Western

IIIIIIIIII +CANADA

—
Maplesoft

Overview

A Laurent series is a generalization of a power
series in which negative degrees are allowed.
Following the ideas of Monforte and Kauers
in [2], we present a first implementation of
multivariate Laurent series in MAPLE. Since
we rely on MAPLE’'s MultitivariatePower-

Series [1], and its lazy evaluation scheme, the

minimal element of the support of a given Lau-
rent series object may not be known, when we
compute with that object. We show how to deal
with this challenge when performing arithmetic
operations on Laurent series.

Construction

Let Kbeafield, x = zy,...,zpand u = uq, ..., upy
be ordered indeterminates with m > p. The
elements g(u) of the ring Kl[|u]| of multivariate

formal power series look like

g(u) = Sgenn au,

for ay in K, and u¥ is a notation for u}’ - - - u

kp

b where

k ..., k,are non-negative integers.

The elements f(x) of the field K((x)) of multi-
variate formal Laurent series look like:

f(X) L= ZkeZp CLka,
where the ay are elements of K.
Let C' C RP be a cone. All cones here are line-
free, polyhedral and generated by integer vectors.
The set of the Laurent series f(x) € K((x)) with

supp(f(x)) € (' is an integral domain denoted by
Kel|x]|, where:

supp(f(x)) :={k € Z | ax # 0}.
Note that, there exists g(x) € Kgl[x|| with
f(x)g(x) =1, if and only if ag # 0.
Let < be an additive order in Z” and let C be

the set of all cones C' C R? which are compatible
with <. Define:

K<[[x]] == UcecKe|[x]]
and

K<((x)) = Ueczx*K<|[x]],
Then, K<[[x]] is a ring and K<((x)) is a field. Our
goal is to implement K<((x)), where < is <gjes-

Algorithms for multivariate Laurent series

Matt Calder! | Juan Pablo Gonzalez Trochez?, Marc Moreno Maza? and Erik Postmal

'"Maplesoft, “University of Western Ontario

Graded reverse lexicographic order

The graded reverse lexicographic order or
grevlex denoted by <., for two vectors of ZP,

e first compares their total degrees:;

e then uses a reverse lexicographic order as
tie-breaker:

Example
Set V1 = (1, O, —1), Vo =— (O, O, O), V3 = (1, 1, —1),
and vy, = (2, —1,—1). Then, we have:

V2 <glex V1 <glex V4 <glex V3.

The Laurent series object

Our implementation encodes multivariate Laurent
series as a Laurent series object, LSO for short,
that is, quintuple (x,u,e,R,g), based on the
proposition below.
Example
Consider f := %> =°, z*y . To encode f as an
LSO, one can choose:
X =[z,y], u=lu,v],
g =Inverse(PowerSeries(1 + uv)),
r=|1,0],[1,—1]], e=|x = =4,y = 5].

Proposition: the Laurent series object

Let g € K[[u]] be a power series, e € Z* be a point, and R := {ry,.

non-negative rays. Then,

.., Tm} C ZP be a set of grevlex

f=xg(x",...,x"™),

is a Laurent series living in x°K¢||x||, where C' is the cone generated by R.

Addition and multiplication

Let C,Cy C ZP be two cones generated, re-

spectively, by two sets of grevlex non-negative
rays, Ry = {r},...,r.} C Z and Ry, =
{r{,....r0} C 7ZP, with m > p. Consider two
Laurent series in K<((x)), namely:

fi = x%gi(x™) and fo = x%gy(x%),

with g1, go € K||u|] and ey, e5 € ZP. Then, we have:

fifo = X7 g1 (x") ga(x)).

Assume e = e is the grevlex-minimum of e
and ey. Then, we have:

fi+ fo=x[gu(x™) + X2 Cgy(x)]

To make fifo (resp. fi1 + f2) an LSO object, we
need to find a cone containing supp(fifs) (resp.
supp(f1 + f2)). To this end, we developed an al-
corithm which takes as input a number of cones
Ch,Co, ...
rays and returns a cone C' generated by p grevlex
non-negative rays and such that C' contains the
union of C4, Cy, . . ..

all generated by grevlex non-negative

Inversion

For an LSO f = (x,u,e,R,g), knowing
min(supp(g)) would not guarantee finding the
if R has
rays with null total degree. However, if R is a set of
grevlex-positive rays, minsupp(g(x®)) equals
min {F k' | k € supp(g) with R - le <R- ET},
where k = min(supp(g)) and R = (rf,...,r}).
When R has rays with null total degree, we replace
R- ETI by a guess bound B and carry computations
until the guess is proved to be wrong, in which case
B is increased. As an optimization, if g has a known
analytic form G, see [1], and if G is a rational func-
tion, then minsupp(g(x®)) is always computable,

even if R has rays with null total degree.

grevlex-minimum element of supp(f)

)

Algorithm 1 Inverse

Require: Laurent series f(x) = x®g(xR).
Ensure: The inverse 1 of_f.
L: if AnalyUcExpressmn(f) = Undefined or non-rational then

2: return x ®InverseOfUndefinedAnalyticExpression(g(xR))
3: else
4. q := AnalyticExpression( f) > The analytic expression of f.

5: return x ®InverseOfAnalyticExpression(q, xR)

ORC[¥Y

Ontario Research Centre for Computer Algebra

Maple overview

> with(MultivariatePowerSeries);
[Add, ApproximatelyE qual, ApproximatelyZero, Copy, Degree, Divide, EvaluateAtOrigin, Exponentiate, GeometricSeries,

GetAnalyticExpression, GetCoefficient, HenselFactorize, HomogeneousPart, Inverse, IsUnit, MainVariable, Multiply, Negate,

PowerSeries, Precision, SetDefaultDisplayStyle, SetDisplayStyle, Substitute, Subtract, SumOfAllMonomials, TaylorShift,
Truncate, UnivariatePolynomialOverPowerSeries, UpdatePrecision, Variables, WeierstrassPreparation |

» kernelopts(opaquemodules = false) :
LaurentSeries := MultivariatePowerSeries:-LaurentSeriesObject :
_ kernelopts(opaquemodules = true) :

Figure 1:Laurent series object

BOoX = ey el = [
g, = Inverse(PowerSeries(l1 +u*v)) :
g = [X=+B, ¥y=3]:

_ R=]]% 0} [42,-2]]:

> f, = LaurentSeries(gl, X, U, R, e);

LaurentSeries of

f o=

=> LaurentSeries:-Truncate(fl, 8);

> g, = PowerSeries(1/(1 +u)) :
_ mp=Ju=x"(-1)*y"2]:e=[x=3,y=-4]:
> f, = LaurentSeﬂes(gz, mp, e);

LaurentSeries of

fg =

> LaurentSeries:-Truncate(f,, 8);

Figure 2:Creation of Laurent series

> Fi= LaurentSeries:-Bina@Multiply(fl, fz)?

e 1 1

LaurentSeries of = > o s
X y 2 X~y
[—+1] [1 +—]x y
y %

> LaurentSeries:-Truncate(f, 8);
16 7 4 14 5 12 10 8 2 6 4 2
L g Lt st i el i e = © et el k]
X X y X = X X X y X X X

x2y
Figure 3:Multiplication of Laurent series

> f:= LaurentSeries:-BinaryAdd (fy, f,);

8
——+1 [1+——} 3
y g :

f = | LaurentSeries of

=:> LaurentSeries:-Truncate(f, 15);

Figure 4:Addition of Laurent series

> fi= LaurentSeﬂes:-Inverse(fl );

LaurentSeries of

fi=

> h= LaurentSeries:-BinaryMuItipIy(fj, f);
h = [LaurentSeries: 1]

=::- LaurentSeries:-Truncate(h, 100);
1

Figure 5:Inversion of a Laurent series

1] Mohammadali Asadi, Alexander Brandt, Mahsa
Kazemi, Marc Moreno-Maza, and Erik Postma.

Multivariate power series in Maple

Springer International Publishing, 2021.

2] Ainhoa Aparicio Monforte and Manuel Kauers.

Formal laurent series in several variables.
Expositiones Mathematicae, 31(4):350-367,
2013.



