
Towards Automatic OpenMP-Aware Utilization of Fast GPU Memory
Delaram Talaashrafi, Marc Moreno Maza, Johannes Doerfert

Introduction

OpenMP supports target offloading since version 4.0. Although using the memory efficiently is

essenধal for high performance on a GPU, there has not been much work done to automaধcally

opধmize memory transacধons inside OpenMP target regions at compile ধme.

In this work, we develop an inter-procedural LLVM transformaধon to improve the performance of

OpenMP target regions by opধmizing memory transacধons. This transformaধon pass effecধvely

prefetches some of the read-only input data to the fast shared memory via compile ধme code

injecধon. Especially if there is reuse, accesses to shared memory far outpace global memory

accesses. Consequently, our method can significantly improve performance if the right data is

placed in shared memory.

Background

Compiling and opধmizing OpenMP programs with target offload regions has been supported by

LLVM/Clang since version 11. OpenMPOpt is an inter-procedural opধmizaধon (IPO) pass in LLVM,

which is implemented for opধmizing OpenMP GPU execuধon. This pass is enabled by default

since LLVM 11 when compiling with O2 and O3 opধons. It first runs on the module and later it

runs on the call graph of the program. It uses domain knowledge about OpenMP runধme calls to

beħer opধmize the LLVM-IR of the program.

While execuধng, GPU threads can have access to different memory spaces. All threads across all

teams have access to the global memory. Each team of threads has access to the shared memory.

Finally, all threads have private local memory.

On modern GPUs, the global memory is off-chip with high access latency. Therefore, using the

global memory efficiently and reducing the number of transacধons to/from it is essenধal to maxi-

mize a GPU’s computaধon capability uধlizaধon. An alternaধve to global memory is shared memory

which is limited on-chip and fast memory space.

A challenge while using the GPU’s shared memory is to avoid bank conflict. The shared memory

is managed in modules of equal size or memory banks. Different memory banks can be accessed

simultaneously. However, mulধple threads cannot access different locaধons in the same bank in

parallel. Therefore, having mulধple threads accessing the same memory bank causes the bank

conflict problem, and the accesses are then serialized.

Contributions

In this work, our focus is on the shared memory. There are two kinds of shared memory: staধc and

dynamic. Staধc shared memory is used when the required size of the shared memory is known

at compile ধme, and dynamic shared memory is used when this size is unknown at compile ধme.

We develop a compiler opধmizaধon technique to improve the performance of OpenMP programs

containing device offloading regions by automaࣅcally prefetching parts of the required data to the

shared memory through code injected at compile .meࣅ In the current version of OpenMP, runধme

funcধons and direcধves exist to explicitly allocate and use memory in the shared space. Also, the

OpenMPOpt pass, developed as a part of the LLVM framework, implements different OpenMP-

aware opধmizaধon techniques that uধlize shared memory. These have proven to effecধvely

improve the performance of a program’s target regions.

We leverage the OpenMPOpt pass infrastructure and the LLVM/OpenMP GPU runধme funcধons

for allocaধng (dynamic) shared memory for our own opধmizaধon. By idenধfying suitable can-

didate memory regions and prefetching them into the shared memory buffer automaধcally, we

can improve the program’s performance as each original load from the global memory is now

significantly faster served from shared memory instead.

Problem instance and assumptions

Figure 1 shows a supported kernel, and an eligible read access for prefetching (v1).
1 #pragma omp target teams map(to:v1[0:N*M])
2 #pragma omp distribute parallel for
3 // work -sharing loop
4 for (int i=0; i<N; i++)
5 for(int j=0; j<N; j++)
6 // access loop
7 for(int k=0; k<M; k++)
8 // eligible access for prefetching
9 sum += v1[i*M+k] * 3;

Figure 1. Example of the supported read access.

We also assume there are no condiধonal branches in the target region, and the total number of

available threads (number of teams mulধplied by the number of threads per team) is equal to the

number of iteraধons of the work-sharing loop. Furthermore, we assume the amount of shared

memory usage per team does not exceed the shared space allocated for the program.

Prefetching to the shared memory

The first step is to find global memory locaধons of the array, read by each team. Memory locaধons

accessed in each iteraধon can be computed by: (Basei + k × Stepi), 0 ≤ k < Numberi. Figure 2
shows a matrix and the values of Basei

Figure 2. Values of Basei

The next step is to put locaধons to consecuধve locaধons in the shared memory. Figure 3 shows

the shared memory locaধons ađer prefetching.

Figure 3. Shared memory locaধons ađer prefetching.

Replace accesses

The final step is to replace accesses to the global memory with accesses to the shared memory.

Figure 4 shows the replacements.

Figure 4. Replacement of global memory locaধons with the shared buffer.

Evaluation

Figure 5 shows the speed-up we gain by using prefetching method, combined with padding tech-

nique for matrix mulধplicaধon, considering different sizes.

Figure 5. Speedup gains with prefetching.


