2 Performance Tests
- s12 := "3*x + 5 = 60 & x G 24 & 25*x < 12*x + 18 & 35*x > 23 & 21*x > 14*x + 18 & 5*x = 24 &

34*x + 24 G 14*x + 45 & 6*x - 34 L 23 & 65*x - 98 L 17"; (large and complex system - consists

of 9 large constraints)

- s13 := "2 < x & 3 < x & 4 < x & x G 5 & 2 < x & 3 < x & 4 < x & x G 5 & 6 < x & 7 L x & 8 < x &

x G 9 & 10 < x & 11 < x & 12 < x & 13 L x & 14 < x & 15 L x & 16 < x & 3*x + 5 = 60 & x G 24

& 25*x < 12*x + 18 & 35*x > 23 & 21*x > 14*x + 18 & 5*x = 24 & 34*x + 24 G 14*x + 45 & 6*x -

34 L 23 & 65*x - 98 L 17": (very large and complex system with 28 constraints - it consists of

systems s10-s12)

- s14 := "54*x L 98 - 54*x & 45*x > 78*x - 25 & 88*x + 78 < 26*x & 78*x = 67*x = 67":

- s15 := "34*x < 23*x - 879 & -16*x = 34 + 9*x & 45*x L 79 - 87*x & 56*x + 87 G 23 - 2*x":

- s16 := s16 := "46 + 78*x > 89 & 21*x = 67 - 98*x & 56*x + 87 = -76*x - 65":

- s17 := "2034 > 76*x - 56 & 78*x < 67*x - 97 & 35*x L 24*x +25 & -15*x G -90*x + 74 & 78*x + 87

> 15*x & 24*x -22 < 18":

- s18 := "67*x - 9 = 34*x & 65*x> 3089*x - 75 & 45*x L 67 & 34*x L 79*x - 55 & 85*x G 23*x - 65":

5.3 Large Numbers of Lowerbounds and Formulas
- s19 := " x > 50 & x > 1 & x > 2 & x > 3 & x > 4 & x > 5 & x > 6 & x > 7 & x > 8 & x > 9 & x > 10

& x > 11 & x > 12 & x > 13 & x > 14 & x > 15 & x > 16 & x > 17 & x > 18 & x > 19 & x > 20 & x

> 21 & x > 22 & x > 23 & x > 24 & x > 25 & x > 26 & x > 27 & x > 28 & x > 29 & x > 30 & x >

31 & x > 32 & x > 33 & x > 34 & x > 35 & x > 36 & x > 37 & x > 38 & x > 39 & x > 40 & x > 41

& x > 42 & x > 43 & x > 44 & x > 45 & x > 46 & x > 47 & x > 48 & x > 49": (fifty lowerbounds)

- s20 := cat(s19, "&", s19): (100 lowerbounds)

- s21 := cat(s20, "&", s20, "&", s20, "&", s20, "&",s20, "&", s20, "&",s20, "&", s20, "&",s20, "&", s20):

(1000 lowerbounds)

- s22 := cat(s21, "&", s21, "&", s21, "&", s21, "&",s21, "&", s21, "&",s21, "&", s21, "&",s21, "&", s21):

(10,000 lowerbounds)

5.4 Experimental Data with Time in ms

, Vol. 1, No. 1, Article . Publication date: July 2024.

Around Cooper’s Algorithm with Maple 7

3.5 4 4.5 5 5.5 6 6.5 7

0.5

1

1.5

2

2.5

log(LCM)

Sp
ee
du

p

Grid

Task

Fig. 1. Speedup with respect to the log of the lcm of the coefficients in a system.

5.5 Analysis
In the correctness tests (s1 - s11), the grid and task models have much longer running times than

the serial one. This is due to low lcm’s and overhead. Performance test s12 is an outlier; we see a

poor grid time and a subpar task time due to unknown reasons. In the performance tests (s13 - s18),

we see a change where the grid and task versions are much faster than the serial one with speedups

from about 1.2 to 2.3 times. This is due to large lcm’s which range from 5,460 to 5,155,920. With the

large number of lowerbounds and formulas (s19 - s22), the grid and task models are quite slow due

to a low lcm of 1 in each case. In Figure 1, only the performance cases (s12- s18) are graphed as s1 -

s11 are just correctness tests, and s19 - s22 have low lcm’s (lcm = 1) and high overhead, resulting in

no possible advantage over the serial version.

6 Improvements and Optimizations
Cooper’s Algorithm focuses on eliminating existential quantifiers, but universal quantifiers can

also be handled by adding a few straightforward rules. As a result, eliminating universal quantifiers

with linear constraints reduces to solving too:

(1) (∀𝑥1...𝑥𝑛 (𝑎1𝑥1 + ... + 𝑎𝑛𝑥𝑛 = 𝑏)) ⇔ (𝑎1 = ... = 𝑎𝑛 = 𝑏 = 0)
(2) (∀𝑥1...𝑥𝑛 (𝑎1𝑥1 + ... + 𝑎𝑛𝑥𝑛 ≠ 𝑏)) ⇔ (𝑎1 = ... = 𝑎𝑛 = 0 ∧ 𝑏 ≠ 0)
(3) (∀𝑥1...𝑥𝑛 (𝑎1𝑥1 + ... + 𝑎𝑛𝑥𝑛 < 𝑏)) ⇔ (𝑎1 = ... = 𝑎𝑛 = 0 ∧ 𝑏 > 0)
(4) (∀𝑥1...𝑥𝑛 (𝑎1𝑥1 + ... + 𝑎𝑛𝑥𝑛 ≮ 𝑏)) ⇔ (𝑎1 = ... = 𝑎𝑛 = 0 ∧ 𝑏 ≤ 0)

In the case that there are linear equations among the constraints, instead of converting all of

them to inequalities, we could solve them over Z. We recall a procedure for doing so, taken from [7].

Let 𝐴 ∈ Z𝑚×𝑛
be a matrix with rank𝑚 and v ∈ Z𝑚 be a vector. Consider the system of linear

equations

𝐴x = v. (4)

Let𝑈𝑛×𝑛 be a unimodular matrix so that we have

𝐴𝑚×𝑛𝑈𝑛×𝑛 = [0𝑚×(𝑛−𝑚) , 𝑅𝑚×𝑚],

which is called the Hermite Normal Form of 𝐴 and 𝑅 is nonsingular. Then, it is known that 𝐴x = v
has integer solutions if and only if 𝑅−1v ∈ Z𝑚 holds. Moreover, writing 𝑈 = [𝑈𝐿,𝑈𝑅], where

, Vol. 1, No. 1, Article . Publication date: July 2024.

8

𝑈𝐿 ∈ Z𝑛×(𝑛−𝑚)
, the integer solutions of Equation (4) are of the form

x = 𝑈𝑅𝑅
−1v +𝑈𝐿z,

where z is any element of Z𝑛−𝑚 .
The following example is from [7]:

𝐴 =
©­«
6 8 7 3

2 4 5 4

3 6 8 9

ª®¬ and v =
©­«
1

2

3

ª®¬.
The Hermite Normal Form 𝐻 of 𝐴 and the unimodular transformation matrix𝑈 are given by:

𝐻 =
©­«
0 1 0 0

0 0 1 0

0 0 0 1

ª®¬ and 𝑈 =

©­­­«
−26 −19 −25 3

39 29 36 −4
−24 −18 −21 2

4 3 3 0

ª®®®¬.
Here the matrix 𝑅 and the general form of the solution are given by

𝑅 =
©­«
1 0 0

0 1 0

0 0 1

ª®¬ and x = 𝑈𝑅𝑅
−1v +𝑈𝐿z =

©­­­«
−60
89

−54
9

ª®®®¬ + 𝑧
©­­­«
−26
39

−24
4

ª®®®¬, 𝑧 ∈ Z.
Another optimization would be to use Barvinok’s algorithm, which calculates a generating

function, which in turn, calculates the number of integer points in a polytope as opposed to

Cooper’s Algorithm, which just indicates whether such points exist or not. Then there is the

MAPLE command IntegerPointDecomposition. Its algorithm, IntegerSolve(𝐾), decomposes the

polyhedron 𝐾 ’s integer points (𝐾 ∩ Z𝑑) into the disjoint union (𝐾1 ∩ Z𝑑) ¤∪ . . . ¤∪(𝐾𝑒 ∩ Z𝑑), where
𝐾1, . . . , 𝐾𝑒 are simpler polyhedra, such that (𝐾𝑖 ∩ Z𝑑) ≠ ∅ for all 1 ≤ 𝑖 ≤ 𝑒 [6].

References
[1] Barvinok, A. I. A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed.

Mathematics of Operations Research 19, 4 (1994), 769–779.
[2] Cooper, D. C. Theorem proving in arithmetic without multiplication. Machine intelligence 7, 91-99 (1972), 300.
[3] Dung, P. A., and Hansen, M. R. From functional programming to multicore parallelism: A case study based on

presburger arithmetic. In 23rd Nordic Workshop on Programming Theory (2011).

[4] Feautrier, P. Automatic parallelization in the polytope model. The Data Parallel Programming Model: Foundations,
HPF Realization, and Scientific Applications (2005), 79–103.

[5] Fischer, M. J., and Rabin, M. O. Super-exponential complexity of presburger arithmetic. In Quantifier Elimination and
Cylindrical Algebraic Decomposition. Springer, 1998, pp. 122–135.

[6] Jing, R.-J., and Moreno Maza, M. Computing the integer points of a polyhedron, i: algorithm. In International
Workshop on Computer Algebra in Scientific Computing (2017), Springer, pp. 225–241.

[7] Jing, R.-J., and Moreno Maza, M. Personal communication. 2023.

[8] Karrenberg, R., Košta, M., and Sturm, T. Presburger arithmetic in memory access optimization for data-parallel

languages. In Frontiers of Combining Systems: 9th International Symposium, FroCoS 2013, Nancy, France, September 18-20,
2013. Proceedings 9 (2013), Springer, pp. 56–70.

[9] Köppe, M., and Verdoolaege, S. Computing parametric rational generating functions with a primal barvinok algorithm.

arXiv preprint arXiv:0705.3651 (2007).
[10] Maplesoft. 15 parallel programming, n.d.

[11] Oppen, D. C. A 222pn upper bound on the complexity of presburger arithmetic. Journal of Computer and System
Sciences 16, 3 (1978), 323–332.

[12] Phan, A.-D., and Hansen, M. R. An approach to multicore parallelism using functional programming: A case study

based on presburger arithmetic. Journal of Logical and Algebraic Methods in Programming 84, 1 (2015), 2–18.
[13] Pugh, W. The omega test: a fast and practical integer programming algorithm for dependence analysis. In Proceedings

of the 1991 ACM/IEEE conference on Supercomputing (1991), pp. 4–13.

, Vol. 1, No. 1, Article . Publication date: July 2024.

	1 Introduction
	2 Cooper's Algorithm
	3 Parallelizing Cooper's Algorithm
	4 Parallelization in the MAPLE Programming Language
	4.1 The Grid Programming Model
	4.2 The Task Programming Model

	5 Experimentation
	5.1 Correctness Tests
	5.2 Performance Tests
	5.3 Large Numbers of Lowerbounds and Formulas
	5.4 Experimental Data with Time in ms
	5.5 Analysis

	6 Improvements and Optimizations

