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1 Overview
When solving systems of polynomial equations and inequalities, the task of computing their

solutions with integer coordinates is a much harder problem than that of computing their real

solutions or that of computing all their solutions. In fact, in the presence of non-linear constraints

this task may simply become an undecidable problem. However, studying the integer solutions

of systems of equations and inequalities is of practical importance in various areas of scientific

computing. Two such areas are combinatorial optimization (in particular integer linear programming)

and compiler optimization (in particular, the analysis, transformation and scheduling of for-loop

nests in computer programs), where a variety of algorithms solve questions related to the points

with integer coordinates belonging to a given polyhedron. Another area is at the crossroads of

computer algebra and polyhedral geometry, with topics such as toric ideals and Hilbert bases,

see [19] as well the manipulation of Laurent series, see [1].

One can ask different questions about the integer points of a polyhedral set, ranging from

“whether or not a given rational polyhedron has integer points” to “describing all such points”.

Answers to that latter question can take various forms, depending on the targeted application.

For plotting purposes, one may want to enumerate all the integer points of a 2D or 3D polytope.

Meanwhile, in the context of combinatorial optimization or compiler optimization, more concise

descriptions are sufficient and more effective. For a rational convex polyhedron 𝑃 ⊆ Q𝑑
, defined

either by the set of its facets or that of its vertices, one such description is the integer hull 𝑃𝐼 of 𝑃 ,
that is, the convex hull of 𝑃 ∩ Z𝑑 . The set 𝑃𝐼 is itself polyhedral and can be described either by its

facets, or its vertices.

Another concise description was proposed in [9, 8] where the integer points of a polyhedral set

are represented by (finitely many) triangular systems with specialization properties similar to those

of regular chains and lexicographical Gröbner bases.

An even more concise answer is given by counting the number of integer points of a polytope.

This problem has efficient algorithmic solutions, in particular Barvinok’s algorithm [2], as well as
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numerous applications, such as counting the number of memory locations (or cache lines) accessed

by a for-loop nest, see [15, 6].

Over the past 10 years, a series of projects has equipped the computer algebra system Maple with

a number of tools for dealing with the integer points of systems of linear equations and inequalities,

even in the presence of parameters. These tools implement novel and effective algorithms; they are

part in the PolyhedralSets library and they are the main subject of this paper.

With these tools, one can either decide whether integer point solutions exist, or count them. One

can also describe them in a compact way, or enumerate them, see Sections 2 and 3. Last but not

least, one can deal with parametric polytopes and count the number of their integer points, see

Section 4.

2 Computing integer hulls
One important family of algorithms for computing the vertex set of the integer hull 𝑃𝐼 of the

polyhedral set 𝑃 ⊆ Q𝑑
, relies on the so-called cutting plane method, originally introduced by Gomory

in [7] to solve integer linear programs. Chvátal [5] and Schrijver [17] developed a procedure to

compute 𝑃𝐼 based on that latter method. Schrijver gave a full proof and a complexity study of this

method in [16]. Another approach for computing 𝑃𝐼 uses the branch and bound method, introduced
by Land and Doig in the early 1960s in [10]. This method recursively divides 𝑃 into sub-polyhedra,

then the vertices of the integer hull of each part of the partition are computed. Yet another approach

for computing 𝑃𝐼 is used in the software Normaliz [4]: by embedding 𝑃 in dimension 𝑑 + 1, the

problem of computing 𝑃𝐼 is reduced to that of computing generators (with integer coordinates) of a

rational polyhedral cone 𝐶; indeed, once those generators are known, Gordan’s lemma produces

a generating set of the affine monoid 𝐶∩Z𝑑+1 to which a convex hull algorithm is applied to

finally deduce 𝑃𝐼 ; hence, the bulk of the work is to compute generators of 𝐶 , which is achieved by

Fourier-Motzkin Elimination (FME).

Fig. 1. Using the IntegerHull command

In [13], the authors proposed a new algorithm for computing 𝑃𝐼 , which is implemented as in the

command IntegerHull of the PolyhedralSets library. This new algorithm has three main steps:

• normalization, during which 𝑃 is replaced by a rational polyhedron 𝑄 ⊆ Q𝑑
so that the

supporting hyperplane of each facet of 𝑄 has integer points and 𝑃𝐼 = 𝑄𝐼 holds;

• partitioning, during which we search for integer points inside Q and use them to partition 𝑄

into “smaller polyhedral sets”, the integer hulls of which can easily be computed;
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• merging, during which the integer hulls of the parts of the partition are merged by means of

the convex hull algorithm.

The efficiency of this algorithm depends mainly on the shape of the input while the size of the input

has little impact. Comparative experimentation shows this new algorithm can deal with inputs of

very large volumes that algorithms depending on enumeration, such as those of Normaliz can not

process. Figure 1 illustrates the use of the IntegerHull command of the PolyhedralSets library.

3 Describing Z-polyhedra
Following [18], we call integer lattice of Z𝑑 any set of the form

{𝐴x + b | x ∈ Z𝑑 }
where 𝐴 ∈ Z𝑑×𝑑 is a full-rank matrix and b ∈ Z𝑑 is a vector; such a set is denoted by L(𝐴, b).

Following [18] again, we call a Z-Polyhedron the intersection of a polyhedron with an integer

lattice. The purpose of this notion is, for us, to support the description of the integer points of a

polyhedron 𝑃 ⊆ Q𝑛
, that is, the description of the set 𝑃 ∩ Z𝑛

.

To understand why lattices appear naturally when solving for the integer points of a polyhedron,

consider a couple of elementary examples. First, consider the problem of solving a Diophantine

equation over Z, say in 2 variables 𝑥 and 𝑦. For instance, consider 3𝑥 − 4𝑦 = 7; its solutions, as

computed by Maple, are of the form

𝑥 = 5 + 4 _Z1, 𝑦 = 2 + 3 _Z1,

the description of which requires the use of the auxiliary variable _𝑍1.

In his Omega test [14, 15] William Pugh extended that idea for solving arbitrary systems of linear

equations over Z. For instance, for the system{
7𝑥 + 12𝑦 + 31𝑧 = 17

3𝑥 + 5𝑦 + 14𝑧 = 7

the Omega test produces 
𝑧 = −𝑡0 − 1

𝑦 = −5𝑡0 − 3

𝑥 = 13𝑡0 + 12

Of course, the introduction of the parameter 𝑡0 can be avoided by re-writing 𝑥 and 𝑧 as a function

of 𝑧, (simply by using Hermite normal forms) leading to:{
𝑥 = −1 − 13𝑧

𝑦 = 2 + 5𝑧

Consider now this other polyhedron 𝑃 of Q3
:

𝑥 = 19

𝑦 = 25 + (1/2)𝑧
𝑧 ≤ 18

−𝑧 ≤ 0

Because of the presence of the rational number 1/2, the above input system cannot be considered

as a description of the set 𝑃 ∩Z3
and the Omega test produces:

𝑥 = 19

𝑦 = 25 + 𝑡0
𝑧 = 2 𝑡0

−𝑡0 ≤ 0

𝑡0 ≤ 9
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Inspired by thework[18], and the Omega test, we have designed and implemented an algorithm [9, 8]

for representing Z-polyhedra. In particular, for the above example, we obtain in a Maple session,

the result shown on Figure 2. On the left-hand side of Figure 2, we retrieve our original polyhedron

Fig. 2. A Z-Polyhedron in PL format.

𝑃 and on the right-hand side, we have the lattice L of Z𝑛
consisting of the points (𝑥,𝑦, 𝑧) where

𝑧/2 is integer. The intersection 𝑃 ∩L is exactly 𝑃 ∩Z3
. More generally, encoding the integer points

of a polyhedron using the above format, that we call the PL format, and thus using lattices, allows

us to totally avoid the recourse to auxiliary variables. In addition, it is easy to convert any set of

the form 𝑃 ∩Z𝑛
(where 𝑃 ⊆ Q𝑛

is a polyhedron) from PL format, say 𝑃 ∩L(𝐶, )
.
, to the Omega test

format, simply by substitution.

The subpackage ZPolyhedralSets of the PolyhedralSets library is dedicated to the manipula-

tion of Z-Polyhedra. This subpackage offers a number of functionalities, among them:

• EnumerateIntegerPoints for enumerating the points of a Z-Polytope,
• PlotIntegerPoints3d for plotting 3D Z-Polyhedra,
• IsContained to test inclusion between Z-Polyhedra.

The core operation is IntegerPointDecomposition which, given an input Z-Polyhedron 𝐾 com-

putes a finite partition of 𝐾 into Z-Polyhedra 𝐾1, . . . , 𝐾𝑒 with additional properties, see [9, 8]. In

particular, none of the Z-Polyhedra 𝐾1, . . . , 𝐾𝑒 is empty. Under genericity assumptions, Integer-
PointDecomposition runs in single exponential time (w.r.t. the number of variables); its worst

case complexity is doubly exponential.

We conclude this section with an example of a decomposition computed by IntegerPoint-
Decomposition. Since for each of the involved Z-Polyhedra, except the last one, the lattice part is
simply the entire Z3

, we do not print it. For the last Z-Polyhedron, we use the Omega test format.

For 𝐾 :


3𝑥1 − 2𝑥2 + 𝑥3 ≤ 7

−2𝑥1 + 2𝑥2 − 𝑥3 ≤ 12

−4𝑥1 + 𝑥2 + 3𝑥3 ≤ 15

−𝑥2 ≤ −25

, with 𝑥1 > 𝑥2 > 𝑥3, the output consists of 5 Z-polyhedra

𝐾1, 𝐾2, 𝐾3, 𝐾4, 𝐾5:

3𝑥1 − 2𝑥2 + 𝑥3 ≤ 7

−2𝑥1 + 2𝑥2 − 𝑥3 ≤ 12

−4𝑥1 + 𝑥2 + 3𝑥3 ≤ 15

2𝑥2 − 𝑥3 ≤ 48

−5𝑥2 + 13𝑥3 ≤ 67

−𝑥2 ≤ −25
2 ≤ 𝑥3 ≤ 17

,


𝑥1 = 15

𝑥2 = 27

𝑥3 = 16

,


𝑥1 = 18

𝑥2 = 33

𝑥3 = 18

,


𝑥1 = 14

𝑥2 = 25

𝑥3 = 15

,


𝑥1 = 19

𝑥2 = 50 + 𝑡
𝑥3 = 50 + 2𝑡

−25 ≤ 𝑡 ≤ −16.

To use the terminology of William Pugh, the Z-polyhedron 𝐾1 corresponds to the dark shadow of

the input polyhedron 𝐾 , while 𝐾2, 𝐾3, 𝐾4, 𝐾5 correspond to its grey shadow.
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4 Dealing with parameters
In practice, polyhedral sets are often parametric. Consider for instance the for-loop nest, written

in a programming language (say C) of a dense matrix multiplication algorithm. At compile time,

the upper bound of the value range of each loop counter is a symbol. To be more precise, the

iterations of that for-loop nest are the integer points of a polyhedral set 𝑃 given by a system of

linear inequalities 𝐴®𝑥 ≤ ®𝑏 where 𝐴 is a matrix with integer coefficients,
®𝑏 is a vector of symbols

(actually the parameters of the polyhedral set) and ®𝑥 is the vector of the loop counters. At execution

time, different values of
®𝑏 yield different shapes and numbers of vertices for 𝑃𝐼 . So what can be

done at compile time to answer a question like what is the number of memory accesses performed

by that for-loop nest?

For non-parametric polyhedral sets, the most studied method for counting the integer points of

a polytope is certainly due to Alexander Barvinok in [2]. The Authors of [11] and [21] report on an

implementation of Barvinok’s algorithm respectively in the software libraries LattE and barvinok,
both developed in C/C++. Moreover, the latter library has an adaptation of Barvinok’s algorithm to

parametric polyhedral sets.

The PolyhedralSets also offers an implementation of Barvinok’s algorithm adapted to count

the integer points of parametric polyhedral sets. This led us to implement various Maple packages

which are interesting in their own right.

At the core of Barvinok’s algorithm, one finds the computation of the generating function of a

polytope. In the parametric case, such a function is a multivariate rational function where some

exponents of some monomials depend on the parameters. To manipulate those expressions in

a convenient way, we have implemented quasi-polynomials in Maple. A quasi-polynomial is a
polynomial-like object, the coefficients of which are instead periodic functions with integral period.

A second challenge in adapting Barvinok’s algorithm from non-parametric to parametric poly-

topes is due to the complexity of the case discussion. To make that observation clear, let us first

recall how one solves a parametric linear system, say by Gaussian elimination: the search for pivots,

one after another, dynamically unfolds a decision tree where:

• internal nodes are candidate pivots (with a left child for the “non-zero” case and a right child

for the “zero” case), and

• leaves are solutions.

Let us now return to the integer point counting of a parametric polytope P(b). One must first

determine the vertices of P(b). This leads to a number of parametric problems which can be

solved independently, thus leading to a number of decision trees. Once all these decision trees are

computed, they must be merged into a single decision tree. Next, the vertex cone of each vertex

must be determined. This again creates a number of decision trees, which must be merged into a

single decision tree.

At this point, one is essentially ready to apply Barvinok’s algorithm, up to the issue solved by the

usage of the quasi-polynomials. After doing so, one usually observes a number of cases which are

specializations of the same more general case. We are in the process of implementing an algorithm

to detect such a pattern and replace those specializations by a single more general case.
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Fig. 3. Using the NumberOfIntegerPoints command

Figure 3 shows the computation of the number of integer points of the parametric polytope

given by 
1 ≤ 𝑖

𝑖 ≤ 𝑚

𝑗 ≤ 𝑛
3𝑖 ≤ 5 𝑗

(1)

in the coordinates (𝑖, 𝑗) andwith𝑚,𝑛 as parameters. The output of the command NumberOfIntegerPoints
consists 0f 4 pairs value-constraints. For the first, the third and the fourth pairs, the value part uses

a quasi-polynomial. For instance, the value part of the first pair is:

3𝑚

10

− 3𝑚2

10

+𝑄 ( [𝑚, 5, [0, 0,−2/5,−1/5,−2/5]]) + 𝑛𝑚,

which uses the quasi-polynomial

𝑄 ( [𝑚, 5, [0, 0,−2/5,−1/5,−2/5]]),

which must be read as follows: 
0 if 𝑚 ≡ 0 mod 5

0 if 𝑚 ≡ 1 mod 5

−2/5 if 𝑚 ≡ 2 mod 5

−1/5 if 𝑚 ≡ 3 mod 5

−2/5 if 𝑚 ≡ 4 mod 5
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We observe that the third and fourth pairs [value-constraints] shown on Figure 3 can be replaced

by a single pair [value-constraints], namely:

[{ 5𝑛
2

6

+ 𝑛/2 +𝑄 ( [𝑛, 3, [0,−1/3,−1/3]])}, [3𝑚 − 5𝑛 = 0, 0 ≤ 5𝑛 − 4]] .

As mentioned above, we are in the process of implementing this type of recombination of cases.
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