Western

Introduction

OpenMP supports target offloading since version 4.0. Although using the memory efficiently is
essential for high performance on a GPU, there has not been much work done to automatically
optimize memory transactions inside OpenMP target regions at compile time.

In this work, we develop an inter-procedural LLVM transformation to improve the performance of
OpenMP target regions by optimizing memory transactions. This transformation pass effectively
prefetches some of the read-only input data to the fast shared memory via compile time code
injection. Especially if there is reuse, accesses to shared memory far outpace global memory
accesses. Consequently, our method can significantly improve performance if the right data is
placed in shared memory.

Background

Compiling and optimizing OpenMP programs with target offload regions has been supported by
LLVM/Clang since version 11. OpenMPOpt is an inter-procedural optimization (IPO) pass in LLVM,
which is implemented for optimizing OpenMP GPU execution. This pass is enabled by default
since LLVM 11 when compiling with 02 and 03 options. It first runs on the module and later it
runs on the call graph of the program. It uses domain knowledge about OpenMP runtime calls to
better optimize the LLVM-IR of the program.

While executing, GPU threads can have access to different memory spaces. All threads across all
teams have access to the global memory. Each team of threads has access to the shared memory.
Finally, all threads have private local memory.

On modern GPUs, the global memory is off-chip with high access latency. Therefore, using the
global memory efficiently and reducing the number of transactions to/from it is essential to maxi-
mize a GPU’s computation capability utilization. An alternative to global memory is shared memory
which is limited on-chip and fast memory space.

A challenge while using the GPU'’s shared memory is to avoid bank conflict. The shared memory
Is managed in modules of equal size or memory banks. Different memory banks can be accessed
simultaneously. However, multiple threads cannot access different locations in the same bank in
parallel. Therefore, having multiple threads accessing the same memory bank causes the bank
conflict problem, and the accesses are then serialized.

Contributions

In this work, our focus is on the shared memory. There are two kinds of shared memory: static and
dynamic. Static shared memory is used when the required size of the shared memory is known
at compile time, and dynamic shared memory is used when this size is unknown at compile time.

We develop a compiler optimization technigue to improve the performance of OpenMP programs
containing device offloading regions by automatically prefetching parts of the required data to the
shared memory through code injected at compile time. In the current version of OpenMP, runtime
functions and directives exist to explicitly allocate and use memory in the shared space. Also, the
OpenMPOpt pass, developed as a part of the LLVM framework, implements different OpenMP-
aware optimization techniques that utilize shared memory. These have proven to effectively
improve the performance of a program'’s target regions.

We leverage the OpenMPOpt pass infrastructure and the LLVM/OpenMP GPU runtime functions
for allocating (dynamic) shared memory for our own optimization. By identifying suitable can-
didate memory regions and prefetching them into the shared memory buffer automatically, we
can improve the program’s performance as each original load from the global memory is now
significantly faster served from shared memory instead.

1

2

w

Delaram Talaashrafi, Marc Moreno Maza, Johannes Doerfert

Problem instance and assumptions

W NN NN VNN Je

Towards Automatic OpenMP-Aware Utilization of Fast GPU Memory

Replace accesses

Figure 1 shows a supported kernel, and an eligible read access for prefetching (v1).

#pragma omp target teams map(to:v1[0:NxM])
#pragma omp distribute parallel for
// work-sharing loop
for (int 1i=0; i<N; i++)
for(int j=0; j<N; j++)
// access loop
for(int k=0; k<M; k++)
// eligible access for prefetching
sum += v1[i*xM+k] * 3;

Figure 1. Example of the supported read access.

We also assume there are no conditional branches in the target region, and the total number of
available threads (number of teams multiplied by the number of threads per team) is equal to the
number of iterations of the work-sharing loop. Furthermore, we assume the amount of shared
memory usage per team does not exceed the shared space allocated for the program.

Prefetching to the shared memory

The final step is to replace accesses to the global memory with accesses to the shared memory.

Figure 4 shows the replacements.

A[0] [0
Af0][1
A[1] [0
Al1][1

— A sh|O.
— A sh[1.
— A sh[2.
— A sh[3.

Figure 4. Replacement of global memory locations with the shared buffer.

Evaluation

The first step is to find global memory locations of the array, read by each team. Memory locations
accessed in each iteration can be computed by: (Basej + k x Stepi), 0 < k < Number;. Figure 2
shows a matrix and the values of Basej

z—> 200 | a01
— |al0O|alil
", 1220 a2
", [a30a31
T2, la40 | a4t
. |ab0 | ab1

Figure 2. Values of Base;

The next step is to put locations to consecutive locations in the shared memory. Figure 3 shows
the shared memory locations after prefetching.

0 1 2 3
a00 a0l |al0fall

0 1 2 3
ad0 | a4l |ad0 | abl

0 1 2 3
a20 | a21 |a30 | a3l

Figure 3. Shared memory locations after prefetching.

Figure 5 shows the speed-up we gain by using prefetching method, combined with padding tech-
nigue for matrix multiplication, considering different sizes.

speed-up per size

51291148 1.59 1.47 1.52 1.52 1.87 1.47

2.19 wpail 1.78

% 1536 1 1.38 1.86 1.96 2.18 2.03 1.47
=
4;2048— 1.67 1.98 1.81 1.89 1.92 1.46
£ 2560 4 1.77 2,07 2.08 NrtRE 1.66
o
3072 4{1.58 2.06 2.08 1.97 2.01 1.52
5 - 2.0
= 3584 4 1.53 2.04 1.83 2.02 2.04 1.49
=
=
= 4096 4 1.77 '2.16 2.0 2.14 2.11 1.57 - 1.8
4608 4 1.64 2.02 2.05 2.09 2.12 1.52 16
5120 4 1.54 2.01 1.92 2.02 2.03 "2=v 1.5
- 1.4

24 32 35 40 45 56 60
number of columns of the first matrix

Figure 5. Speedup gains with prefetching.

