

ii Transgressive Computing

Proceedings of Transgressive Computing 2006: a conference in honor of Jean Della Dora.

Editor: Jean-Guillaume Dumas, Université J. Fourier, Grenoble, France.

c©Transgressive Computing 2006

ISBN: X-XXXXX-XXX-X

Transgressive Computing iii

Preface

From Wikipedia, the free encyclopedia, transgression may be:

• A legal transgression, a crime.

• A social transgression, violating a norm.

• Transgression (LDS theology), a violation of religious law without the perpe-
trator’s understanding.

• Transgression (geology), an event during which sea level rises relative to the
land, resulting in coastal flooding.

• Transgression (album), a 2005 album by the Los Angeles metal group Fear
Factory.

• Transgression (novel), a science fiction novel by Randall Ingermanson.

• Transgressive art, a type of art that goes against basic norms or mores.

• Transgressional fiction, a form of literature.

By analogy, we can deduce that Transgressive computing is a type of computing that
goes against basic norms or mores. To my knowledge (Google based), the use of
transgressive computing is almost completely new (only one other reference).

Hence this conference is surely the first on this topics (and certainly not the last).
Why such a title for a conference in honor of professor Jean Della Dora? What are
these basic norms that are being transgressed? What kinds of trangressions? Is Jean
Della Dora really a transgressive scientist: a type of scientist who goes against basic
norms or mores?

Once again, from Wikipedia, the free encyclopedia, the term mores as used in so-
ciology is a plural noun. The Latin singular, which is not used in English, is mos.
The English word morality comes from the same root, as does the noun moral, which
can mean the ’core meaning of a story’. Mores are strongly held norms or customs.
These derive from the established practices of a society rather than its written laws.
Taboos form the subset of mores that forbid a society’s most outrageous behaviours,
such as incest and murder in many societies. Usually these are formalized in some
kind of moral code, e.g. commandments. Most sociologists reject the thesis that the
formalization matters as much as the informal social response of disgust and isolation

iv Transgressive Computing

of offenders. An example of a more might be someone picking their nose; which,
although harmless, is widely considered as disgusting to the general populace and
goes against the normal. However, constant exposure to social mores is thought by
some to lead to development of an individual moral core, which is pre-rational and
consists of a set of inhibitions that cannot be easily characterized except as potential
inhibitions against taking opportunities that the family or society does not consider
desirable. These in turn cannot be easily separated from individual opinions or fears
of getting caught.

Looking for established practices, taboos or commandments in science, even in com-
puting science is more that can be done in this short text. However, by just asking
the question, we admit that such behaviours may exist in our field. Let me take
as example the absolute necessity of a mathematical model. We, as computing sci-
entists, do believe that we understand a natural phenomenon once we have a set
of equations that ”represents” it. And generally we are no longer interested in the
natural phenomenon: we just work with the equations. They ARE the object under
study. This is more than an established practice, more than a commandments, indeed
we cannot leave without a mathematical model. Could we imagine a world without
mathematical models. Are there other ways of modeling than with mathematics.

Moreover do we have finished our work as soon as the equations have been found.
During long time, studying numerically the equations and discussing the quality of
the results and the adequation with the natural phenomenon was like picking his nose
in public for mathematicians.

For long our models have exclusively been built with partial differential equations.
Discrete mathematics were so simple that established mathematicians did not con-
sider them as real science: discrete mathematics based models would not be smart
enough to model complicated phenomena. Working directly with discrete models
rather than with continuous models was such a strong taboo that, in this new cen-
tury, they are still considered as second class citizens.

Jean Della Dora is that kind of scientists who do not hesitate to pick their nose if
they believe that science will progress from this. From that perspective, he certainly
deserves such a conference.

But Jean Della Dora is not only a transgressive scientist, he has been also a transversal
mathematician: numerical analysis (computing eigenvalues, Padé-Hermite approxi-
mation, numerical integration of ordinary differential equations), computer algebra

Transgressive Computing v

(differential equations, difference equations, algebraic equations and control), parallel
algorithms and more recently hybrid systems with application in molecular biology
and genetic networks.

In all these various domains, his unquenchable curiosity and original glance produced
new trends of research: a border has been transgressed and the road was free. For
years his colleagues and doctoral students were illuminated by this unique desire to
understand better and more, to go further, to traverse new regions and transgress
intellectual borders.

Such a behaviour has also influenced deeply his teaching and administrative activi-
ties. Jean Della Dora was the founder of many new courses and research teams. He
has always been involved in the development of the Grenoble community in scientific
computing, proceeding the path of his master Professor Noël Gastinel.

In the following texts, almost all the domains in which Jean Della Dora has been
active are addressed. Even if he is no longer working in the field, his ideas are still
valid and alive. Such a book will be useful as a reference for the included original
contributions but also as a landmark by the diversity of the themes together with a
unique way of approaching research.

Professor Jean Della Dora deserves more than that. He deserves our gratitude and
recognition.

Sophia Antipolis, March 25, 2006.
Michel Cosnard.

Professor at École Polytechnique de l’Université de Nice - Sophia Antipolis.
Head of Sophia Antipolis INRIA Resarch Unit.

vi Transgressive Computing

Transgressive Computing vii

Contents

Preface iii

Program xii

Supports xiii

Organization xiv

Invited talks

Dynamical systems: An algorithmic point of view 3

Jean Della Dora, Aude Maignan, Laurent Tournier

Does Church-Turing thesis apply outside computer science? 15

Eugene Asarin

A Hidden Algebraic Structure in Quantum Mechanics 19

Léon Brenig

André-Louis Cholesky: his life and works 31

Claude Brezinski

From genomic signatures to genomic functional cores 37

Alessandra Carbone

Formal and numerical computation of invariants: from differential equations
to q-difference equations

39

Jean-Pierre Ramis

Algebraic Machines 41

Tomás Recio Muñiz

Making Computer Algebra More Symbolic 43

Stephen M. Watt

Full papers

A computational method to obtain the law of the nilpotent lie algebras gn 53

Juan Carlos Benjumea, Juan Núñez, Ángel F. Tenorio

viii Transgressive Computing

Colored partitions and dynamical systems 63

Farida Benmakrouha, Christiane Hespel

A Tikhonov-Regularization method for the reconstruction of blurred and
noisy images

71

Abderrahman Bouhamidi, Khalid Jbilou

Well known theorems on triangular systems and the D5 principle 79

François Boulier, François Lemaire, Marc Moreno Maza

Unique Normal Forms for Nilpotent Vector Fields of Higher Dimensions 93

Guoting Chen

A New Operation on Words Suggested by DNA Biochemistry: Hairpin Com-
pletion

105

Daniela Cheptea, Carlos Mart́ın-Vide, Victor Mitrana

Decision Problems for CD Grammar Systems and Grammars with Regulated
Rewriting

115

Liliana Cojocaru

Adaptive and Hybrid Algorithms: classification and illustration on triangular
system solving

131

Van Dat Cung, Vincent Danjean, Jean-Guillaume Dumas, Thierry Gautier,

Guillaume Huard, Bruno Raffin, Christophe Rapine, Jean-Louis Roch, Denis

Trystram

On the complexity of the D5 principle 149

Xavier Dahan, Marc Moreno Maza, Éric Schost, Yuzhen Xie

L’algèbre de décomposition universelle (Universal Decomposition Algebra) 169

Gema M. Diaz-Toca, Henri Lombardi, Claude Quitté

An introspective algorithm for the integer determinant 185

Jean-Guillaume Dumas, Anna Urbańska

Newton’s method for the common eigenvector problem 203

Abdellatif El Ghazi, Said El Hajji, Luc Giraud, Serge Gratton

Latin squares associated to principal autotopisms of long cycles. Application
in Cryptography

213

Raúl M. Falcón Ganfornina

Transgressive Computing ix

Algorithms for the splitting of formal series; applications to alien differential
calculus

231

Frédéric Fauvet, Françoise Richard-Jung, Jean Thomann

Ramifications and Singularities of Foliations 247

Pedro Fortuny Ayuso

Formal power series and polynomial dynamical systems 257

Mikhail V. Foursov, Christiane Hespel

Noncommutative computing and rational approximation of multivariate se-
ries

271

Christiane Hespel, Cyrille Martig

Self-similar trajectories in multi-input systems 287

Roland Hildebrand

Sudoku y Bases de Gröbner (Sudoku and Gröbner Bases) 303

Jorge Mart́ın-Morales

Choosing spline spaces for interpolation 311

Marie-Laurence Mazure

Computing Roadmaps in Smooth Real Algebraic Sets 327

Marc Mezzarobba, Mohab Safey El Din

Notation Selection in Mathematical Computing Environments 339

Elena Smirnova, Stephen M. Watt

Computing the Algebraic Counterpart of a Tropical Plane Geometric Con-
struction

357

Luis Felipe Tabera

A Bus-Based Semi-Completely-Connected Network for High-Performance
On-Chip Systems

365

Masaru Takesue

On the numerical simulation of nonlinear integrate-and-fire neurons 381

Arnaud Tonnelier

Markov Chains, Iterated System of Functions and Coupling time for Perfect
Simulation

387

Jean-Marc Vincent

x Transgressive Computing

Extended abstracts

Some numerical analysis problems behind web search 401

Claude Brezinski, Michela Redivo Zaglia

Computational complexity of numerical solution of polynomial systems 405

Robert M. Corless, Silvana Ilie, Greg Reid

On Fredholm property of elliptic PDEs 411

Katya Krupchyk, Jukka Tuomela

Component-free vector algebra in Aldor 415

Songxin Liang, David J. Jeffrey, Stephen M. Watt

Primary decomposition of zero-dimensional ideals: Putting Monico’s algo-
rithm into practice

419

Marc Moreno Maza, Éric Schost, Wenqin Zhou

The Parametric Instability of Motion at Resonance as a Source of Chaotic
Behaviour at solving a Restricted Three body Problem

429

Alexey E. Rosaev

Obstacle to Factorization of LPDOs 435

Ekaterina Shemyakova, Franz Winkler

Fraction-free forms of LU matrix factoring 443

Wenqin Zhou, David J. Jeffrey, Robert M. Corless

Author index 447

Transgressive Computing xi

x
ii

T
r
a
n
s
g
r
e
s
s
iv

e
C

o
m
p
u
t
in

g

Program

Monday 24th Tuesday 25th Wednesday 26th Thursday 27th

8h00–9h00 Registration 8h00–9h00 Registration 8h00–9h00 Registration

9h00–9h25 Opening 9h00–9h50 Invited talk 9h00–9h50 Invited talk

9h25–9h50 Cung p.131 L. Brénig E. Asarin

9h50–10h15 Takesue p.365 9h50–10h15 Falcón Ganfornina p.213 9h50–10h15 Tonnelier p.381

10h15–10h40 Vincent p.387 10h15–10h40 Mart́ın-Morales p.303 10h15–10h40 Hildebrand p.287

10h40–11h00 Coffee 10h40–11h00 Coffee 10h40–11h00 Coffee

11h00–11h50 Invited talk 11h00–11h50 Invited talk 11h00–11h50 Invited talk

C. Brézinski T. Recio A. Carbone

11h50–12h15 Krupchyk p.411 11h50–12h15 Corless p.405 11h50–12h15 Cheptea p.105

12h15–12h40 Shemyakova p.435 12h15–12h40 Mezzarobba p.327 12h15–12h40 Benjumea p.53

12h40–13h05 Mazure p.311 12h40–13h05 Moreno Maza p.419 12h40–13h05 Diaz-Toca p.169

13h05–16h00 Lunch 13h05–16h00 Lunch 13h05–15h00 Lunch

14h00-17h00

15h00–15h50 Invited talk Alhambra

S. Watt Gardens

16h00–16h50 Invited talk 16h00–16h50 Talk by 15h50–16h15 Cojocaru p.115

J-P. Ramis Jean Della Dora 16h15–16h40 Liang p.415 visit

16h50–17h15 Fauvet p.231 16h50–17h15 Boulier p.79 16h40–17h05 Smirnova p.339

17h15–17h40 Chen p.93 17h15–17h40 Dahan p.149 17h05–17h30 Brezinski p.401 17h00-20h00

17h40–18h05 Foursov p.257 17h40–18h05 Tabera p.357

18h05–18h25 Coffee 18h05–18h25 Coffee Alhambra

18h25–18h50 Rosaev p.429 18h25–18h50 Zhou p.443 Nasrides

18h50–19h15 Benmakrouha p.63 18h50–19h15 Dumas p.185 Palaces

19h15–19h40 Fortuny Ayuso p.247 19h15–19h40 El Ghazi p.203

19h40–20h05 Hespel p.271 19h40–20h05 Bouhamidi p.71 visit

21h30 Banquet 20h00 Opera

Transgressive Computing xiii

Supports

Facultad de Ciencias de la Universidad de
Granada
http://www.ugr.es/∼decacien

Universidad de Granada
http://www.ugr.es

Université Joseph Fourier, Grenoble
http://www.ujf-grenoble.fr

Institut National Polytechnique de
Grenoble

http://www.inpg.fr

Institut d’Informatique et de Mathématiques
Appliquées de Grenoble
http://www.imag.fr

Ontario Research Center for
Computer Algebra

http://www.orcca.org

Institut National de Recherche en Informa-
tique et en Automatique
http://www.inria.fr

LMC

Laboratoire de Modélisation et Calcul
http://www-lmc.imag.fr

xiv Transgressive Computing

Organization

• Organizing committee

Jean-Guillaume Dumas Grenoble, France Editor

José Gómez-Torrecillas Granada, España Local Arrangements

Françoise Jung Grenoble, France Treasurer

François Lemaire Lille, France Web master

Francisco-Javier Lobillo-Borrero Granada, España Local Arrangements

Marc Moreno-Maza London, Canada General Chair

Tomás Recio-Muñiz Santander, España Program Chair

Évelyne Tournier Grenoble, France Publicity

• Program committee

Bernhard Beckermann Lille, France

Léon Brenig Bruxelles, Belgique

Claude Brezinski Lille, France

Bernard Brogliato Montbonnot, France

José M. Cano Torres Valladolid, España

Francisco-Jesús Castro-Jiménez Sevilla, España

Guoting Chen Lille, France

Robert M. Corless London, Canada

Jean-Guillaume Dumas Grenoble, France

Dominique Duval Grenoble, France

Roderick Edwards Victoria, Canada

Mark Giesbrecht Waterloo, Canada

José Gómez-Torrecillas Granada, España

Aziz Hilali Rabat, Maroc

Françoise Jung Grenoble, France

Lila Kari London, Canada

François Lemaire Lille, France

Francisco-Javier Lobillo-Borrero Granada, España

Marc Moreno-Maza London, Canada

Luis Miguel Pardo Santander, España

Michel Petitot Lille, France

Tomás Recio-Muñiz Santander, España

Jean-Louis Roch Grenoble, France

B. David Saunders Delaware, USA

Éric Schost Polytechnique, France

Évelyne Tournier Grenoble, France

Gilles Villard Lyon, France

Stephen M. Watt London, Canada

Invited talks 1

Chapter 1

Invited talks

2 Transgressive Computing

Dynamical systems: An algorithmic point of view 3

Dynamical systems

An algorithmic point of view

Jean Della Dora Aude Maignan Laurent Tournier

Abstract

The motivation to study dynamical systems is of course to get the more information we
can about their phase portraits. To face this general problem, an interesting way seems
promising, what we call here the concept of algorithmic system theory. At the basis
of this concept is the analysis of several classes of systems, coming from different area
(notably biology), which could be considered as elementary units of a bigger theory.
What we present in this extended abstract is a couple of reflexions inspired by the work
of our team over the past years.

1 Introduction

From an applied point of view, dynamical system theory presently oscillates between a deep
theory with a sound mathematical foundation, but restricted to low dimensional systems,
and a growing bulk of knowledge associated to higher dimensional systems using a numerical
point of view, based on simulation and model reduction. In any case the algorithmic point
of view is poorly taken into acount.

For several years we have tried to understand what could be such a point of view, and
what computer algebra can bring to the subject. The result of our investigation is described
into four thesis [1, 2, 3, 4] and several papers. In this paper we try to synthetise what we
have learned and what could be an Algorithmic System Theory (AST).
Let’s consider a dynamical system defined by a system of autonomous ODE:

X ′ = F (X)

where X ∈ Ω, Ω ⊂ Rn. What is important is the knowledge of the phase portrait. In
a certain sense it’s the description of the behaviour of all the solutions of the dynamical
system. This is a clear distinction with numerical integration of ODE whose primary goal is
the construction of a particular solution of an initial value problem (IVP). Using simulation
to build a phase portrait is so equivalent to the integration of a great number of IVP over
a long period of time. But in any case, and this is a key point: simulation is not dedicated
to prove something about an ODE.

On the other side, it’s clear that the mathematical results that have been accumulated
on low dimensional systems are difficult to apply on higher dimensional ones. The problem

4 Della Dora et al. Transgressive Computing

is that huge dimensional dynamical systems are numerous in applied mathematics. Let’s
give an example :

Example 1.1. The numerical integration of partial differential equations (PDE) is a central
subject of numerical analysis. In particular, the numerical integration of evolution equations
is tremendously important. But behind the construction of a PDE, there exists a hypothesis
named the continuity hypothesis. In an elementary volume, some equations for a bilan are
established. Then it is argued that if the volumes decrease to zero, some limit exists and
the PDE is established. This is very clear from a mathematical point of view but this is a
perfect example of questionable physical point of view.
What is also very strange is that for numerical integration it’s absolutly necessary to “come
back” to a localized point of view and put the problem into an ODE framework . . .
To be more precise let’s take the example of the one-dimensional diffusion of heat:

{
∂u

∂t
− a∆u = f

u(0, x) = u0(x)
, x ∈ [0, 1]

with Dirichlet boundary conditions: u(t, 0) = θ0(t) and u(t, 1) = θ1(t).
a is a positive real, f , θ0, θ1 and u0 are given functions and u = u(x, t) is the possible
solution of the PDE problem.
In order to study this problem we will use a discretization of the PDE. Let ∆x be a positive
real constant such that 1

∆x is an integer noted N . For i ∈ {0, . . . , N}, we consider xi = i∆x.
The xi are a subdivision of the segment [0, 1]. Then we pose the functions:

u0(t) = u(x0, t) = u(0, t) = θ0(t)
ui(t) = u(xi, t) , for i ∈ {1, . . . , N − 1}
uN (t) = u(xN , t) = u(1, t) = θ1(t)

Then we discretize the laplacian term using a centered diagram:

∀ 1 ≤ i ≤ N − 1 ,
∂2u

∂x2
(xi, t) ≃

u(xi−1, t)− 2u(xi, t) + u(xi+1, t)

∆x2

We obtain the ordinary differential equations:

∀ 1 ≤ i ≤ N − 1 ,
dui
dt

=
a

∆x2
(ui−1(t)− 2ui(t) + ui+1(t)) + f(xi, t)

Let U(t) be the vector (u1(t), . . . , uN−1(t)), we obtain the linear ODE system:

U̇(t) = AU(t) + b(t)

where A is the tridiagonal matrix and b(t) is the vector:

A =
a

∆x2

−2 1
1

. . .

1
1 −2

b(t) =

θ0(t) + f(x1, t)
f(x2, t)

...
f(xN−2, t)

θ1(t) + f(xN−1, t)

Dynamical systems: An algorithmic point of view 5

Of couse as long as we want to use a fine discretization (small ∆x) we are turned to the
integration of high dimensional systems. And that is exactly the key point! This method
is known as the line method or the semi-discretization method. We will describe such a
theory in another paper.

The previous example is very important : the philosophy behind this is that numerical
integration of PDE could be brought back to the integration of systems of ODE (in general
huge systems of nonlinear ODE). Then, in general, numerical analysis tries to solve this
system by a time discretization of the ODE.

The basic idea is the same for integration of differential equations : can we identify
classes of dynamical systems that could be completely studied from an algorithmic point
of view, that-is-to-say where we can give a complete algorithmic description of the phase
portrait. Of course we know the linear systems X ′ = AX and this is a very important class
of examples. We also know the linear DEA AX ′ = BX + u and it’s also fundamental.

From several places (computer science, mechanics, biology) appear other classes of pow-
erful systems very useful for the modelling process. These systems are called cellular net-
works, self-reproducing automata, hybrid systems, timed automata, iterated functions sys-
tems, . . . In the second part of this paper we try to give a kind of classification (at least
the state of our knowledge on this large subject . . .) and we identify some very deep key
points. We called this part the static part because the overall structure is fixed (in a very
precise sense).

Now we have to explain our second key point.
All these systems are useful in two ways:

• The first point is that these systems are useful as modelling tools. The example of the
Glass systems is striking. The boolean networks are also very important objects of
study. It’s important for the future to have a complete knowledge of such systems in
the same manner as we want to study the elementary functions. The phase portraits
of such systems are the equivalent of the table of special functions.

• The second point is that the phase portraits of such systems could be used as pieces

of piecewise systems (subset of the class of hybrid systems) like pieces of polynomials
could be seen as pieces of spline functions.

A huge amount of work has to be done for a clear understanding of the theory! But we
explore in the third part another point of view.

The third key point is that the dynamical systems are, in a certain sense, static. The
evolution is described in a fixed phase space. But a lot of examples (see part three) show
that this phase space could also be subject to evolution. We introduce the concept of dy-
namical automata in order to explain our point of view.

6 Della Dora et al. Transgressive Computing

2 Dynamical and hybrid systems

2.1 Networks of automata over a graph

The first class of dynamical systems we propose is the class of networks of automata over a
graph, or automata graphs.
Let G = (V,E) be an oriented graph. We note, for each vertex v ∈ V , d−(v) the inner
degree of v, i.e.:

d−(v) = # {u ∈ V , (u, v) ∈ E}
If V is infinite, we say that G has a bounded indegree if for all v ∈ V , d−(v) is finite. Here
is a common definition of automata graphs:

Definition 2.1. An automata graph is a quartet G = (G,S,N , δ) where:

• G is an oriented graph with K-bounded indegree. G = (V,E). The elements of V are
called processors, automata, . . .

• S = {Sv , v ∈ V } is a collection of finite sets. The set Sv is called state set of
automaton v.

• N : V → ({1, . . . ,K} → V) determines the neighborhood of each automaton.
N (v) ({1, . . . , d−(v)}) is in fact the ordered set of the predecessors of automaton v.

• δ is the local transition function of the network: δ = {δv , v ∈ V } with

δv :

d−(v)∏

i=1

SN (v)(i)

→ Sv

The set Q =
∏

v∈V
Sv is called the configuration space of G.

A configuration of G is a function c : V → Q.

This definition is general enough to include different formalisms such as Hopfield neural
networks or cellular automata. Actually it includes every discrete dynamical system that
can be brought back to iterations of a map over a countable set (see [4]). To associate to an
automata graph a dynamical system, we need to define an operating mode, that-is-to-say a
strategy that determines, at each discrete time n ∈ N the subset Ψ(n) of V that contains
the automata that computes, thanks to the activation function δ, their next state from the
states of their neighbors.

More precisely, if the system is in a configuration cn at time n, then the next configu-
ration cn+1 is given by:

{
cn+1(v) = cn(v) if v /∈ Ψ(n)
cn+1(v) = δv (cn(N (v)(1)), . . . , cn(N (v)(d−(v)))) if v ∈ Ψ(n)

Dynamical systems: An algorithmic point of view 7

The trajectories of such systems (i.e. the sequences of configurations) are the solutions of
iterations of a map over the configuration space Q:

{
c0 ∈ Q
cn+1 = Fn(cn)

where Fn : Q → Q. If V is finite, then Q is finite and the phase portrait of the system can
be represented by a finite graph GT which vertices are the elements of Q. This graph is
called transition graph of the system.

The analysis of such graphs is very hard in the general case. First, the cardinality of
the phase space Q is exponential with respect to the number of automata. An exhaustive
description of GT for high dimensional systems is therefore impossible.

A second difficulty of these systems lies in the choice of operating mode Ψ. If no specific
assumption is made, a configuration c ∈ Qmay have different successors at different instants
(that is why the mapping Fn depends of the time variable n in the previous expression).
This implies that the transition graph is nondeterministic, which make its analysis harder.
In most of the cases, some assumptions are made on Ψ to ensure that the mapping Fn
is independent of n (we then note it by F), i.e. that GT is deterministic. Among these
assumptions, the most frequent is to consider a synchronous operating mode, in which every
automata evolve at each n (see [4] for other examples).

An interesting instance of these system is the case of boolean networks. In this case,
we assume that V is finite (V = {1, . . . , N}) and that the state sets of each atomaton is
the field with two elements F2 = {0, 1}. In that case any boolean function F can be seen
as a multi-valuate polynomial over FN2 . Boolean networks have been extensively studied
as they provide models of biological regulation networks. Some interesting analysis of the
phase portraits of these systems have been done. We will cite among other examples the
study of the links between topology and dynamics of the networks [6] and the issue of the
identification of networks [4].

2.2 Glass systems

The second class of systems we propose also comes from biology. In the Glass model (see [3]),
we consider the evolution of a continuous variable X = (x1, . . . , xN) lying in a rectangular
domain of RN :

D =

N∏

i=1

[0,Mi]

whereMi are positive constants. We suppose that this domain is subdivided into rectangular
boxes thanks to the existence of different thresholds in each directions:

∀1 ≤ i ≤ N , 0 = θi,0 < θi,1 < · · · < θi,qi = Mi

8 Della Dora et al. Transgressive Computing

To each a = (a1, . . . , aN) ∈∏N
i=1{1, . . . , qi} we associate a box Ba:

Ba =

N∏

i=1

[θi,ai−1, θi,ai]

The definition of a Glass system is given by the ODE system:

Ẋ = Γ(X)− ΛX (1)

where Λ is a diagonal matrix (decay rates) and Γ is a function D → RN
+ (production rates)

that is constant on every boxes Ba of D. So this system is piecewise linear on D. Actually,
on every box, the system is a very simple diagonal linear system whose resolution can be
made explicitely.

Given N integers q1, . . . , qN , let us note Nqi the set {0, 1, . . . , qi} and D =
∏N
i=1 Nqi .

Then there exists a bijection between D and the set of rectangular boxes of D. Given a
trajectory x(t) ∈ DR in the phase portrait of the system, we can consider the discrete
sequence of boxes of this trajectory that consists in a trajectory of a discrete dynamical
system over D. We fall then in the previous case with an asynchronous operating mode,
which makes the analysis quite hard (nondeterministic transition graph).

In order to do this analysis, an idea is to consider a partitionning of the boxes into
different pieces, each piece having a unique successor. In [3], first steps in that direction are
made, using tools of symbolic dynamic theory.

Remark 2.2. In order to mention this, we used the notion of trajectories of system (1) over
D. Let us note that the notion of solution of system (1) is not simple! Actually, the system
is well defined on opens B̊a, however to consider properly solutions over the whole domain
we have to use the notion of solution in the sense of Filippov [7]. We won’t go further here
in that direction.

2.3 Hybrid systems

The last class of systems we would like to evoke is the class of hybrid systems. This is a
very wide class of systems that embed automata graphs and Glass systems. For a complete
definition of a hybrid system see [1, 2, 5]. As an analysis of this definition is too long to be
written in this paper, we will refer to these thesis for more details.

What we want to focus on here is the already mentionned notion of hybrid computation.
Consider a nonlinear autonomous dynamical system given by the system of ODE:

Ẋ = f(X(t)) (2)

on an open Ω of Rn. The direct analysis of its phase portrait is strongly dependent on the
shape of the vector field f . In order to have an algorithmic way to tackle this problem,
we consider a partition of Ω such that on each element of this partition we can replace the
system of ODE by a more simple one, i.e. a system for which the analysis of the phase
portrait can be done easily.

Dynamical systems: An algorithmic point of view 9

For instance, an important class of systems that are well known are linear systems. A
first step is therefore to linearize system (2). This gives good results but only locally on
several points of the phase space. In order to have a global approach, a second idea is to
consider a simplicial partitionning of Ω: (Di)1≤i≤p. On each simplex Di, we make a linear
approximation of f (for instance using interpolation at the vertices of Di). Then we have
to deal with a collection of linear systems:

Ẋi = AiXi(t) + bi , Xi(t) ∈ Di

where Ai is a n × n matrix and bi a n dimensional vector (see [2] for the details of the
construction of these systems). Therefore we obtain a hybrid system with p discrete states
and p linear dynamical systems. We have then some convergence results [2] that allow us
to link the trajectories of this hybrid system to the initial one.

This technique has been applied on several examples [1, 2, 5], including examples coming
from the modelling of biological systems [4]

Remark 2.3. We presented a specific subclass of hybrid systems which is the class of piece-
wise linear dynamical systems. Linear differential equation are used because of their sim-
plicity and the knowledge we have on them. However, another class of differential equations
have come to our attention, it is a set of equations based on power-laws known as S-systems
[4]. These equations, often used in biological applications seem to have some interesting
properties. An attempt to consider piecewise S-systems is currently in progress.

Remark 2.4. Again, we used in this part the notion of solution of hybrid systems which is
a quite complex notion. We refer to [1] for some reflexions about hybrid solutions.

3 Generalized hybrid systems

Dynamical graphs [8] are very useful to model communication networks [9], embedded
systems or biological behaviors. For instance, collaboration or communication between
ants, behavor of a set of cells which share some local information. It is a really new
type of problem and very recent models have been developped [10]. The difficulty of such
structures is to deal with evolution of number of cells (or nodes), connections, states of
cells, and eventually, states of edges, at the same time.

Lindenmayer has proposed a model for linear structure [11] called the L-systems.

3.1 L-systems

The simplest example of L-systems is a context-free system which is called an OL-system.
Let define an alphabet Σ. Σ∗ denotes a set of words over Σ and Σ+ the set of nonempty
words over Σ. The string OL-system is an ordered triple G = {Σ, w, P} with w ∈ Σ+ a
non empty word called the axiom and P ⊂ Σ+ the set of rules productions. The rules of
productions are applied simultaneously. This synchronicity is the most important difference
between the L-system and the classical Chomsky grammars. This mechanism is motivated
by cell divisions in multicellular but linear organisms.

10 Della Dora et al. Transgressive Computing

More general L-systems have been developped :

• Parametric L-systems[13]

The words on which the system operate are parametric words, they can be seen as a
file of cells. Each cell is built thanks to

– a letter belonging to Σ, and we can interpret this letter as the state of the cell.

– several parameters that can be seen as the relevant variables for the description
of the evolution of the cell (time, concentration...) So a cell is represented by a
module of the form

q(x1, ..., xnq) where q ∈ Σ and {x1, ..., xnq} is a set of parameters

• dL-systems [14]

A dL-system is defined as a parametric system using parametrized words q(x1, ..., xnq).
A module q(x1, ..., xnq) is in the state q and he will stay in this state as long as the
parameters will stay inside some domain Ωq ⊂ Rnq . As long as he is in Ωq the module
stay in state q but his parameters evolve.

The evolution of these parameters is governed by a differential equation

Ẋ = fq(X)

where X = (x1, ..., xnq) and fq is some vector field on Ωq.

3.2 Hybrid systems based on dynamical graphs

We propose a more general model which can be considered as a generalized hybrid system.
A dynamic graph is a graph where the number of nodes and the connections can change.
Let G = (V (G), E(G)) a graph. V (G) is the set of vertices of G and E(G) the set of

edges. The cardinal of V (G) is denoted n(G). The adjacency matrix of G is denoted CG.
CG ∈Mn(G) whereMn(G) is the set of all boolean square matrix of dimension n(G).

Let us suppose that the nodes of G will have values belonging to some set E (E could
be a finite set, a finite field, R, ...)

S(G) is the state space of the system and is equal to S(G) = En(G). A dynamic on G
will be described by a flow

ΦG : R× R× S(G)→ S(G)

(t, t0,X
G(t0))→ XG(t)

(Here we assume that time belongs to R. If the time belongs to Z, ΦG could be associated
to a transition function δG(XG(0)) = Φ(1, 0,XG(0)))

Now, in order to speak about generalized hybrid systems, we have to introduce some
subsets of S(G) where we can applied ΦG :
D(G,ΦG) ⊂ S(G) is the subset where ΦG is the legal dynamic. Of course XG(t0) has

to belong to D(G).
This part of the hybrid dynamic will be defined as follow :

Dynamical systems: An algorithmic point of view 11

• While XG(t) ∈ D(G,ΦG) apply ΦG

• If XG(t1) /∈ D(G,ΦG) then apply a discrete transition.

A discrete transition arises from a set of rules. It depends on the exiting point of the
domain.

We denote F the set of flows and we denote P(E∞) the set of parts of E∞. (E∞ =
∪n∈NEn.)

The set of rules is defined by :

P :M∞ × E∞ ×F × P(E∞)→M∞ × E∞ ×F × P(E∞)

(
CG,X

G(t∗),ΦG,D(G,ΦG)
)
→
(
CG′ , Y G′

(t∗),ΨG′ ,D(G′,ΨG′)
)

• If G = G′, P is a classical hybrid reset. CG = CG′ and for t > t∗, Y G(t) =
ΨG(t, t∗, Y G(t∗)) is the new dynamics of the system in the domain D(G,ΨG).

• If G 6= G′, the transition induces a dynamic of the graph. The new graph G′ is
defined by its adjacency matrix CG′ . It can have a new size and connections can have
changed. A new dynamics Y G′

(t) = ΨG′(t, t∗, Y G′
(t∗)) for all nodes is defined in the

domain D(G′,ΨG′)

This model is explained in the following figure :

 x

G

G′
Y G′(t) = ΨG′(t, t1, Y

G′(t1))

Y G′

(t1)

XG(t) = ΦG(t, t0, X
G(t0))

x XG(t0)

XG(t1)

M∞

3.3 Example

Let us consider a set of cells V . This set has a set of connections defined by E. This
structure is a graph G = (V,E). card(V) = n. The state of a cell i is defined by the
parameter Xi. Xi is growing depending on time :

12 Della Dora et al. Transgressive Computing

Xi(t) = (ΦG)i = (2− νi
2

)(t− t0) +Xi(t0)

νi is the number of connections of the cell i.
We consider a constraint of reproduction : If Xi = 10 then a new cell connected to i is

added. Its index is n+ 1, Xi = 8 and Xn+1 = 2. Di(G,Φ(G)) =]−∞, 10[.
The discret transition leads to a new graph G′. If at time t∗ a transition occurs thanks

to the node i, the new adjacency matrix is

CG′ =

c11... c1i ...c1n
. . .

ci1... cii ...cin
. . .

cn1... cni ...cnn

0
.
1
.
0

0 ... 1 ... 0 0

where CG = (cij) was the previous adjacency matrix.
We easily extend this rule if more than one cell reach the boundaries of D(G,Φ(G)) at

the same time.
At time t = 0, we suppose there is only one cell, the state of the system is (CG,X

G
0 ,ΦG) =

((0), (0), (2t)). The structure of the graph is stable until t = 5 . At time t = 5 a
discret transition is perfomed : a new cell is added, the state of the system becomes

(

(
0 1
1 0

)
,

(
8
2

)
,

(
3
2t+ 1

2
3
2t− 11

2

)
).

The following figure shows how the graph evolves and how ΦG evolves.

1

2

3

4

5

1

2

3

1

2

3
1 1

2

1

2

3

4 4

5

1

2

3

4

5

6

7

8

6

t = 5 t = 19/3 t = 25/3 t = 31/3 t = 35/3 t = 37/3

t
2

+ 23
6

t− 7
3

3
2t− 15

2
3
2
t− 21

2
3
2t− 27

2

1
2t + 23

6
t− 7

3
t− 11

3
3
2
t− 21

2
3
2t− 27

2
3
2
t− 31

2

8
1
2t + 11

6
t− 11

3
3
2t− 21

2
3
2
t− 27

2
3
2t− 31

2
3
2
t− 33

2
3
2t− 33

2

(
3
2
t + 1

2
3
2t− 11

2

)

t + 5
3

3
2
t− 11

2
3
2t− 15

2

(

2t
)

t
2 + 23

6
3
2t− 11

2
3
2t− 15

2
3
2
t− 21

2

Dynamical systems: An algorithmic point of view 13

The evolution of the system is completly asynchronous. The transition times (defined
by a completly deterministic process) defined by a sequence {ti}i is a part of the description
of the flow. The question is how to describe properly and precisely the evolution of such
examples.

The state space of the flow of the system is the state flow of the union of all the state
flows of the existing nodes. Moreover we have to consider the discrete evolution of the graph
during time. Important information for a graph are picked up from the adjacency matrix
: the number of nodes, the maximal degree of the set of nodes, the average of the degree
of all nodes, the proportion of nodes of constant degrees, numbers and length of cycles and
clicks. and also the spectrum of the laplacian of the adjacency matrix [15].

References

[1] M. Mirica-Ruse, Contribution à l’étude des systèmes hybrides. Thèse de Doctorat, UJF
Grenoble, 2002.

[2] A. Girard, Analyse algorithmique des systèmes hybrides. Thèse de Doctorat, INP
Grenoble, 2004.

[3] E. Farcot, Etude d’une classe d’équations différentielles affines par morceaux modélisant
des réseaux de régulation biologique. Thèse de Doctorat, INP Grenoble, 2005.

[4] L. Tournier, Etude et modélisation mathématique de réseaux de régulation génétique et
métabolique. Thèse de Doctorat, INP Grenoble, 2005.

[5] A. Rondepierre, Algorithmes hybrides pour le contrôle optimal des systèmes non
linéaires. Thèse de Doctorat, INP Grenoble, 2006.

[6] J.J. Fox and C.C. Hill, From topology to dynamics in biochemical networks. Chaos,
11(4):809–815, 2001.

[7] A.F. Filippov, Differential equations with discontinuous righthand sides. Mathematics
and their Applications (Soviet series), vol. 18, Kluwer Academic, Dordrecht, 1988.

[8] F. Harary, G. Gupta, Dynamic Graph Models. Math. Comput. Modelling Vol. 25, No.
7, p 79-87, 1997.

[9] S. Bohacek, J. Hespanha, J. Lee, K. Obraczka, A Hybrid Systems Modeling Framework
for Fast and Accurate Simulation of Data Communication Networks. SIGMETRICS’03,
June 10-14, 2003, San Diego, California, USA.

[10] F. Kratz, O. Sokolsky, G. Pappas, I. Lee, R-Charon, a Modeling Language for Recon-
figurable Hybrid systems. accepted to HSCC 2006.

[11] A Lindenmayer, Mathematical models for cellular interaction in development (Parts I
and II). Journal of Theoretical Biology, 18:280-315, 1968

14 Della Dora et al. Transgressive Computing

[12] P Prusinkiewicz, A Lindenmayer, The algorithmic beauty of plants. Springer-Verlag

[13] P Prusinkiewicz, J Hanan, Visualization of botanic structures and processes using para-
metric L-systems. In D. thalmann editor, Scientific visualization and Graphics Simu-
lations. pages 183-201, J. Wiley & Sons, 1990.

[14] P Prusinkiewicz, Marc Hamel, Eric Mjolsness, Animation of Plant Development. Pro-
ceedings of SIGGRAPH 93 (Anaheim, California, August 1-6) In Computer graphics
Proceedings, Annual Conference Series, 1993, ACM SIGGRAPH, pp 351-360.

[15] Y. Kim, M. Mesbahi, On Maximizing the Second Smallest Eigenvalue of a State-
dependent Graph Laplacian. submitted to 2005 American control Conference.

[16] Eugene Asarin, Paul Caspi, O. Maler, Timed regular expressions. Journal of the ACM
49, No.2, 2002, 172-206.

Jean Della Dora
Laboratoire de Modélisation et Calcul (LMC-IMAG)

Institut National Polytechnique de Grenoble
Jean.Della-dora@imag.fr

Aude Maignan
Laboratoire de Modélisation et Calcul (LMC-IMAG)

Université Pierre Mendès France
Aude.Maignan@imag.fr

Laurent Tournier
Laboratoire de Modélisation et Calcul (LMC-IMAG)

Université Pierre Mendès France
Laurent.Tournier@imag.fr

Does Church-Turing thesis apply outside computer science? 15

Does Church-Turing thesis apply outside computer science?

Eugene Asarin

Abstract

We analyze whether Church-Turing thesis can be applied to mathematical and phys-
ical systems. We find the factors that allow to a class of systems to reach a Turing or a
super-Turing computational power. We illustrate our general statements by some more
concrete theorems on hybrid and stochastic systems.

The future of mathematics
comes from informatics, the
future of informatics comes from
mathematics

Thoughts, Jean Della Dora

1 Introduction

The discovery in the first half of the XX-th century of several computational models (such as
Post and Turing machines, recursive functions, Markov’s normal algorithms etc.), all capable
to realize any imaginable algorithm, and the proof of their equivalence, can be seen as the
first step of the computer science. They determined the invention of computers, design of
programming languages, and the development of a new kind of mathematics that evolved
to theoretical computer science. All the above-mentioned computational models are based
on unbounded discrete-time, unbounded discrete-state memory, deterministic programs,
and no-noise no-faults execution. Such restrictions were a key to the correct (and unique)
definition of computability, as well as to the digital computers, based on special engineering
tricks allowing to represent discrete state, discrete time, and noise rejection in the physical
world.

According to Church-Turing thesis, any reasonable (i.e. satisfying above-mentioned re-
strictions) computational model leads to the same (or smaller) class of computable functions
as Turing machines, and hence Turing machines capture the general notion of algorithm.

However a challenging research direction consists in considering any natural class of dy-
namical systems (possibly continuous in time and/or state-space, possibly non-deterministic,
possibly noisy, possibly quantic) as a computational model, and exploring its computational
power. It could be interesting for several reasons. The most important one is to verify or
to falsify the following thesis.

16 Asarin Transgressive Computing

Thesis 1.1 (Extended Church-Turing). Feasible, realizable, reproducible physical com-
puting devices have the same (or smaller) computational power as Turing machines.

In other words, according to this thesis, there is no way to build a computer, based
on some new principles and capable to “compute” other functions than Turing computable
ones. As far as I know, there is no scientific evidence in favor of this thesis, but almost
everybody believes in it. Since it is difficult to define rigorously what a feasible physical
device is, a possible approach to this thesis could be to consider various classes of mathe-
matical models, to analyze their computational power, and whenever it exceeds the power
of Turing machines, to think about its physical feasibility.

Another scientific application of the computability approach to dynamical systems is to
use the computational power as a natural measure of behavioral complexity. The bigger is
the set of functions computed by a class of dynamical systems, the more complex, strange,
pathologic can be the behavior of such systems. In fact complexity hierarchies of the
theoretical computer science (similar to forgotten hierarchies of the descriptive set theory,
but easier to study) are quite rich, and can shed new light on chaos and other strange
attractors. A very high level of complexity can be interpreted as a sign of unrealizability of
the system.

Last but not least, practically speaking the computational approach to dynamical sys-
tems is a key to the decidability analysis of verification problems concerning hybrid and
continuous systems.

The computability view of dynamical systems is not really new, it is related to research
on computability on reals[12], super-Turing models, hybrid systems, cellular automata and
so on.

In this talk, several concrete research works on various aspects of computability by
dynamical systems will be presented. The author was involved in these works during last
12 years, see [1]-[5].

2 Continuous systems as computational models

Most of results will be established for a class of piecewise-constant differential equations
(so-called PCD systems) that appears in Hybrid systems research, and its variants. Com-
putability by such devices will be defined, and their computational power will be explored
in following situations.

Dynamical systems weaker then TMs : Poincaré - Bendixson’s paradise[1, 4].
It is well-known that differential equations on the plane have rather simple global behavior.
In the computational paradigm this leads a weak (sub-Turing) computational power of
planar systems.

Dynamical systems as strong as TMs : chaos[1]. Starting from three dimensions
dynamical systems admit chaotical behaviors. We will analyze how the chaos allows to
match the full Turing computational power (see also [10]).

Does Church-Turing thesis apply outside computer science? 17

Far beyond Turing : Zeno’s horror[2, 6]. The so-called Zeno phenomenon for piece-
wise continuous (and even piecewise constant) systems consists in the simple fact that a
trajectory can have infinitely many changes of the type of dynamics during a finite interval
of time. Such a behavior is much more complex than the simple deterministic chaos. This
kind of extremely complex trajectories can be used to decide any arithmetic predicate in
a bounded lapse of time. Hence the computational power of Zeno dynamical systems goes
far beyond Turing machines. We will speculate about physical (non)-realizability of Zeno
computers because of their extreme sensibility to perturbations.

Small set-valued noise: upside down TMs[3]. Several researchers (in particular Hen-
zinger, Raskin [9] and Fränzle[7]) suggested to consider more realistic, imprecise, perturbed
dynamical systems. A folk conjecture suggests that adding a small imprecision to the dy-
namics makes the reachability problem decidable, by destroying too subtle behaviors, and
replacing them by thick “tubes” that rapidly cover parts of the state-space. However, up
to now there are no convincing decidability results in this direction.

Inspired by Puri’s work [11] we have tried another approach: replace the exact dynamics
of a system by an ǫ-perturbed contingent one with ǫ→ 0. As the result the computational
power becomes Π0

1. This means that instead of recognizing recursively enumerable sets,
“perturbed” systems recognize complements of such sets. We will explain the reason of this
inversion in computational power.

Large deviations or small stochastic noise: one step beyond Turing[5]. Another
one, maybe more realistic model takes into account a small stochastic noise, and to pass
to the limit as it is often done in the large deviations research (see [8]). A characterization
of the computational power of such perturbed systems will be presented. It turns out to
be ∆0

2, i.e. slightly superior to Turing machines. We will relate it with the complexity of
behaviors appearing as large deviations of deterministic dynamics.

3 Conclusions

We believe that the computability approach to dynamical systems can be a source of new
insights and new research problems. We will present some important open problems that
exist in this area.

Acknowledgments. This talk is based on joint work with: Ahmed Bouajjani, Pieter
Collins, Oded Maler, Amir Pnueli, Gerardo Schneider and Sergio Yovine and valuable dis-
cussions with Jean Della Dora, Vincent Blondel, Olivier Bournez, Martin Fränzle, Jean-
François Raskin and many other colleagues.

18 Asarin Transgressive Computing

References

[1] E. Asarin, O. Maler, A. Pnueli, Reachability analysis of dynamical systems having
piecewise-constant derivatives, Theoretical Computer Science 138, 35-65, 1995.

[2] E. Asarin, O. Maler, Achilles and the Tortoise Climbing Up the Arithmetical Hierarchy,
J. of Computer and System Sciences 57, 389-398, 1998.

[3] E. Asarin, A. Bouajjani. Perturbed Turing machines and hybrid systems. In: Pro-
ceedings of the 16th Annual IEEE Symposium on Logic in Computer Science, IEEE
Computer Society (2001) 269-278.

[4] E. Asarin, G. Schneider, S.Yovine. On the Decidability of the Reachability Problem for
Planar Differential Inclusions. In Hybrid Systems: Computation and Control, 89-104,
LNCS 2034, 2001.

[5] E. Asarin, P. Collins, Noisy Turing Machines, in. Proc. of ICALP’05, 1031-1042 LNCS
3580, 2005.

[6] O. Bournez. Achilles and the Tortoise Climbing Up the Hyper-arithmetical Hiearchy.
Theoretical Computer Science, 210 (1): 21-71, 1999.

[7] M. Fränzle. Analysis of hybrid systems: An ounce of realism can save an infinity of
states. In : Computer Science Logic, 126–140, LNCS 1683, 1999.

[8] M. Freidlin, A. Wentzell. Random perturbations of dynamical systems. Springer-Verlag,
New York, 1984.

[9] Th.A. Henzinger, J.-F. Raskin. Robust undecidability of timed and hybrid systems.
Hybrid Systems: Computation and Control, 145-159, LNCS 1790, 2000.

[10] C. Moore, Generalized shifts: unpredictability and undecidability in dynamical sys-
tems, Nonlinearity 4 (1991), 199-230.

[11] A. Puri. Dynamical properties of timed automata. Discrete Event Dynamic Systems
10 (2000) 87–113.

[12] K. Weihrauch. Computable analysis. Springer-Verlag, Berlin, 2000.

Eugene Asarin
LIAFA

University Paris 7 & CNRS
asarin@liafa.jussieu.fr

www.liafa.jussieu.fr/∼asarin

A Hidden Algebraic Structure in Quantum Mechanics 19

A Hidden Algebraic Structure in Quantum Mechanics

Léon Brenig

Abstract

Quantum mechanics of a non-relativistic free particle implies the existence of a
second time variable associated to a non-unitary transformation group. This group is
part of a non-unitary representation of the Galilei group. The unitary and non-unitary
algebras are connected via a group of Lorentz-like transformations corresponding to
measurement accuracy transformations preserving the Heisenberg inequality. Quantum
mechanics appears in this context as a relativity theory of precision in measurements.

1 Introduction

The relation between quantum and classical mechanics is a fundamental question that
aroused many interesting works. From Weyl geometry [1] [2] to fractal space-time or scale-
relativity [3] and from the Bohm interpretation [4] to the stochastic approach [5] [6],
important results in theoretical and mathematical physics have been achieved. An excellent
review of these progresses along with an exhaustive bibliography on the subject can be found
in [7] [8]. However, important conceptual difficulties still remain concerning the transition
between classical and quantum mechanics. The latter, in contrast with classical mechanics,
does not appear as a closed theory. It needs classical mechanics through the correspondance
principle in order to construct the hermitian operators that represent the observable physical
quantities. Furthermore, quantum mechanics involves two types of processes as emphasized
by R.Penrose [9], the unitary evolution of the system’s state vector and the reduction or
collapse of the latter. The former corresponds to the evolution of the system in absence of
any measurement made by an observer. The second represents the process that occurs when
an external measurement instrument is applied to the system. The measurement process
produces a sudden interruption of the unitary evolution of the state vector. The latter
is instantaneously projected on an eigenvector of the observable that is measured. Up to
now, quantum mechanics has no explanation for this category of processes. More generally,
there exist in quantum mechanics two other types of processes having in common with the
measurement process the strange property to be instantaneous. These are the transitions
between quantum energy levels in atoms and the instantaneous transfer of information
related to experiments handling with non-locality. Quantum mechanics does not solve the
physical paradox of these infinitely rapid transformations, though, one can show that they
do not violate the relativity principle.
We show in this work that the “unfinished” aspect of todays quantum mechanics is related
to the existence of a hidden algebraic structure that associates to the known unitary group

20 Brenig Transgressive Computing

generated by the hermitian observables a non-unitary group of transformations that was
hidden up to now. This structure implies the existence of a second time dimension. Fur-
thermore, a continuous group of transformations acting on the precision of the measurement
is involved in this algebraic structure. With this result, quantum mechanics appears as a
relativity of precision theory. This new perspective is a step toward a deeper reconciliation
between quantum mechanics and special relativity. The latter emphasizes the role of the
observer and relies on the invariance of the laws of physics for the class of inertial observers.
In this class, the observers are characterized by their relative velocity. In contrast, quan-
tum mechanics in its current state does not attribute a specific role to the observer. This
concept is evacuated in quantum physics. The group of precision transformations we have
found in the present work acts on a new characteristics of the observer, the precision of its
instruments. We show that quantum mechanics corresponds to a postulate of invariance of
physical laws under these precision transformations between observers.
To unveil this algebraic structure we shall not work in the usual algebraic framework of
quantum mechanics, that is, the group of unitary transformations generated by the alge-
bra of hermitian operators on the Hilbert space. We use, instead, a functional canonical
representation of this algebra, as we show in the next chapter.
To give a foretaste of this representation, let me give a representative example of a member
of that functional canonical algebra. This is the Hamiltonian functional, i.e. the quantum
average of the energy for a non-relativistic free particle, expressed in terms of the probability
density, ρ(x), and the action, s(x) by:

H =

∫
d3 x [

ρ(x)
∣∣∇s(x)|2
2m

+
~2

2m

∣∣∣∇ρ(x)1/2
∣∣∣
2
]

(1)

where the integral is over R3, ∇ is the tridimensional gradient, ~2 is the Planck constant
divided by 2π and m is the mass of the particle. The density, ρ(x), denotes the probability
density of finding the particle at the space point x. H is a functional of ρ(x) and s(x).
In the expression (1) the second term in the integrand corresponds after some simple cal-

culation to the contribution of the so-called quantum potential [4], - ~2

2m
∇2ρ1/2

ρ1/2 ,while the

first term represents the kinetic energy density in classical mechanics. This second term
represents the basic difference between quantum and classical mechanics.
The hamiltonian functionalH (1) can also be considered as a functional of the wave function
by noting that

H =

∫
d3x ψ∗hψ with h = − ~2

2m
∇2 and ψ = ρ1/2eis/~. (2)

From (2), H is obviously the quantum average of the hamiltonian hermitian operator, h.

In the classical limit where ~2

2m tends to zero, the hamiltonian functional, H, generates the
classical evolution of a point particle of mass m with a random initial position characterized
by the probability density ρ.
This article shows that the apparition of the quantum potential in equation (1) is intrin-
sically related to the existence of a second time variable as said above. The evolution of

A Hidden Algebraic Structure in Quantum Mechanics 21

the wave function in this new time variable is not unitary. The corresponding non-unitary
time evolution generator together with the generators of translations, rotation and Galilean
velocity changes constitutes a non-unitary representation of the Galilei algebra. There are,
thus, two “mirror” Galilei algebras: The unitary one associated to the Hamiltonian (1) and
the non-unitary one. Both are related by a one-parameter continuous group of transfor-
mations that, remarkably, is isomorphic to the two-dimensional Lorentz group. However,
their meaning is deeply different. We show, indeed, that these transformations correspond
to changes in the accuracy of physical measurements and preserve the Heisenberg inequal-
ity. In short, the picture of quantum mechanics that emerges from this twin, unitary and
non-unitary, algebraic structure is that of a relativity in the precision of measurements
performed by the observers.

2 The functional representation of quantum mechanics

Let me first introduce the generalized canonical formalism used in this work. It has been
first described in the work of F.Guerra [6], in a context, though, very different from the
problems studied here.
The functionals A =

∫
d3x F(x, ρ, ∇ρ, ∇∇̺, ..., s, ∇s, ∇∇s, ...) of ρ(x) and s(x) that are

functionally differentiable with respect to the functions ρ(x) and s(x) constitute an infinite
Lie algebra G under the functional Poisson bracket:

{A,B} =

∫
d3 x [

δA
δρ(x)

δB
δs(x)

− δB
δρ(x)

δA
δs(x)

]
(3)

where δ/δρ(x) and δ/δs(x) represent the functional derivative with respect to the functions
ρ(x) and s(x).
All the volume integrals appearing in this article are defined over the whole space R3,
In this framework, the transformation from ρ and s to the wave function ψ and its complex
conjugate
ψ*, with ψ = ρ1/2eis/~,can be shown to be a canonical transformation. In other words, the
Poisson bracket structure (3) is transferred from the ρ, s variables to the ψ, ψ*variables.
It has been shown by F.Guerra and R.Marra that the G algebra contains a sub-algebra Q

that is isomorphic to the algebra of the quantum observable operators [6]. The elements of
Q are functionals that are quadratic in ψ, ψ* in the form A =

∫
d3x ψ∗Aψ where A is a

Hermitian operator. Using bracket definition (3) expressed in terms of the variables ψ, ψ∗

one easily gets:

{A,B} =

∫
d3x ψ ∗[A,B]ψ (4)

where [A,B] is the commutator of A and B.
There is another sub-algebra, P, in G that is isomorphic to the classical mechanical Poisson
algebra. Its elements are of the form A =

∫
d3x ρ(x)a(x, ∇s) where a(x, p) is any function

analytic in p and where x and p are conjugate variables for the usual, non-functional,

22 Brenig Transgressive Computing

Poisson bracket of classical mechanics. Indeed as shown in a forthcoming article [10] one
has:

{A,B} =

∫
d3x ρ(x){a, b}cl (5)

where A and B are both arbitrary members of the sub-algebra P and {a, b}cl is the usual
classical Poisson bracket in the result of which p must be replaced by ∇s.
The time evolution of any functional A belonging to the algebra G is given by:

∂tA = {A,H} (6)

where H is the Hamiltonian functional (1). The functions ρ(x) and s(x), themselves, are
elements of G. As such, their evolution equations are obtained by applying (6) and the
rules of functional derivation:

∂tρ = −∇.
(
ρ
∇s
m

)
(7)

∂ts = −|∇s|
2

2m
+

~2

2m

∇2ρ1/2

ρ1/2
(8)

Equation (7) is the probability conservation equation and equation (8) is a Hamilton-Jacobi
equation involving the quantum potential. It is well known that the same system (7,8) is
also obtained when splitting the Schrödinger equation into real and imaginary components.
This reflects the equivalence between the generalized canonical time transformations gen-
erated by H and the quantum unitary time transformations generated by the hermitian
operator H: Equation (6) applied to ψ yields the Schrödinger equation.
Let me now show, in analogy with a theory developped for non-quantum systems by
E.C.G.Sudarshan [11], that a canonical functional representation of the Galilei algebra
exists and is as a sub-algebra of G. In this representation, the following functionals

P =

∫
d3x ρ(x)∇s(x) (9)

L =

∫
d3x ρ(x)x ∧∇s(x) (10)

G = m

∫
d3x ρ(x)x (11)

respectively represent the generators of translation, rotation and observer velocity change.
Together with the hamiltonian functional H given by (1), they form a functional canonical
representation of the Galilei algebra. This is shown by calculating the functional Poisson
brackets (3) between those four quantities and obtaining the well-known Galilei algebra Lie
bracket relations. There is a short-cut to these calculations if one remarks that these four
quantities belong to the sub-algebra Q. Hence, their brackets are in one-to-one correspon-
dance with the commutators of the corresponding hermitian operators (see equation (4)).
The latter form a unitary representation of the Galilei algebra and the proposition is, thus,
proved. This representation generates a canonical representation of the Galilei group that
is isomorphic to the usual unitary group of quantum mechanics.

A Hidden Algebraic Structure in Quantum Mechanics 23

3 The non-unitary side of quantum mechanics

We are now ready to start the proof of the main result of this article, in short: Quantum
mechanics when represented in the large G canonical algebra appears to possess a twin group
of non-unitary transformations associated to the above discussed unitary group. Both are
related via a group of special transformations, isomorphic to the Lorentz transformations
in 1+1 dimensions. However, in contrast with special relativity, these transformations do
not relate observers with different constant velocities. In our work, these transformations
appear to correspond to changes of the precision with which the observers perform their
measures on the physical world.
Consider the following functional belonging to G

S =

∫
d3x ρ(x)s(x) (12)

It represents the average action or, up to a factor ~, the average phase of the particle.
The average is taken on the ρ probability density. Note that this functional belongs to the
algebra G but not to the quantum sub-algebra Q. Indeed, in terms of ψ and ψ

S =
~

2i

∫
d3x ψ∗ ln(

ψ

ψ∗)ψ (13)

which is not a quadratic form in ψ, ψ∗.
The functional Poisson bracket of S with H, denoted by K, is easily calculated yielding:

K ≡ {S,H} =

∫
d3 x [

ρ
∣∣∇s|2
2m

− ~2

2m

∣∣∣∇ρ1/2
∣∣∣
2
]

(14)

K differs from H only by the sign of the second term in the right hand side. Its physical
dimension is, thus, that of an energy. As any other element of the algebra G, it generates a
one-parameter continuous group. Since K is an “energy”, the associated group parameter,
τ , has the physical dimension of a time. Remark that K, though belonging to G, does belong
neither to the Q sub-algebra nor to the P sub-algebra. In fact, it generates a non-unitary
one parameter group.
A simple calculation brings also:

{S,K} =

∫
d3 x [

ρ
∣∣∇s|2
2m

+
~2

2m

∣∣∣∇ρ1/2
∣∣∣
2
]

= H (15)

Any functional A belonging to G can be viewed as a function of both times t and τ , and
its τ -derivative is given by:

∂τA = {A,K} (16)

Consider, then, the complex energy functional H+iK as a function of the variables t and τ .
The partial t- and τ - derivatives of the real and complex parts are:

∂tH = {H,H} = 0 and ∂τK = {K,K} = 0 (17)

∂τH = {H,K} and ∂tK = {K,H} = −{H,K} (18)

24 Brenig Transgressive Computing

We, thus, obtain:
∂tH = ∂τK along with ∂τH = −∂tK (19)

Equations (19) are the Cauchy-Riemann conditions corresponding to the complex analyt-
icity of the function H + iK in the complex variable t+iτ .
Let us now focus on the functional brackets of K with P, L and G. Simple calculations
show that they satisfy the Galilei algebra Lie brackets. As K does not belong to Q, the
reasoning here cannot take the same short-cut via the Q algebra as in the proof that H, P,
L, G form a Galilei algebra: One must explicitely compute the functional Poisson brackets
to check that they, indeed, correspond to a representation of the Galilei algebra [10]. The
exponentiation of the algebra generated by K, P, L and G yields a representation of the
Galilei group that is not unitary. This is clear from the fact that K does not belong to the
sub-algebra Q.
At this level of our presentation, the status of the new quantities, S, K and τ must be
questioned. Are these quantities physical? At first sight, they could be thought of as
arbitrary mathematical objects without any link with the physical world.
A first element in favor of the relevance of these objects to physics is obtained by considering
the analytic extension of the classical hamiltonian functional for a free particle

Hcl =

∫
d3x

ρ
∣∣∇s|2
2m

(20)

into a complex function, H +iK, holomorphic in the complex plane of t+iτ . The require-
ments of the Galilean invariance of this analytic continuation leads to the necessity of adding
a second term to Hcl wich, precisely, is the quantum potential up to the value of a constant
factor. The proof is rather lengthy and will be presented in [10]. However, from this result
one can infer that the existence of a second time dimension is a necessary and sufficient con-
dition for the emergence of the quantum contribution to the Hamiltonian functional. As the
latter, along with the whole theoretical apparatus of quantum mechanics, leads to a wealth
of experimentally verified predictions, the physical status of this second time dimension is
reinforced.
However, the most decisive argument in favor of the physicality of the second time variable
is related to the measurement process in quantum physics as shown in the next chapter

4 A relativity of measurement precision.

As any element of G, the functional S defined in (12) generates a continuous one-parameter
group of transformation. Let us call α the parameter of that group. Physically this param-
eter is dimensionless since S has the dimension of an action. Any functional A of G may
be considered as a function of that parameter and obeys

∂

∂α
A(α) = {A(α),S(α)} (21)

where A(α) denotes A(ρ, s;α).

A Hidden Algebraic Structure in Quantum Mechanics 25

The Lie algebra structure of G ensures that the Lie brackets relation are preserved under
the transformations generated by S. Moreover, S is of course an invariant under these
transformations.
Let me first consider the particular case of the classical Hamiltonian functional Hcl as
defined in (20). One has:

∂

∂α
Hcl(α) = {Hcl(α),S(α)} = −Hcl(α) (22)

whose solution is:
Hcl(α) = e−αHcl(0) (23)

where Hcl(0)≡Hcl

This transformation of the hamiltonian functional can be interpreted as a dilatation of time:

t(α) = eαt (24)

since the parameter t is associated to the group generated by Hcl.
Let us, now, see how the quantum time evolution generators H and K transform under the
group generated by S. We must solve the system of equations

∂

∂α
H(α) = {H(α),S(α)} = −K(α) (25)

∂

∂α
K(α) = {K(α),S(α)} = −H(α) (26)

whose solution is

H(α) = coshαH(0)− sinhαK(0) (27)

K(α) = −sinhαH(0) + coshαK(0) (28)

where H(0)≡H and K(0)≡K.
These transformations may also be transferred on the time coordinates as follows

t(α) = coshα t+ sinhατ (29)

τ(α) = sinhα t+ coshατ (30)

These are Lorentz-like transformations in the (t,τ) plane. Of course, the context in which
they appear here is completely foreign to special relativity since we are considering a non-
relativistic free particle as our system.
These transformations mix both types of time coordinates while keeping covariant the time
evolution equations for any functional A of G

∂tA = {A,H} (31)

∂τA = {A,K} (32)

26 Brenig Transgressive Computing

Incidentally, under the group generated by S, the state variables ρ and s transform as

ρ(α) = eαρ (33)

s(α) = e−αs (34)

We now shift from the consideration of the quantities H and K to that of the statistical
quantities characterizing the precision of measurements. We have in mind the quadratic
deviations of the momentum and of the position of the particle. These quantities are
functionals of the wave function and, as such, belong also to the algebra Q. As is well
known, these two quantities are constrained by the Heisenberg inequality. In the sequel, I
show that the transformations (27) and (28) can be recasted into transformations of these
deviations, and that these transformations saturate at the lower bound of the Heisenberg
inequalities.
In order to prove this proposition, let me first define the above statistical quantities. The
quantum average of an observable quantity represented by the associated hermitian operator
A is given by:

〈A〉 =

∫
d3x ψ∗A ψ (35)

It is readily seen that the average momentum 〈p〉, for which the associated hermitian oper-
ator is p = -i~∇, reduces to

〈p〉 =
∫
d3x ρ(x)∇s(x) (36)

or, in other terms, 〈p〉 = P.
The quantum quadratic deviation of p is given by

〈
|p− P|2

〉
=
〈
p2
〉
− P2 (37)

This quantity can be reduced to 〈p2〉 by using a frame of reference traveling at the average
speed of the particle, P

m . This simplification represents by no means a loss of generality of
the subsequent results. Indeed, a change to any other frame of reference can be performed
later.
The parameter 〈p2〉 represents the quantum average of p2, i.e.

〈
p2
〉
≡
∫
d3x ψ∗p2ψ (38)

where
p2 ≡ −~2∇2 (39)

The above equations compared to equations (2) lead to

H =

〈
p2
〉

2m
(40)

A Hidden Algebraic Structure in Quantum Mechanics 27

The second statistical quantity that should be introduced now is the quadratic deviation of
the position. It is given by 〈

|x− 〈x〉|2
〉

=
〈
x2
〉
− 〈x〉2 (41)

where the quantum average (31) reduces to

〈x〉 =

∫
d3x ρ(x)x (42)

which is proportional to G as given by equation (9), and to

〈
x2
〉
≡
∫
d3x ρ(x)x2 (43)

The above reductions, obviously, come from the fact that ψ∗xψ = ρ(x)x and ψ∗x2ψ =
ρ(x)x2.

The parameter 〈|x− 〈x〉|2〉1/2represents the dispersion of the distribution ρ(x), i.e. the
width of that function.
Here, however, I shall depart from the usual approach and consider another statistical
parameter which also measures the width of the distribution ρ (x). This is the Fisher
length [12] associated to the Fisher information associated to ρ (x) . The later is given by

F ≡
∫
d3x ρ(x)|∇ ln ρ(x)|2 (44)

A simple calculation leads to

F = 4

∫
d3x

∣∣∣∇ρ(x)1/2
∣∣∣
2

(45)

The Fisher length, ∆x, is defined by

∆x ≡ 1

F 1/2
(46)

It is not a true quantum average as defined in equation (35). However, this length denotes
the distance on which the distribution ρ(x) has a significant variation and, as such, describes
also the incertitude on the localization of the particle. Actually, as we now show, this
quantity is more natural for characterizing the precision of position measurement than
〈|x− 〈x〉|2〉. This is due to the property that K can be expressed in terms of 〈p2〉and ∆x,
whereas K is not expressible in term of 〈|x− 〈x〉|2〉 . Indeed, K can obviously be written as

K =

〈
p2
〉

2m
− ~2

m

∫
d3x

∣∣∣∇ρ(x)1/2
∣∣∣
2

or K =

〈
p2
〉

2m
− ~2

4m∆x2 (47)

Both relations (40) and (47) provide 〈p2〉 and ∆x2 in terms ofH and K. With these relations
at hand, we easily derive that the transformations (27) and (28) induce changes in 〈p2〉and
∆x2. They represent modifications of the observer’s precision:

∆x2(α) = ∆x2[
1− tanhα

1 + tanhα
]
1/2

(48)

28 Brenig Transgressive Computing

〈
p2
〉
(α) =

(1− tanhα)
〈
p2
〉

+ ~2

2 tanhα 1
∆x2

[
1− tanh2α

]1/2 (49)

The above transformation relates the precision of an observer with α equal to zero to the

precision of an observer with α different from zero. The transformations of ∆x and of 〈p2〉1/2
mix both quantities. In the classical limit where ~ tends to zero, the transformations (48),

(49) become simple dilatations affecting separatly ∆x and 〈p2〉1/2. Hence, in this limit
there is no constraint in reducing the precision of position and momentum measurement.
In the quantum case, that is when ~ is different from zero, this is no longer possible: The
Heisenberg principle introduces an obstruction to this reduction. This fact is enlighten by
calculating the product of the two quadratic deviations, ∆x2〈p2〉. One is led to the following
revealing law of transformations:

∆x2(α)
〈
p2
〉
(α) =

(1− tanhα) ∆x2
〈
p2
〉

+ tanhα~2

2

1 + tanhα
(50)

The quantity ∆x2
〈
p2
〉

is similar to the velocity in the Lorentz transformations. The lowest

value attained by this quantity is ~2

4 , when tanhα = 1. One recognizes, here, the Heisenberg

inequality: ∆x〈p2〉1/2 > ~

2 . Furthermore, for any value of α, ∆x2(α)〈p2〉(α) is equal to ~2

4

if ∆x2〈p2〉 is already equal to ~2

4 . Hence, the transformation saturates at the lower limit of
the Heisenberg inequality.
We, thus, have unveiled a structure in quantum mechanics that reflects a relativity of
precision. Observers appear as endowed of a characteristic that is the product precision,
∆x2〈p2〉,whose minimum value is bounded and the same for all the observers, ~2

4 .It clearly
appears from (48), (49) and (50) that in quantum mechanics the constant ~

2 plays a role
similar to that of the velocity of light in special relativity. The relativity of precision so
discovered has some analogy with the scale relativity appearing in the work of L.Nottale
[3] which is a consequence of the basic postulate made by this author about the fractality
of space-time. In our approach, however, this relativity structure is not postulated. It
is intrinsically related to the algebraic structure corresponding to the twin unitary and
non-unitary groups that has been put in light in this work. Some physical flesh is given
to the time variable τ by this structure. Indeed, the existence of the above precision
transformations and, consequently, the universality of the Heisenberg inequalities for all the
observers, relies on the existence of this new time variable.

5 Conclusion

Quantum mechanics appears through our results to possess a structure of relativity theory
based on the precision of measurements of the observers. This corresponds to an algebraic
structure involving two twin algebras, one generating the usual unitary group, while the
other generates a non-unitary group. Geometrically, the consequence of this double algebra
is the existence of a second time dimension. The physical nature of this second temporal

A Hidden Algebraic Structure in Quantum Mechanics 29

dimension is confirmed by its link with the precision transformations that are induced by
Lorentz-like transformations in both time dimensions. Evolution in this time variable is
non-unitary.
More precisely, we will show in a subsequent article [10] that the evolution equation for the
wave function in time τ is a nonlinear Schrödinger equation generated by the functional K.
This aspect is not discussed in the present article for the sake of conciseness and is still under
study. However, recent calculations indicate that the solutions of this nonlinear Schrödinger
equation exhibit a collapse of the wave function in many situations. For example, the width
of an arbitrary Gaussian packet at time τ=0 always decreases in time τ .
Such time evolution presents some similarity with the measurement process which is instan-
taneous in time t and does not correspond to a unitary process. I suggest the hypothesis
that the collapse is not instantaneous in time τ , while it is in time t. If this is the case, the
collapse would be a non-unitary process governed by the above refered nonlinear Schrödinger
equation. The non-unitary aspect of the wave function collapse is also underlined by Pen-
rose [9] who advocates that some nonlinear evolution equation should describe this process.
The difference, however, between his approach and the present one is double. First, in his
approach the nonlinear equation describes an evolution in time t. Second, the nonlinearity
is related to the gravitational interaction in the Penrose theory, while our results concern a
non-relativistic free particle without any external field.
The existence of a second time dimension and the status of quantum mechanics as a rela-
tivity of precision is not without consequence with respect to the unification of gravity with
quantum mechanics. Indeed, these new aspects of the quantum physics are shrinking the
gap between both theories. Both rely on the notion of observer and on the transformations
that connect them while keeping invariant the laws of physics. Moreover, both theories are
geometrically based on the physical space-time even though, as we have shown, quantum
mechanics implies a supplementary time dimension.
We are currently studying the relativistic generalisation of the above results. Preliminary
work seem to indicate that the Klein-Gordon and Dirac theories do present the same al-
gebraic duality between a unitary and a non-unitary group of transformations. They both
appear to involve a structure of precision relativity as in the non-relativistic case. However,
more work must be carried out in order to determine the complete algebraic structure that
encompasses and generalizes both relativity groups, the special relativistic and the quantum
ones.

6 Acknowledgement

It is a pleasure to be invited to the TC 2006 Conference in honor of Jean DellaDora. I
would like to take advantage of this occasion to wish him a happy future and many more
scientific adventures.
I am also indebted to Drs. R.Balescu, I.Veretennicoff, C.Georges, J.Reignier, C.Schomblondt,
G.Barnich, R.Lambiotte and Mr.F.Ngo for the fruitful scientific discussions they had with
me during this work.

30 Brenig Transgressive Computing

References

[1] E. Santamato, Geometric derivation of the Schrödinger equation from classical me-
chanics in curved Weyl spaces, Physical Review D 29 (1984), 216–222.

[2] A. Shojai and F. Shojai, Constraints Algebra and Equations of Motion in the Bohmian
Interpretation of Quantum Gravity, Classical and Quantum Gravity 21 (2004), 1.

[3] L. Nottale, Fractal Space-Time and Microphysics, World Scientific , Singapore, 1993.

[4] D. Bohm and B. J. Hiley, Measurement Understood Through The Quantum Potential
Approach, Foundations of Physics 14 (1984), 255.

[5] E. Nelson, Quantum Fluctuations, Princeton University Press, New Jersey, 1985.

[6] F. Guerra and R. Marra, Origin of the quantum observable operator algebra in the
frame of stochastic mechanics, Physical Review D 28 (1983), 1916–1921.

[7] R. Carroll, Fluctuation, Information, Gravity and the Quantum Potential, Springer,
Berlin, 2005.

[8] R. Carroll, Fluctuations, Gravity and the Quantum Potential, arXiv gr-qc/0501045
v1 (2005).

[9] R. Penrose, The Road to Reality, Jonathan Cape, London, 2004.

[10] L. Brenig, Quantum mechanics: A relativity of measurement precision, in preparation
(2006).

[11] E. Sudarshan and N. Mukunda, Classical Dynamics: A Modern Perspective, Robert
E.Krieger Pub.Company, Malabar, 1983.

[12] M. J. Hall, Quantum properties of classical Fisher information, Physical Review A
62 (2000), 012107-1.

Léon Brenig
Faculté des Sciences. Université Libre de Bruxelles.

Campus de la Plaine, CP231, boulevard du Triomphe, 1050 Bruxelles, Belgique.
lbrenig@ulb.ac.be

André-Louis Cholesky: his life and works 31

André-Louis Cholesky: his life and works

Claude Brezinski

Introduction

Let A be a symmetric positive definite matrix. It can be decomposed as A = LLT where L is
a lower triangular matrix with positive diagonal elements. Then, the system Ax = b writes
LLTx = b. Setting y = LTx, we have Ly = b. Solving this lower triangular system gives
the vector y. Then x is obtained as the solution of the upper triangular system LTx = y.
This is Cholesky’s method.

Cholesky died in 1918. His famous method for systems of linear equations was only
known from a paper published in 1924 by one of his fellow officer, the Commandant Benôıt.

In 1995, the archives of the army were opened to the public, and I wrote his first complete
biography [2].

Last year, I was contacted by Cholesky’s grand-son who gave all papers he had to École
Polytechnique were his grand-father studied, and he asked me to help him to classified
them. Then, we found the original manuscript where Cholesky described his method.

1 André-Louis Cholesky

André Louis Cholesky was born on October 15, 1875 in Montguyon, around 35km nord-east
of Bordeaux. He was the son of André Cholesky, head waiter, and of Marie Garnier. He went
to the high school in Saint-Jean-D’Angély. He obtained his “baccalauréat” in Bordeaux in
1893.

In October 1895, he entered as a student at École Polytechnique for 2 years. His
professors were Camille Jordan and Georges Humbert for analysis, Émile Haag for geometry,
Octave Callandreau for astronomy and geodesy, and Henri Becquerel for physics. In October
1897, after finishing École Polytechnique, he became Sous-Lieutenant, and studied at the
École d’Application de l’Artillerie et du Génie in Fontainebleau. Among others, he had
lectures on ballistic and topography. He ended 5th over 86.

On October 1st, 1899, he became Lieutenant in the 22th Régiment d’Artillerie. From
January 17 to June 27, 1902 he was sent to Tunisia and again from November 21, 1902 to
May 1st, 1903. From December 1903 to June 1906, he was in Algeria. On June 24, 1905, he
was appointed to the Geographical Service of the Headquarters of the Army. He was in the
section having to mesure the length of the meridian of Lyon. On May 10, 1907 he married
his first cousin Anne Henriette Brunet, born June 27, 1882. They will have 4 children.

32 Brezinski Transgressive Computing

Cholesky went to Crete, then occupied by the international troops, from November 7,
1907 to June 25, 1908. He had to cartography the British and French parts of the island.
On March 25, 1909, he was promoted to Captain. On August 28, 1909, he had to serve as
the head of a battery for two years. It is during this period that he found his method for
the solution of systems of linear equations. In October 1911, he was again appointed to the
Geographical Service of the army as head of surveying in Tunisia and Algeria. He stayed
in these countries until August 2, 1914, the day of the mobilization. He was head of the
Topographical Service in Tunis.

After 3 months as the head of a battery, he was appointed at the Geographical Service
and worked on canvas for shooting. From September 1916 to February 1918, he was sent to
Romania and became head of the Geographical Service that he completely reorganized. On
July 7, 1917 he was promoted Commandant. In June 1918, he was appointed at the 202th
Regiment of Artillerie of the Army of General Mangin. This army was fighting in Picardie
between the river Aisne and Saint-Gobain.

On August 31, 1918 Cholesky was killed north of Bagneux, a small village around 10km
north of Soissons. He was first buried in the cemetery Chevillecourt near Autrèches, 15km
east of Soissons. On October 24, 1921 his grave was transferred to the cemetery of Cuts,
10km south-east of Noyon.

2 Works

Cholesky was a topograph in the Geographic Service of the Army. His work mainly consisted
in drawing maps of various scales. From December 1909 and, at least, until January 1914 he
was also a Professor at the École Spéciale des Travaux Publics, du Bâtiment et de l’Industrie
founded in 1891 by Léon Eyrolles. The studies were only by correspondence and Cholesky
had to write lecture notes for the students.

In the archives, we found many manuscripts which, in fact, were incorporated into a
book he published around these years [5]. It contains 442 pages, 100 figures and 18 photos
of instruments. This book was quite successful since it had, at least, 7 editions and was
still in the catalogue of the publisher 30 years after Cholesky’s death.

The archives also contain another book with the title Cours de Calcul Graphique, several
manuscripts describing the use of instruments for topography, and many military document
on the organization of the work of a geographical officer, on shooting, etc.

3 The manuscript

Let us describe the contents of the manuscript of Cholesky entitled Sur la résolution
numérique des systèmes d’équations linéaires, and dated December 2, 1910.

Starting from a system of linear equations, Cholesky began to multiply by the transpose
of the matrix in order to obtain a system with a symmetric matrix (the matrix is also positive
definite, a property which Cholesky does not mention). Then, he introduces intermediate
unknowns satisfying a system with a lower triangular matrix. Then, these unknowns are

André-Louis Cholesky: his life and works 33

used as the right hand side of another system with a upper triangular matrix, which is
the transpose of the lower triangular matrix, and whose solution is the one we are looking
for. Then, by multiplying these two triangular matrices together, and identifying with the
corresponding elements of the original matrix, he obtained the expressions of their elements
exactly as we all taught them to our students.

Then, Cholesky discusses the implementation of his method on the mechanical machine
Dactyle, in use at that time. He said that the full capabilities of the machine have to be
used, and that sign errors could easily be recognized.

After that, he claims that, in his method, the two triangular matrices are not necessarily
transpose, but he proves that this choice limits the propagation of rounding errors. Then,
he gave a method for computing square roots, which is, in fact, the method of Hero of
Alexandria, and he proved its quadratic convergence. A method for checking the solution
of the system is then given. Finally, he reports numerical examples: 4 or 5 hours were
necessary for solving a system of dimension 10 with 5 exact decimal digits. He said that
his method was also used for a system of 56 equations coming out from the triangulation
of Algeria.

4 Historical context

The least squares method was first published by Adrien Marie Legendre (Paris, 1752 - Paris,
1833) in 1805. Its justification as a statistican procedure is due to Carl Friedrich Gauss
(Braunschweig, 1777 - Göttingen, 1855) en 1809. According to him, the method lead to the
best possible combination of observations regardless of the probability law of errors. It was
immediately recognized as a major contribution. Gauss maintained that he already used it
in 1795. It is sure that he used it in 1801 to determine the orbit of the comet Cérès.

The American mathematician of Irish origin Robert Adrain (Carrickfergus, Ireland, 1775
- New Brunswick, USA, 1843) exposed the least squares method in a paper on topography
dated 1808. This work seemed to have attracted no attention in Europ. In 1818, Adrain
again used this method to determine the shape of the Earth from the measurements of the
meridian and obtained estimated values for the axes of the terrestrial ellipse.

A system of linear equations has infinitely many solutions when the number of unknowns
is greater than the number of equations. Among all possible solutions, one look for the
solution minimizing the sum of the squares of the unknowns. This is the case in the
compensation of the triangles in topography in which Cholesky was interested.

Methods for the solution of systems of linear equations were rediscovered many times
by different people. They are, in fact, variations on the way to present the computation.
Gaussian elimination corresponds to a decomposition of the matrix A of the system into
a product A = LU where L is a lower triangular matrix with a unit diagonal, and U an
upper triangular matrix. The system Ax = b then writes LUx = b, that is Ly = b if we set
y = Ux. Solving Ly = b gives the vector y which is then used as the right hand side of the
system Ux = y, and the solution x is obtained.

On November 9, 1878, Myrick H. Doolittle (Addison, USA, 1830 - 1913), a mathemati-

34 Brezinski Transgressive Computing

cian in the Computing Division of the U.S. Coast and Geodetic Survey in Washington, gave
a method for the solution of systems of equations coming out from a triangulation problem.
Its method consisted to cancel out, one by one, the elements of the matrix to transform it
into an upper triangular one. His method is equivalent to the decomposition of A into a
product A = LU by a sequence of intermediate steps. He obtained these matrices under
the form L = L1 + · · · + Ln and U = U1 + · · · + Un. L is lower triangular and U is upper
triangular, but, contrarily to Gauss method, with a unit diagonal. Doolittle had no machine
at his disposal, and he simply used multiplication tables. He said to have solved a system
of 41 equations in 5 and a half days, corresponding to 36 hours of computation. His method
had the favor of geodesists for many years.

When the matrix A is symmetric, Gauss method makes no use of this property, and
requires too many arithmetical operations. In 1907, Otto Toeplitz (Breslau, Allemagne,
1881 - Jerusalem, 1940) showed that an Hermitian matrix can be factorized into a product
LL∗ with L lower triangular, but he gave no algorithm for obtaining the matrix L. This
is what Cholesky did in 1910. Cholesky method remained unknown outside the circle of
French military topographers.

Other scientists continued to propose variants of the methods of Gauss and Doolittle in
order to make the computation easier for people without a mathematical culture. In 1938,
the Polish astronomer Tadeusz Banachiewicz (Varsaw, 1882 - 1954) proposed a square root
method very similar to Cholesky’s. He used cracovians, objects he had invented and are
similar to matrices but with a different product rule. Banachiewicz was the first to stress
that elimination methods for the solution of systems of linear equations were equivalent to
the factorization of the matrix A into a product of two matrices. But, as we saw, he had
been preceded by Cholesky.

In 1941, Paul Summer Dwyer (born in 1901) gave an abbreviate version of Doolittle
method and related it to other solution methods. In 1944, he gave the matrix interpretation
of Doolittle method. He also showed that L = DUT where D is a diagonal matrix and
noticed that it will be more interesting if L and UT were the same, in order to reduce the
number of arithmetical operations. For that, one can take the square roots of the diagonal
elements, that is the elements of D, and he noticed that this procedure was quite similar
to Banachiewicz’s.

Cholesky method was presented for the first time in 1924 in a note by Commandant
Benôıt, a French geodesist.

Cholesky method was rebirth by John Todd who taught it in his numerical analysis
course at King’s College in London in 1946 and thus made it known.

He tells [6]

In 1946 one of us (J.T.) offered a course at Kings’ College, London (KCL) on
Numerical Mathematics. While we had some wartime experience in numerical
mathematics, including characteristic values of matrices, we had had little to do
with the solution of systems of linear equations. In order to see how this topic
should be presented, we made a survey of Math. Rev. (at that time easy!) and
found a review (MR7 (1944), 488), of a paper by Henry Jensen, written by E.

André-Louis Cholesky: his life and works 35

Bodewig. Jensen stated “Cholesky’s method seems to possess all advantages.”
So, it was decided to follow Cholesky and, since the method was clearly explained,
we did not try to find the original paper.

Leslie Fox (1918–1992), then in the newly formed Mathematics Division of the
(British) National Physical Laboratory (NPL), audited the course and apparently
found the Cholesky Method attractive, for he took it back to NPL, where he and
his colleagues studied it deeply. From these papers, the Cholesky (or sometimes
Choleski) Method made its way into the tool boxes of numerical linear algebraists
via the textbooks of the 1950’s.

His colleagues were James H. Wilkinson and Alan M. Turing.

For more details on the life and works of Cholesky and his full manuscript, see [3, 4].

Bibliography

[1] Cdt. Benôıt, Note sur une méthode de résolution des équations normales provenant de
l’application de la méthode des moindres carrés à un système d’équations linéaires en
nombre inférieur à celui des inconnues, (Procédé du Commandant Cholesky), Bulletin
Géodésique, 2 (1924) 67-77.

[2] C. Brezinski, André Louis Cholesky, dans Numerical Analysis, A Numerical Analysis
Conference in Honour of Jean Meinguet, Bull. Soc. Math. Belg., 1996, pp. 45-50.

[3] C. Brezinski, La méthode de Cholesky, Rev. Hist. Math., à parâıtre.

[4] C. Brezinski, M. Gross-Cholesky, La vie et les travaux d’André Louis Cholesky, Bull.
Soc. Amis Bibl. Éc. Polytech., 39 (2005) 7-32.

[5] A. Cholesky, Cours de topographie. 2è partie : Topographie générale, 7è éd., École
Spéciale des Travaux Publics, Paris, 1937.

[6] O. Taussky-Todd, J. Todd, Cholesky, Toeplitz and the triangular factorization of sym-
metric matrices, Numer. Algorithms, to appear.

Claude Brezinski
Laboratoire Paul Painlevé, UMR CNRS 8524
UFR de Mathématiques Pures et Appliquées

Université des Sciences et Technologies de Lille
59655 - Villeneuve d’Ascq cedex

France
claude.brezinski@univ-lille1.fr

36 Brezinski Transgressive Computing

From genomic signatures to genomic functional cores 37

From genomic signatures to genomic functional cores

Alessandra Carbone

Abstract

The project of synthesizing a bacterial genome which can survive in the laboratory

and can realize desired metabolic cycles, has been announced three years ago by Venter,

Smith and Hutchison. It asks for clearing out certain basic biological mechanisms of liv-

ing cells. The problem demands to search for the minimal set of genes that are essential

to the life of a microbial organism. Laboratory experiments realized on specific bacteria

allowed to propose some minimal gene set. Independently, comparative genomics also

proposed some minimal set of genes. But both these ”solutions” present some intrinsic

problem.

We shall present some simple mathematical ideas based on Gibbs sampling, that al-

low to detect genomic signatures for sets of genes and sets of organisms, and to predict

genomic functional cores which are specific to different microbes. Within these sets,

one finds many of the genes characterized with experiments and genome comparison,

but also genes which might be non-orthologous or whose function might not be charac-

terized yet. More generally, our computational approach leads to characterize essential

metabolic pathways through a purely statistical analysis of complete genomes which is

independent from biological assumptions.

Alessandra Carbone

Génomique Analytique, Université Pierre et Marie Curie

INSERM U511, 91, bd de l’Hôpital. 75013 Paris France

Alessandra.Carbone@lip6.fr

38 Carbone Transgressive Computing

Formal and numerical computation of invariants: from differential ... 39

Formal and numerical computation of invariants: from

differential equations to q-difference equations

Jean-Pierre Ramis

Abstract

We will review invariant theory for linear differential equations (algebraic and analyt-
ical invariants, local and global invariants) and compare with the recent improvements
for the parallel case of linear q-difference equations.

In the differential case there exists a lot of effective computations (formal and numer-
ical) initiated in an old collaboration with Jean Della Dora and his students (DESIR...).
In the q-difference case there are some similar algorithms (in ORE style) but also a lot
of open problems.

Jean-Pierre Ramis
Laboratoire Émile Picard. Université Paul Sabatier
118 route de Narbonne. 31062 Toulouse Cedex 4

ramis@picard.ups-tlse.fr

40 Ramis Transgressive Computing

Algebraic Machines 41

Algebraic Machines

Tomás Recio Muñiz

Abstract

This talk deals with the prehistory (from the point of view of the speaker) of Com-
puter Algebra. It will provide some evidences (already pointed out by different authors,
such as P.J. Larcombe, “On Lovelace, Babbage and the origins of computer algebra”,
in Computer Algebra Systems, A practical guide. Edited by Michael Wester, J. Wiley.
1999. pp. 323-331) on the connection between Computer Algebra and the well known
work of Babbage.

But it will also refer to the less known contribution of a spanish scientist, in the
last years of the XIX-th century, who published some of his results at the CR Acad.
Sc. Paris (perhaps the first spanish accepted submission to this journal), refereed by
Poincaré himself... In the talk we will briefly mention some aspects of his life and
activities (some of them probably well known by many americans living near Niagara
Falls, but yet ignorant of their connection to Computer Algebra).

One of his most cherished goals (one that he also shares with Babbage) connects
the origins of Computer Algebra with the early days of industrial revolution (back in
the XVIII-th century). We will present some historical digressions around this topic
(mentioning, among other issues, the British Parliament and a bitter Russian-French
military dispute on the authoring of one of the main results) and we will display some
interactive examples, by visiting some interesting internet sites.

Finally we will pay attention to the traces, in today’s mathematics and computing,
of all this history, referring to a universality theorem attributed to Thurston (but proved
by someone else). Algebraic machines are indeed universal!

Tomás Recio Muñiz.
Departamento de Matemáticas, Estad́ıstica y Computación.

Facultad de Ciencias, Universidad de Cantabria.
Avenida de los Castros, s/n 39071 Santander, España.

Tomas.Recio@unican.es

42 Recio Muñiz Transgressive Computing

Making Computer Algebra More Symbolic 43

Making Computer Algebra More Symbolic

Stephen M. Watt

Abstract

This paper is a step to bring closer together two views of computing with mathemat-
ical objects: the view of “symbolic computation” and the view of “computer algebra.”
Symbolic computation may be seen as working with expression trees representing math-
ematical formulae and applying various rules to transform them. Computer algebra may
be seen as developing constructive algorithms to compute algebraic quantities in various
arithmetic domains, possibly involving indeterminates. Symbolic computation allows a
wider range of expression, while computer algebra admits greater algorithmic precision.
We examine the problem of providing polynomials symbolic exponents. We present a
natural algebraic structure in which such polynomials may be defined and a notion of
factorization under which these polynomials form a UFD.

1 Introduction

For the purposes of this paper, it is useful to make a distinction between “symbolic compu-
tation” and “computer algebra.”

By “symbolic computation,” we mean computation with expression trees, or “terms,”
representing mathematical objects. In these trees may appear symbols denoting operations,
such as “+,” “×” or “sin”, numbers and variables. Computation consists of combining or
transforming these trees to, for example, expand multiplications or multiple angle formu-
lae. There are problems related to expression equivalence, simplification and computing
canonical forms. A given expression might represent values belonging to various mathe-
matical domains, depending on the interpretation. For example, is “I” an identity matrix,
an indexed Bessel function, an imaginary unit, etc. Algebraic algorithms are typically well-
defined on subclasses of the space of all expressions. Working with new classes of objects
requires defining new operators and transformations on expressions containing them.

By “computer algebra,” we mean computations using the arithmetic from particular
algebraic constructions. The values used are elements of mathematically defined sets, such
as polynomial rings, algebraic extensions, quotients and so on. The elements might be
represented in any one of a number of ways. Certain algebraic domains, such as polynomials,
may include indeterminates. Algorithms are defined over particular algebraic input domains
and yield well-defined results. Working with new classes of objects requires defining new
algebraic domains and determining their properties.

44 Watt Transgressive Computing

A useful problem solving environment should provide some way to do both symbolic
computation and computer algebra, and there are different ways to do this. We may view,
for example, Maple as being a symbolic computation system with computer algebra built
as a layer on top. On the other hand, we may view Axiom as a computer algebra system,
with symbolic computation provided as a top layer. In both cases we suffer because there
is a gap between the symbolic and the algebraic semantics.

This gap is particularly evidenced when we work problems by hand. We do not hesitate
to work with vectors of dimension n, or write polynomials of degree d with coefficients from
some ring k of characteristic p. We then take facts about d, n, k or p into account when
we do calculations. As important as it is, there is relatively weak support for this sort of
computation in our symbolic mathematical software.

We are motivated to explore how to bring the symbolic and algebraic views closer
together, providing a more robust conceptual framework and providing tools to address an
important family of practical problems. We may view this as defining algebraic domains
for wider classes of symbolic expressions. That is, we wish to work in algebraic domains
that lie beyond the well-studied algebraic constructions of classical algebra. As a start, we
examine the problem of working with polynomials with symbolic exponents.

2 Symbolic Polynomials

We wish to work with polynomials where the exponents are not known in advance, such
as x2n − 1. There are various operations we will want to be able to do, such as squaring
the value to get x4n − 2x2n + 1, or differentiating it to get 2nx2n−1. This is far from a
purely academic problem. Expressions of this sort arise frequently in practice, for example
in the analysis of algorithms, and it is very difficult to work with them effectively in current
computer algebra systems.

We may think of these values as sets of polynomials, one for each value of n, or we
may think of them as single values belonging to some new ring. We wish to perform as
many of the usual polynomial operations on these objects as possible. Many computer
algebra systems will allow one to work with polynomials with symbolic exponents. They
do this, however, either by falling back on some form of general expression manipulation
or by treating all symbolic powers as algebraically independent. They thus miss many of
the important properties we wish to reflect. The relationship between exponents may be
non-trivial. We would like, for example, to compute factorizations such as

xn
4−6n3+11n2−6(n+2m−3) − 1000000m

= x−12m ×
(
xp1 + 10mxp2+2m + 102mx4m

)
×
(
xp2 + 10mx2m

)

×
(
xp1 − 10mxp2+2m + 102mx4m

)
×
(
xp2 − 10mx2m

)

p1 = x1/3n4−2n3+11/3n2−2n+6

p2 = x1/6n4−n3+11/6n2−n+3

Making Computer Algebra More Symbolic 45

and perhaps operations on symbolic integers

16n − 81m = (2n − 3m)(2n + 3m)(22n + 32m).

We can imagine a number of models for symbolic polynomials that have these properties.
Most generally, we could say that any set S, which under an evaluation map φ gives a
polynomial ring R[x1, ..., xv], represents symbolic polynomials. This would allow such forms
as

gcd(xn − 1, xm − 1)− xlcm(n,m) + 1

or

(x− 1)
n∑

i=0

xi.

Having a more obvious ring structure will be useful to us, so we begin by generalizing to
symbolic exponents only. First we recall the concept of a “group ring.” A monoid ring is
a ring formed from a ring R and monoid M with elements being the finite formal sums

∑

i

rimi, ri ∈ R,mi ∈M.

A monoid ring has a natural module structure, with basis M , and addition defined in
terms of coefficient addition in R. Multiplication is defined to satisfy distributivity, with
r1m1×r2m2 = (r1r2)(m1m2). When the monoid M is a group, then the algebraic structure
is called a group ring. For example, the Laurent polynomials with complex coefficients may
be constructed as the group ring C[Z], viewing Z as an additive group.

We now define a useful class of symbolic polynomials.

Definition 2.1. The ring of symbolic polynomials in x1, ..., xv with exponents in n1, ..., np
over the coefficient ring R is the ring consisting of finite sums of the form

∑

i

cix
ei1
1 xei2

2 · · · xein
n

where ci ∈ R and eij ∈ Int(Z)[n1, n2, ..., np]. Multiplication is defined by

c1x
e11
1 · · · xe1n

n × c2x
e21
1 · · · xe2n

n = c1c2x
e11+e21
1 · · · xe1n+e2n

n

We denote this ring R[n1, ..., np;x1, ..., xv].

We make use of the notion of “integer-valued polynomials,” Int(D)[n1, ...np]. For an integral
domain D with quotient field K, univariate integer-valued polynomials may be defined as

Int(D)[X] = {f(X) | f(X) ∈ K[X] and f(a) ∈ D, for all a ∈ D}

For example 1
2n

2 − 1
2n ∈ Int(Z)[n]. Integer-valued polynomials have been studied by Os-

trowski [2] and Pólya [3], and we take the obvious multivariate generalization.

46 Watt Transgressive Computing

Our definition of symbolic polynomials is isomorphic to the group ring R[Z[n1, ..., np]
v].

We view Z[n1, ...np] as an abelian group under addition and use the identification

X1
e1X2

e2 · · ·Xv
ev ∼= (e1, . . . , ev) ∈ Z[n1, . . . , nw]v

We note that R[;x1, ..., xv] ∼= R[x1, ..., xv]. Under any evaluation φ : {n1, ..., np} → Z, we
have

φ : R[n1, ..., np;x1, ..., xv]→ R[x1, ..., xv , x
−1
1 , ..., x−1

v].

That is, φ evaluates symbolic polynomials to Laurent polynomials. It would be possible to
construct a model for symbolic polynomials that, under evaluation had no negative variable
exponents, but this would require keeping track of cumbersome domain restrictions on the
exponent variables.

By definition, these symbolic polynomials have a ring structure. What is more inter-
esting is that they also have a useful unique factorization structure that can be computed
effectively.

3 Factorization

We now show the multiplicative structure of our symbolic polynomials, and describe two
algorithms for factorization. For simplicity we first show the case whenR = Z and exponents
are in Z[n1, ..., np].

Proposition 3.1. Q[n1, ..., np;x1, ..., xv] is a UFD, with monomials being units.

We sketch the proof: The fact that x, xn, xn
2
, ... are algebraically independent can be used

to remove exponent variables inductively. We observe that

xeik
k = x

P
j hijn

j
1

k =
∏

j

(
xn1

j

k

)hij

=
∏

j

xkj
hij , hij ∈ Z[n2, ..., np].

This gives the isomorphism

Z[n1, n2, ..., np;x1, ...xv] ∼= Z[n2, ..., np;x10, x11, x12, ...x1d1 , ...xv0, xv1, xv2, ...xvd1]

where d1 is the maximum degree of n1 in any exponent polynomial and xij corresponds to

xn1
j

i . Once all the exponent variables have been removed, we factor in Z[x10...0, ..., xvd1 ...d1],
then reform the exponent polynomials of x1, ..., xv .

When the exponents come from the integer-valued polynomials Int(Z)[n1, ..., np], as
opposed to Z[n1, ...np], care must be taken to find the fixed divisors of the exponent poly-
nomials. For example, the fact that n(n− 1) is always even implies the factorization

x2 − yn2−n = (x− yn(n−1)/2)(x+ yn(n−1)/2)

Making Computer Algebra More Symbolic 47

Fixed divisors are given by the content when polynomials are written in a factorial basis.

That is, for each exponent variable ni, using the polynomial basis 1, ni, n
2
i , ..., n

j

i , ..., where

nj =
n(n− 1) · · · (n− j + 1)

j!
.

Combining these two ideas, we make the change of variables to x
nj

k

i , to obtain factorization
in Q[n1, ...np;x1, ..., xv]. The same strategy may, of course, be used to compute greatest
common divisors, square-free factorizations and similar quantities.

We have described this transformation as though the exponent polynomials were dense.
In this worst case, the number of new variables will be Dp, where D is the degree bound
on the ni. In practice, the number of variables occurring in exponents will be small and
the exponent polynomials will be of low degree so the introduction of new variables may
be acceptable. In many cases, most of the new variables will occur only trivially. Blindly
changing to a factorial basis to make fixed divisors manifest may not, however, be the best
strategy. This destroys any sparseness in the input polynomials. A better strategy would
be to convert only when necessary.

If the number of exponent variables is large, then another method may be used to
manage the complexity of many variables. We may use projections to map the exponents
to integers at several points, and combine them via interpolation. Naively, an exponential
number of factorizations in Q[x1, ..., xv] will be needed, but this not always necessary. If
there are may small factors, then there is a combinatoric problem of factor identification.
If the coefficient field is large enough, and the polynomials are not special, then coefficient
values may be used to greatly limit the search. We have experimental implementations of
both the “change of variables” method and the “projection” method, but it is too early to
say which method will be most useful in practice.

4 Generalizations

As mentioned earlier, we may contemplate other algebraic structures to encompass a wider
class of expressions. Without going to the most general model of polynomial-valued integer
functions, we may consider
•Allowing exponent variables to also appear as regular variables. To do this we can work

in R[n1, ..., np;n1, ..., np, x1, ..., xv]. This is useful if we require formal derivatives.

• Symbolic exponents on coefficients. We discuss this case more below.

• Symbolic polynomials as exponents, or richer structures.

•Other polynomial forms, such as exponential polynomials, e.g. [1] [4].

•Other problems, e.g. Gröbner bases of symbolic polynomials [5].
Let us examine more closely the question of symbolic exponents on coefficients. Suppose

we wish to factor a polynomial of the form x4m−24n. Assuming m and n may take on only
integer values, the factorization over Q is (x2m + 22n)(xm + 2n)(xm − 2n). This, however
is equivalent to x4m − 16n, which is not manifestly the difference of fourth powers. So how
can we approach symbolic integer coefficients?

48 Watt Transgressive Computing

If the coefficient ring is a principal ideal domain, then we may extend our definition to
allow symbolic exponents on prime coefficient factors:

Definition 4.1. The ring of symbolic polynomials with exponents in n1, n2, ..., np over the

coefficient ring R, a PID with quotient field K, is the ring consisting of finite sums of the

form ∑

i

ki ·
∏

j

c
dij

j · xei1
1 xei2

2 · · · xein
n

where each product has a finite number of nonzero dij , ki ∈ K, cj are primes ∈ R, dij ∈
Int(Z)[n1, n2, ..., np]\Z and eij ∈ Int(Z)[n1, n2, ..., np]. Multiplication is defined by

k1c
d11
1 · · · cd1m

m xe111 · · · xe1n
n × k2c

d21
1 · · · cd2m

m xe211 · · · xe2n
n =

k1k2c
d11+d21
1 · · · cd1m+d2m

m xe11+e21
1 · · · xe1n+e2n

n

Let us consider the case of integer coefficients. We note that, for any base, any set of
logarithms of distinct primes is linearly independent over Q. This is easily seen, for the
equation

∑
i ni log(pi) = 0, holds with pi distinct primes and ni ∈ Z, only if

∏
i p
ni
i = 1,

which requires ni = 0. This implies that

∑

i

αi log pi 6= 0

for any non-zero algebraic numbers αi. We can write any product of integers to symbolic
powers as an exponential of a linear combination of logarithms of primes, e.g.

6m × 7n
2+1 = exp(m log 2 +m log 3 + (n2 + 1) log 7)

where exp and log use the same base. We can therefore treat 2n, 2n
2
, ... as new variables

for factoring, etc.
As stated, this approach would require factoring each integer that appears with a sym-

bolic exponent. In practice we do not want to factor the constant coefficients. Instead, we
can form, for any particular problem, an easier to compute basis, e.g. from {70n, 105n} the
set {2n, 3n, 35n} which does not require factoring of 35. This can be done using only integer
gcd’s and extracting integer roots.

5 Conclusions

We see a mathematically rich and practically important middle ground between the usual
approaches of “symbolic computation” and “computer algebra.” Rather than working with
loosely defined expressions, or strictly with classical polynomial and matrix algebras, there
is room to work in other well-defined algebraic contexts. These can provide the structure
to make operations well-defined, while at the same time allowing more symbolic treatment
in mathematical computations. In this light, we have explored how to usefully work with
symbolic polynomials — polynomial-like objects where the exponents can themselves be

Making Computer Algebra More Symbolic 49

polynomials. These are able to represent the kinds of symbolic polynomials we have seen
in practice. The algebraic structure allows us to perform arithmetic on these objects, to
simplify and transform them. We find, moreover, a UFD structure that admits algorithms
for factorization, gcd, etc. This encourages us to look at more algebraic treatment of other
symbolic structures, such as matrices of unspecified size.

References

[1] de Prony, Baron Gaspard Riche. Essai éxperimental et analytique: sur les lois de
la dilatabilité de fluides élastique et sur celles de la force expansive de la vapeur de
l’alkool, à différentes températures. Journal de l’École Polytechnique, volume 1, cahier
22, 24-76 (1795).

[2] Ostrowski, A., Über ganzwertige Polynome in algebraischen Zahlköpern, J. Reine
Angew. Math., 149 (1919), 117-124.

[3] Pólya, G., Über ganzwertige Polynome in algebraischen Zahlköpern, J. Reine Angew.
Math., 149 (1919), 97-116.

[4] C.W. Henson, L. Rubel, and M. Singer, Algebraic Properties of the Ring of General
Exponential Polynomials. Complex Variables Theaory and Applications, 13, 1989,
1-20.

[5] Kazuhiro Yokoyama. On Systems of Algebraic Equations with Parametric Exponents.
pp 312-319, ISSAC ’04, July 4-7, 2004, Santander, Spain, ACM Press.

Stephen M. Watt
Ontario Research Centre for Computer Algebra

University of Western Ontario, MC 375
London ON, Canada N6A 5B7

watt@orcca.on.ca
http://www.orcca.on.ca/˜watt

50 Watt Transgressive Computing

Full papers 51

Chapter 2

Full papers

52 Transgressive Computing

A computational method to obtain the law of the nilpotent lie algebras ... 53

A computational method to obtain the law of the nilpotent lie

algebras gn

Juan Carlos Benjumea Juan Núñez Ángel F. Tenorio

Abstract

In this paper we study the law of the Lie algebras gn associated with a particular
type of Lie groups: the Lie groups Gn formed by all the n×n upper-triangular matrices
with ones in the main diagonal. The Lie algebras gn are formed by all the n×n upper-
triangular matrices with zeros in the main diagonal. We compute their laws by using a
computational algorithm, which we have constructed and particularly implemented in
MAPLE V c©.

2000 Mathematics Subject Classification: Primary 17–08, 17B30; Secondary 68W30.

Key words and phrases: nilpotent Lie algebra, law of Lie algebra, algorithmic procedure, algebraic

programming, computer algebra.

Introduction

At present, a very studied topic in Mathematics is the relation existing between Lie groups
and Lie algebras. It is well-known that there is a unique Lie algebra associated with every
Lie group given. The construction of this Lie algebra can be made by using the left-invariant
differentiable vector fields (see [9], for example). On the other hand it is possible to obtain a
Lie group associated with a given finite-dimensional Lie algebra (see Theorem 3.17.8 in [9]).
Note, however, that it does not occur in infinite dimension, where there exist Lie algebras
which are not associated with Lie groups (see [10]).

Besides, the existence of a Lie group associated with a given Lie algebra does not imply
the uniqueness of such a Lie group. Indeed, such a Lie group is not unique. In page 42 of
[7] it is proved that the Lie algebra associated with a given Lie group and its connected
component of the identity are isomorphic each other. A more restrictive condition over the
Lie group has to be imposed to assert the uniqueness of the Lie group associated with the
given Lie algebra.

In this way, Lie’s Third Theorem (and its converse) states that there exists a unique,
up to isomorphism, simply connected Lie group associated with a given Lie algebra (see
Theorem 2.8.2 in [9]). As a consequence, Lie’s Third Theorem and its converse set a uniquely
correspondence between simply connected Lie groups and Lie algebras. A direct proof of
this result, which is known as Cartan’s Theorem, uses a geometrical construction based on
Maurer-Cartan constants and on the group of automorphisms. However, the accustomed

54 Benjumea et al. Transgressive Computing

proof in the literature is based on Ado’s Theorem (see [5]), which sets that given a Lie
algebra g, there exists a linear algebra isomorphic to it.

In this paper we study the law of the Lie algebras associated with some particular Lie
groups: the Lie groups Gn formed by all the n × n upper-triangular matrices with ones
in the main diagonal. These Lie algebras, denoted by gn, are formed by all the n × n
upper-triangular matrices with zeros in the main diagonal.

The importance of the Lie algebras gn and the Lie groups Gn lies in the following fact:
every nilpotent Lie algebra is isomorphic to a Lie subalgebra of some Lie algebra gn (see
[4]) and, analogously, every simply connected nilpotent Lie group is isomorphic to a Lie
subgroup of some Lie group Gn (see Theorem 3.6.3 in [9]).

To compute these laws, we have constructed a computational algorithm which can be
implemented in any symbolic computation package, although we have particularly used
MAPLE V c© to do it. It constitutes the main aim of this paper. Observe that the order n
of the matrices in gn is going to be the unique input data needed to obtain the law of gn.

Note that the computational study of Lie algebras has been developed throughout these
last four decades. Since the seventies of the 20th century, several authors have used algo-
rithms to study the structure of Lie algebras (see [1], for instance). Moreover, in recent
papers on this subject authors have even turned to specialized computational packages, like
MAGMA (see [3]) or GAP (see [2]) for instance. It constitutes our motivation.

The structure of this paper is the following: the first section sums up the concepts and
results used to develop and justify that algorithm, which is completely detailed in the second
section. In the next section we explain all the clusters in the programming to implement
the algorithm. Finally, some conclusions obtained from this implementation, like the time
that it takes according to different dimensions, for instance, are shown.

1 Theoretical groundwork

We recall in this section the preliminary concepts and results on Lie algebras that will be
used in the paper. For a general overview on Lie groups and Lie algebras, the reader can
consult [9]. General information about commands and programming of MAPLE V c© can
be consulted in [6] for instance.

As the Lie algebras gn will be constructed starting from their associated Lie groups Gn,
we also remind the construction of the Lie algebra associated with a given Lie group G.

The m-dimensional Lie algebra g associated with a given m-dimensional Lie group is the
vector space χ(G) formed by all the left-invariant vector fields endowed with the Lie-Poisson
bracket defined by:

[X,Y] = X ◦ Y − Y ◦X, ∀X,Y ∈ χ(G).

Each 1-dimensional vector space of left-invariant vector fields is associated with a one-
parameter subgroup of G. Indeed, by using the one-parameter subgroups, a basis of the
Lie algebra g can be obtained. Recall that a one-parameter subgroup of G is a group
homomorphism ϕ : C → G defined between the additive group C of the complex numbers
and the Lie group G.

A computational method to obtain the law of the nilpotent lie algebras ... 55

To obtain the left-invariant vector field associated with a one-parameter subgroup ϕ, it
is necessary to find all the orbits for such fields. These orbits are exactly the curves g ·ϕ(t),
for all g ∈ G. The m coordinates of these orbits are functions of the parameter t. These
coordinates can be expressed by xi(t), for i = 1, . . . ,m. The coordinates of the left-invariant
vector field associated with ϕ are obtained as the derivatives dxi

dt |t=0 , for all i = 1, . . . ,m,

and are expressed with respect to the basis of vector fields
{
∂xi
∂t

}m
i=1

.

In this paper, we consider a particular subfamily of Lie algebras of the linear algebras.
A linear (or matrix) algebra L is that whose vectors are matrices and the Lie bracket is
defined by the commutator [a, b] = a · b− b · a, for all a, b ∈ L. So, every linear Lie algebra
is a Lie subalgebra of some general linear algebra gl(C, n), formed by all the n × n square
matrices.

We consider the Lie algebras gn (with n ∈ N \ {1}) associated with the Lie group Gn
formed by n× n upper-triangular matrices with the following structure:

gn(xi,j) =

1 x1,2 x1,3 · · · x1,n−1 x1,n

0 1 x2,3 · · · x2,n−1 x2,n

0 0 1 · · · x3,n−1 x3,n
...

...
...

. . .
...

...
0 0 0 · · · 1 xn−1,n

0 0 0 · · · 0 1

. (1)

Then, the Lie algebra gn is a Lie subalgebra of gl(C, n). It was proved in [8] that there
exists a basis B = {ei,j | 1 ≤ i ≤ n − 1 ∧ i + 1 ≤ j ≤ n} in gn. Each vector field ei,j can

be expressed with respect to the generator system
{

∂
∂xi,j

| 1 ≤ i ≤ n− 1 ∧ i+ 1 ≤ j ≤ n
}

of the C∞(Gn)-module χ(Gn) in the following way:

ek,j =
∂

∂xk,j
+
k−1∑

h=1

xh,k
∂

∂xh,j
. (2)

The law of the Lie algebra gn with respect to this basis is the following:

[ei,h, eh,k] = ei,k,

i = 1, . . . , n− 1;
h = i+ 1, . . . , n− 1;
k = h+ 1, . . . , n.

As many the vectors of the previous basis B as the law of the Lie algebra gn with respect
to B will be computed in the algorithm which we show in the next section.

2 The algorithm to compute the law of gn

We devote this section to construct and to implement with MAPLE V c© the algorithm
which allows to compute the law of the Lie algebra gn, with n ∈ N \ {1}. The only input
data needed will be the order n of the matrices of the Lie algebra gn.

56 Benjumea et al. Transgressive Computing

Step 1. Firstly, it is necessary to determine the dimension of gn, which will be used in
next steps. This dimension is dn =

(n
2

)
.

Step 2. The basis B of the Lie algebra gn is constructed according to the procedure given
in the previous section. So, we choose dn one-parameter subgroups of the Lie group Gn
such that their associated vector fields are linearly independent.

Step 3. According to (1), the dn one-parameter subgroups needed to obtain a basis of the
Lie algebra gn are defined as ϕi,j(t) = gn(xr,s(t)), where:

xr,s =

{
0, if (r, s) 6= (i, j);
t, if (r, s) = (i, j).

Step 4. Once the one-parameter subgroups are chosen, the products gn(xr,s) · ϕi,j(t) are
computed, for every pair (i, j) where i, j ∈ {1, 2, . . . , n} and i < j. For each pair (i, j), the
vector field associated with ϕi,j is obtained by deriving the resulting coordinates in these
products with respect to the parameter t in t = 0.

Step 5. Finally, all the brackets products are computed starting from the previously
obtained basis. In this way, the final output data of the algorithm are the nonzero Lie
brackets in the law of gn, with respect to the basis calculated before. Note that this basis
is an intermediate output in the algorithm.

3 Implementing the algorithm with MAPLE V c©

To make easier the implementation of the algorithm with MAPLE V c©, we are going to
consider it divided into several steps.

Firstly, we start loading the package linalg to active the commands related to Linear
Algebra. Remind that Lie algebras are vector spaces with a second structure: the Lie-
Poisson bracket.
> restart:with(linalg):

To start running the algorithm, we need to input the order n of the matrices in gn.
Starting from this data, it is very easy to compute the dimension of gn, which is the output
denoted by r. In this way, Step 1 of the algorithm is finished.
> n:=8:

> r:=n*(n-1)/2;

In Step 2, we will construct the r one-parameter subgroups of Gn. To do it, we define a
r-dimensional vector A. The coordinates of A are the complex coordinates in a global chart
of the Lie group Gn. The output r is used to construct the vector A.
> A:=matrix(1,r):

for i from 1 to r do

A[1,i]:=a.i:

od:

A computational method to obtain the law of the nilpotent lie algebras ... 57

The following cluster constructs the previously mentioned global chart of Gn. So the
matrices of Gn are defined starting from the coordinates of A, row by row. To do it, we
consider a loop which allows us to define each row in the matrix. Inside this loop we program
other two loops to define each row in the matrix. The first one defines the elements in the
row before the main diagonal and the second one, the elements after the main diagonal. The
main diagonal is defined in the sentence F[j,j]:=1 inside of the main loop of the cluster.
> F:=matrix(n,n):

> for j from 1 to n do

for k from 1 to j-1 do

F[j,k]:=0:

od:

F[j,j]:=1:

for k from 1 to n-j do

F[j,j+k]:=A[1,k+sum(n-s,s=1..j-1)]:

od:

od:

At this point we start to program Step 3. We construct the r one-parameter subgroups
which will determine later the r linearly independent left-invariant vector fields in gn. In
this way, we define these one-parameter subgroups by means of two nested loops. They
will allow us to define the one-parameter subgroups by indicating the row and the column
in which the parameter is. In this way, the one-parameter subgroups can be defined and
determined. However, other two nested loops are needed inside of the previous two nested
loops. These two new loops serve to define all the terms in the n × n matrix of the one-
parameter subgroup. To determine its elements, all of them will be defined as zero, except
the located in the main diagonal, which will be defined as ones. Once all the elements in
the matrix are defined, we redefine the term determined by the pair (h,i) as the parameter
t.
> for h from 1 to n-1 do

for i from h+1 to n do

Phi.h.i:=matrix(n,n):

for j from 1 to n do

for k from 1 to n do

Phi.h.i[j,k]:=0:

od:

Phi.h.i[j,j]:=1:

od:

Phi.h.i[h,i]:=t:

od:

od:

In Step 4, we program a cluster which computes the left-invariant vector field associated
with each one-parameter subgroup defined in the previous step. To do it, we compute the
orbits gn(xr,s) · ϕi,j(t) for each one-parameter subgroup ϕi,j(t). These orbits are denoted
by M.h.i and the associated vector field Y.h.i can be obtained by deriving the terms of

58 Benjumea et al. Transgressive Computing

M.h.i with respect to t and by substituting t = 0.
> for h from 1 to n-1 do

for i from h+1 to n do

M.h.i:=evalm(F&*Phi.h.i):

Y.h.i:=M.h.i:

for j from 1 to n do

for k from j to n do

Y.h.i[j,k]:=unapply(diff(unapply(M.h.i[j,k],t)(t),t),t)(0):

od:

od:

od:

od:

The following cluster reorders the vector fields obtained in the previous one. Instead of
depending on two subindices, we search that they depend on a unique subindex. This is
got with the following sentences:
> for h from 1 to n-1 do

for i from h+1 to n do

if h=1 then

X.(i-1):=Y.h.i:

else X.(i-h+sum(n-s,s=1..h-1)):=Y.h.i:

fi:

od:

od:

Although we have computed a basis of gn, these vector fields are expressed as matrices.
However, working with the vector expression of these fields is computationally more useful.
This is then the objective of the following cluster.

So, we program a cluster which rewrites these vector fields. In this way, each vector
field goes on from a n× n matrix expression to a r-dimensional vector expression.
> for l from 1 to r do

Z.l:=matrix(1,r):

for j from 1 to n-1 do

for k from j+1 to n do

if j=1 then

Z.l[j,k-1]:=X.l[j,k]:

else Z.l[1,k-j+sum(n-s,s=1..j-1)]:=X.l[j,k]:

fi:

od:

od:

od:

The following loop returns the remaining intermediate outputs: the vector expression
of each vector field in the basis of gn.
> for l from 1 to r do

print(cat(‘Z‘,l,‘=‘),Z.l);

A computational method to obtain the law of the nilpotent lie algebras ... 59

od:

In the next cluster the Lie-Poisson bracket is defined. For it, we construct the command
cor, which will depend on two arguments. These arguments are the subindices of the vector
fields multiplied in the bracket, in the the same indicated order.
> cor:= proc(i,j)

local h,producto:

producto:=array(1..r):

for h from 1 to r do

producto[h]:= sum(’Z.i[1,k]*diff(Z.j[1,h],a.k)-Z.j[1,k]

*diff(Z.i[1,h],a.k)’,’k’=1..r):

od:

producto

end:

Finally, we program a cluster which implements Step 5 in the algorithm. This last
cluster determines the nonzero brackets in the law of gn and it is based on the following
procedure:

For each bracket, the program studies if this is nonzero. To decide this, a variable m

is considered in the cluster. For each bracket, if a coordinate is nonzero, the variable m

is increased in one unit. In this way, the nonzero brackets are those which m is not equal
to zero. Besides, to decide what is the result of such a nonzero bracket, we determine the
coordinate equalled to 1 in the bracket. Remember that each vector field of the basis of
gn is determined by the coordinate equal 1 (see (2)). In this way, we obtain, as the final
outputs, the brackets such that m is nonzero; that is, the nonzero brackets in the law of gn.
> for i from 1 to r-1 do for j from i+1 to r do

m:=0:

for k from 1 to r do

if cor(i,j)[k]<>0 then m:=m+1 fi:

od:

if m<>0 then

for k from 1 to r do

if cor(i,j)[k]-1=0 then

print(cat(‘[Z‘,i,‘,Z‘,j,‘]=Z‘,k)):

fi:

od:

fi:

od:

od:

4 Some final conclusions

The implementation of the algorithm shown in this paper allows us to compute the law of
the Lie algebra gn starting from the order n of the matrices in gn. Indeed, we obtain all

60 Benjumea et al. Transgressive Computing

the nonzero brackets in the law as the final outputs. Besides, we obtain other intermediate
outputs: the dimension and a basis of gn.

The algorithm have been implemented with MAPLE V c© in a computer Pentium IV 2.5
GHz and 256 MB of RAM. In the following table, we show the computational time and the
memory used to return the outputs:

Input Dimension Computational Used
(order n) of gn time memory

2 1 0 s 0 B

3 3 0 s 832 KB

4 6 0.25 s 1.31 MB

5 10 1.3 s 1.44 MB

6 15 7.8 s 1.50 MB

7 21 37.2 s 1.62 MB

8 28 144 s 1.69 MB

9 36 486.1 s 1.87 MB

10 45 1449.7 s 2.00 MB

It can be observed that we have computed the basis of gn for n up to and including 10.
Starting from n = 8, the time running the computer increases two or three times when the
order n increases one unit. So, for n = 10, the program runs 24 minutes approximately to
compute the law of g10. However, it is convenient to note that most computational time
needed to run the algorithm corresponds to decide if each bracket is nonzero in the law of
gn.

Note also that in this paper we have only considered matrices of order less than 11,
because the Lie groups gn needed to obtain minimal representations of 6-dimensional simply
connected nilpotent Lie algebras are those whose order n is less than 7. Besides, to obtain
all the conjugacy classes in the Lie groups Gn, we think convenient to translate this problem
to the associated Lie algebras. In this way, obtaining an algorithm which allows to compute
the law of the Lie algebras is a first step to study such conjugacy classes.

References

[1] R. E. Beck and B. Kolman. Computers in Lie algebras. I. Calculation of inner multi-
plicities. SIAM J. Appl. Math. 25 (1973), 300–312.

[2] J. Draisma. Constructing Lie algebras of first order differential operators. Journal of
Symbolic Computation 36:5 (2003), 685–698.

[3] W. A. de Graaf. Classification of Solvable Lie Algebras. Experimental Mathematics
14:1 (2005), 15–25.

[4] W. Fulton and J. Harris. Representation theory: a first course. Springer-Verlag, New
York, 1991.

A computational method to obtain the law of the nilpotent lie algebras ... 61

[5] N. Jacobson. A note on automorphisms and derivations of Lie algebras, Proc. Amer.
Math. Soc. 6 (1955), 281–283.

[6] D. Redfern. The Maple handbook: MAPLE V release 4. Springer-Verlag, 1996.

[7] M. Postnikov. Lie groups and Lie algebras. Lectures in Geometry V, “Nauka”, Moscow,
1994.

[8] A. F. Tenorio. Grupos de Lie asociados a álgebras de Lie nilpotentes. Ph.D. thesis.
Universidad de Sevilla, 2003.

[9] V. S. Varadarajan. Lie Groups, Lie Algebras and Their Representations. Springer, New
York, 1984.

[10] W. T. van Est and T. J. Korthagen. Non-enlargeable Lie algebras. Neederl. Akad.
Wetensch. Proc. A26 15-31 (1964).

Juan Carlos Benjumea
Department of Geometry and Topology

University of Seville
jcbenjumea@us.es

Juan Núñez
Department of Geometry and Topology

University of Seville
jnvaldes@us.es

Ángel F. Tenorio
Department of Economics, Quantitative Methods and Economic History

Pablo de Olavide University at Seville
aftenvil@upo.es

62 Benjumea et al. Transgressive Computing

Colored partitions and dynamical systems 63

Colored partitions and dynamical systems

Farida Benmakrouha Christiane Hespel

Abstract

We study the validation of a family (Bk) of bilinear system, global modelling of an
unknown dynamical system (Σ).
Two formal power series in noncommutative variables are used for describing (Σ) : the
generating series for the system’s behavior (G) and the Chen series for the system’s
input. The family (Bk) of bilinear systems is described by its rational generatrice series
(Gk) such that the coefficients of (G) and (Gk) coincide up to order k.
Computing and bounding these coefficients, we propose an estimation of the error due
to approximations by (Bk). This error computation is a sum of differential monomials
in the input functions and behavior system. This error computation allows one to better
measure the impact of noisy inputs on the convergence of (Bk).

Introduction

The model validation is a crucial problem in system identification[2]. It measures confidence
in the model to reproduce the behavior of a dynamic system, under some hypothesis.
In a discret-time approach, the model validation is really an invalidation since it determines
wether a discret sample input-output is inconsistent with the model[3].
In [4], the authors develop new methods for validation of continuous-time non-linear sys-
tems. They use Barrier certificates whose existence prove inconsistency of a model, from
experimental data.
To validate a continuous-time model of an unknown dynamic system [1], we propose an
exact symbolic computation of coefficients of rational power series. We use a deterministic
model (versus probabilistic one) by considering that data noises are bounded.
So, the purpose of this paper is to apply combinatorial techniques for computing coefficients
of rational formal series (Gk) in two noncommutative variables and their differences at order
k and k-1.
This in turn may help one to study validation of a family (Bk) of bilinear systems, described
by the series (Gk) and global modeling of an unknown dynamical system (Σ).
Computing and bounding these differences, we propose an estimation of the error due to
approximations by (Bk). This error computation is a sum of differential monomials in the
input functions and behavior system. We identify each differential monomial with its col-
ored multiplicity and analyse our computation in the light of the free differential calculus.
This error computation allows one to better measure the impact of noisy inputs on the

64 Benmakrouha et al. Transgressive Computing

convergence of (Bk). Indeed, one can determine the contribution of the inputs and of the
system in the error computation.

1 A local modeling of the unknown system

The problem consists in modeling an unknown dynamic system (Σ) for t ∈ [0, T] =⋃
i∈I [ti, ti + d], when knowing some correlated sets of input/output.

We construct a behavioral model, based on the identification of its input/output functional
(the generating series), in a neighborhood of every ti, up to a given order k [1, 6]. At once
a local modeling by a bilinear system (Bi)k around every ti is provided. Then a family
((Bi)i∈I)k, global modeling of the unknown system is produced, such that the outputs of
(Σ) and ((Bi)i∈I)k coincide up to order k.

2 The bilinear system

We consider a certain class (GP) enclosing the electric equation

y(1)(t) = f(y(t)) + u(t) (1)

where u(t) is the input function
Σ, the unknown system is an affine system.
In this case, equation (1) can be written

(Σ)

{
ẋ = A0(x) +A1(x)u(t)

y(t) = x(t)

• u(t) is the real input

• x(t) is the current state

• A0 = a(0) d
dx where a(0) = f(x)|x(0)

• A1 = d
dx

The class (GP) encloses the nonlinear differential equation relating the current excitation
i(t) and the voltage v(t) across a capacitor [11]

v(1) + k1v + k2v
2 = i(t)

Let a(i) = f (i)(x)|x(0)
We notice that the fundamental formula [11]provides the following bilinear system (Bk),
approximating at order k :

{
ẋk(t) = (M0 +M1u(t))xk(t)
yk(t) = λxk(t)

Colored partitions and dynamical systems 65

where λ = (x(0) 1 0 · · · 0)

xk(0) =

1
0
...
0

M0 = (Cz0zk
1
) (resp M1 = (Czk+1

1
)) expressed in basis (Czk

1
) where Cw is the column of

Hankel matrix, indexed by w.

M0 =

0 0 0 · · · 0

a(0) a(1) a(2) · · · a(k)

0 a(0) 2a(1) · · · 0

0 0 a(0) · · · 0
...

...
...

...
0 0 0 · · · 0

M1 =

0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 0

So, at order k, we obtain the ith derivative of the state vector x as a function of the

previous ones. Our solution consists of two steps : to compute x
(k−n+i)
(k−n)k (0) and to compute

the difference of the ith derivative x
(i)
2k (0)− x(i)

2(k−1)(0).

3 First step : Computation of x
(k−n+i)
(k−n)k (0)

By derivating and term’s regrouping, we can show that :

x
(k−n+i)
(k−n)k (0)

=
min(i+1,k−1)∑

m=1

a(m)
k−n−1∑

l=1

„
k − n− l +m− 1

m

«
(a(0) + u(0))l−1x

(k−n−l+m+i−m)
(k−n−l+m)k

(0)

+
i+1∑

m=1

u(m)
k−n−2∑

l=1

„
k − n− l + i

m

«
(a(0) + u(0))l−1x

(k−n−l+i−m)
(k−n−l)k (0) + δm(i+1)

(
„
n
m

«
= 0 if n < m)

We analyze now these equations in the light of the free differential calculus. Considering

66 Benmakrouha et al. Transgressive Computing

the derivative a(i) and u(i) specialized in time t=0 as differential letters, it is clear that our
computation is a sum of differential monomials in a and u.

3.1 Colored partitions and multiplicities

A number partition or multiplicity is a sequence µ = (µ1, µ2, µ3, · · ·) (often written as
1µ12µ23µ3 · · ·) of nonnegative integers. On a single letter a, the differential monomials
become :

aµ = (a(i1))e1(a(i2))e2 · · · (a(iq))eq , 1 ≤ i1 < i2 < . . . iq

Such a monomial is indexed by the following partition [12] :

µ = (i
µi1
1 i

µi2
2 · · · iµiq

q)

Let C = {a, u} be a set of two colors. We call colored partition on C an element of the
free monoid generated by the cartesian product N × N i.e. any finite sequence of couples
of nonnegative integers

µ = ((µa1, µ
u
1), (µa2, µ

u
2), · · ·)

So, a colored partition µ will denote the differential monomial

aµ = (a(i1))e1 · · · (a(ip))ep(u(j1))f1 · · · (u(jq))fq

1 ≤ i1 < i2 < . . . ip, 1 ≤ j1 < i2 < . . . jq

where el (resp fl) = µail (resp µujl). The weight and the size of µ are defined as follows :

wgt(µ) =
∑

c

∑

k

k.µck

size(µ) =
∑

c

∑

k

µck

The empty partition is noted ǫ.
If L is the set of colored partitions, we define a partial order ≪ on L :

ν = {(νai , νui)} ≪ µ = {(µai , µui)}

if
νai ≤ µai and νui ≤ µui ∀i

L, with this partial ordering forms a Young lattice. [13]
We consider now Bi a subset of L defined by :

{µ/wgt(µ) = i}

and we note I(µmax) the order ideal generated by µmax, if

µmax = max(µ/µ ∈ Bi)

Colored partitions and dynamical systems 67

3.2 Combinatorial analysis of our computation

Let us now interpret combinatorially our computation by identifying each differential mono-
mial with its colored multiplicity. The recursive relation is captured by the operation :

µmax ⊙ c =
∑

ν∈I(µmax)

wgt(ν)=j≤i

c(i−j+1).ν

By factorizing according to the colored partitions, we get :

x
(k−n+i)
(k−n)k =

∑

c

∑

ν∈I(µmax)

wgt(ν)=j≤i

c(i−j+1).ν.g1
(c(i−j+1)ν)

where :

gl
a(m)ν

= (a(0) + u(0))m+1
nl+m∑

p=m

„
l
m

«
gpv

and

gl
u(m)ν

= (a(0) + u(0))m−1
nl∑

p=1

„
l + i+ 1

m

«
gpv

with n1 = k − n− 1, nl = l ∀l > 1

gǫ = 1

3.3 Computation of x
(k−n+i)
(k−n)k (0)

We consider now permutations of a colored partition µ on an alphabet X =
⋃
c∈C Xc. A

permutation [13] of µ is a word in which each letter belongs to X and for each xi ∈ X, the
total number of appearances of xi in the word is µci , for some c ∈ C
Let us note π = ξ1ξ2 · · · ξsize(µ) a permutation of µ and σµ the set of permutations of µ.

Since, our alphabet Xa = {a(p)|p = 1,min(k − 1, i + 1)},and Xu = {u(p)|p = 1, i + 1)}
ξj = c(ij), for some c,ij .

x
(k−n+i)
(k−n)k is a linear combination of monomial yλ1

1 · · · yλn
n (yi ∈ Xa

⋃
Xu) and all distinct

monomials obtained from it by a permutation of variables.
We get finally , if s = (

∑
j j| µuj 6= 0) and r =size(µ)

x
(k−n+i)
(k−n)k =

∑

wgt(µ)=i+1

µ.(a(0) + u(0))k−n+i−r−s gnµ

gnµ =
∑

π∈σµ

A1

r∏

j=2

Aj + b

68 Benmakrouha et al. Transgressive Computing

where:

Aj =

∑mj−1+ij
mj=ij

„
mj

ij

«
if ξj = a(ij)

∑mj−1

mj=1

„
mj + i− j + 2

ij

«
if ξj = u(ij)

A1 =

∑k−n−2+m
m1=m

„
m1

i1

«
if ξ1 = a(i1)

∑k−n−2
mj=1

„
m1 + i+ 1

i1

«
if ξ1 = u(i1)

and b = 1 if ξ1 = u(i+1), 0 otherwise.

Remark : x
(k−n+i)
(k−n)k is not a symmetric polynomial even if its structure is the same, be-

cause input and system contributions are different.

4 Second step: Computation of x
(k+i)
2k (0)− x

(k+i)
2(k−1)(0)

The first derivative coincide up to order k-2, but at order k-1, we have

x
(k−1)
2k − x(k−1)

2(k−1) = 0 and x
(k−1)
jk − x(k−1)

j(k−1) 6= 0.

Let M (resp P) the set of partitions on the single letter a (resp u)
Wi a subset of M defined by

{ν|1 ≤ size(ν) ≤ i+ 2}

Vi a subset of P defined by

{λ|size(λ) = ⌊ i
2
⌋ , wgt(λ) ≤ i− 2 or λ = u(i−2) or λ = u(i−1)}

and Sl a subset of L defined by
{µ|wgt(µ) = l}

We define now an operation ∇ : M × P × L 7→ L

∇(ν, λ, µ) = ((νi + µai , λi + µci))i

and a subset Pt of L ∀0 ≤ t ≤ i

Pt = {τ = ∇(ν, λ, µ)| µ ∈ St, λ ∈ Vi, ν ∈Wi, wgt(τ) = k + i− 1}

We obtain, by a straightforward computation :

x
(k+i)
2k − x(k+i)

2(k−1) =
∑

∇(ν,λ,µ)∈Pt
0≤t≤i

∇(ν, λ, µ) hν .fλ.g
1
µ.(a

(0) + u(0))k+i−2−r1−s

where

fλ =
∑

π∈σλ

size(λ)∏

l=1

„
k + i− 2l

k + i− 2l − ij

«

Colored partitions and dynamical systems 69

hν =

{ ∑
π∈σ1

ν

∏r−2
j=1

„
ij + ij+1 − 1

ij+1

« „
k − 2
ir

«
if size(ν) 6= 1

1 if size(ν) = 1

with r = size(ν), r1 = r + size(µ), s = (
∑

j j|µuj 6= 0) π = ξ1ξ2 · · · ξr, ξj = c(ij), g1
µ defined

previously.

σ1
ν = {π ∈ σν |π 6= ν1.µ, size(ν1) < size(ν) and π 6= (a(1))r−1.ξr}

Taking into account that y
(i)
k (0) = x

(i)
2k (0), we obtain a right computation of the output’s

difference at order k and k-1. By majorization of these output’s differences, and when k
tends towards infinity, we get an overestimation of the error due to approximation by the
(Bk)

5 Conclusion

The validation which is presented in this paper is not statistical. It consists in valuing the
convergence of a bilinear models family (Bk) on the unknown system (Σ) by an effective
symbolic computation. It displays the respective contributions of the input and of the
system itself.
More than a symbolic validation, these computing tools are parameterized by the input and
the system’s behavior. They can particularly provide a valuation process for rough and
oscillating inputs as well as for smooth inputs.

References

[1] F. Benmakrouha, C. Hespel, G. Jacob, E. Monnier Algebraic Identification algorithm
and application to dynamical systems CASC’2001,The 4th International Workshop on
Computer Algebra in Scientific Computing

[2] B.Ninness, G C.Goodwin Estimation of Model Quality10th IFAC Symposium on Sys-
tem Identification, Copenhagen July 1994.

[3] Lennart JLjung The role of model validation for assessing the size of the unmodeled
dynamics IEEE Transactions on automatic control, Vol 42, No 9, September 1997.

[4] Stephen Prajna Barrier certificates for nonlinear models Technical report, California
Institute of Technology.

[5] A.Juditsky, H.Hjalmarsson, A.Benveniste, B.Delyon, L.Ljung, J.Sjoberg, Q.Zhang,
Nonlinear black-box modeling in system identification:mathematical foundations, Au-
tomatica, 31, 1995.

[6] Benmakrouha F., Hespel C., Jacob G., Monnier E., A formal validation of Algebraic
Identification algorithm: example of Duffing equation, IMACS ACA’2000, Saint Pe-
tersburg, june 25-28, 2000.

70 Benmakrouha et al. Transgressive Computing

[7] Fliess M., Fonctionnelles causales non linaires et indtermines non commutatives, Bull.
Soc. Math. France 109, pp. 3-40, 1981.

[8] Fliess M., Sur certaines familles de séries formelles, Thèse d’état, Université de Paris
7, 1972.

[9] Hespel C., Une étude des séries formelles non commutatives pour l’Approximation et
l’Identification des systèmes dynamiques, Thèse d’état, Université de Lille 1, 1998.

[10] Benmakrouha F., Hespel C., Monnier E. “Comparison of Identification Methods based
on Fuzzy Systems and on Algebraic Model” 2001 WSES International Conference on
Fuzzy sets and Fuzzy Systems, Tenerife, Feb. 2001.

[11] M. Fliess, M.Lamnabhi, F. Lamnahbi-Lagarrigue An Algebraic approach to nonlinear
functional expansions IEEE Trans. Circuits and Systems, vol. CAS-30, n0 8,1983, .
554-570.

[12] I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2d ed., Oxford Science
Publications, 1995.

[13] G.E. Andrews The theory of Partitions Encyclopedia of Mathematics and its applica-
tions, Addison-Wesleys, 1984

Benmakrouha Farida
Computer Science Department

INSA Rennes
benma@irisa.fr

Hespel Christiane
Computer Science Department

INSA Rennes
hespel@irisa.fr

A Tikhonov-Regularization method for the reconstruction of blurred and ... 71

A Tikhonov-Regularization method for the reconstruction of

blurred and noisy images

Abderrahman Bouhamidi Khalid Jbilou

Abstract

In the present paper, we consider a Tikhonov regularization method for large ill-
conditioned linear systems. Such a problem arises for example in image restoration
where the computation of a stable solution with classical methods is expensive. In
some cases the matrix of the linear system may be approximated by Kronecker prod-
ucts and then Tikhonov regularization problem leads to linear matrix equations such as
generalized Sylvester equations. We use the global GMRES method which is an orthog-
onal projection method onto a matrix Krylov subspace to solve the obtained Sylvester
equation. Some numerical examples in image restoration are given to illustrate the
effectiveness of our approach.

1 Introduction

Consider the linear discrete ill-posed problem

min
x
‖Hx− g‖2, (1)

where H ∈ IRM×N , x ∈ IRN , g ∈ IRM and M ≥ N . The matrix H is assumed to be very
large and of ill-determined rank, i.e., H has some singular values close to the origin.
The right-hand side vector g in (1) represents the output and is assumed to be contaminated
by a noise n, i.e., g = ĝ + n.

Such a problem arises, for example, from the discretization of ill-posed problems such as
integral equations of the first kind and image restoration [1, 5, 7, 8]. In image restoration,
the problem consists of the reconstruction of an original image that has been degraded by a
blur and an additive noise. The matrix H represents the blurring matrix, the vector x to be
approximated represents the original image, the vector n represents the additive noise and
the vector g represents the blurring and noisy (degraded) image. The well known Tikhonov
regularization replaces the problem (1) by the new one

min
x

(‖Hx− g‖22 + λ2‖Lx‖22), (2)

where L is a regularization operator chosen to obtain a solution with desirable properties
such as small norm or good smoothness. The most popular techniques for determining

72 Bouhamidi et al. Transgressive Computing

the parameter λ are the L-curve criterion [7]; see also [2, 3] and the Generalized Cross-
Validation (GCV) method [4, 6]. In image restoration, the problem (2) is generally too
large to solve exactly and iterative methods are needed. In Krylov methods, we project
(2) onto a Krylov subspace of small dimension and then we solve, at each iteration, this
small problem. Another alternative is to project the original problem (1) onto a Krylov
subspace and then apply a regularization method to the smaller projected problem. In the
present paper, we will consider the case where the matrices H and L are decomposed as
Kronecker products. Then the problems (1) and (2) are replaced by new ones involving
matrix equations such as the generalized Sylvester equation with small dimensions. To
solve these equations we use the global GMRES method introduced in [9].

Let us recall that a Kronecker product of a matrix A = (aij) of size n × p by a matrix
B = (bij) of size s × q is defined as the (ns) × (pq) matrix A ⊗ B = (aijB). Some
properties of the Kronecker product are given in [10]. The vec operator transforms the
matrix A to a vector a of size np× 1 by stacking the columns of A, namely, a = vec(A) :=
(a11, · · · , a1p, a21, · · · , a2p, · · · , an1, · · · , anp)

T . For two matrices A and B in IRn×p, we
define the following inner product 〈A,B〉F = tr(AT B) where tr(Z) denotes the trace of the
square matrix Z. The well known Frobenius norm denoted by ‖ . ‖F is ‖ A ‖F =

√
〈A,A〉F .

A system of matrices of IRn×p is said to be F-orthogonal if it is orthogonal with respect to
the scalar product 〈. , .〉F .

2 Tikhonov-Sylvester regularization

The Tikhonov regularization method is one of the most popular regularization methods.
The parameter λ is chosen to control the “smoothness” of the regularized solution and it
is called the regularization parameter. The matrix L defines a (semi)norm on the solution
[8] and it is called the regularization operator. Usually, L represents the first or the second
discrete derivative operator. The minimizer x̂ of the problem (2) is computed as the solution
of the following linear system

Hλx̂ = HT g, where Hλ = (HTH + λ2LTL). (3)

We assume that H = H2⊗H1 and L = L2⊗L1 where H1, L1 are matrices of size n×n
and H2, L2 are matrices of size p× p. In this case we have M = N = np. The problem (3)
can be expressed as

[
(H2 ⊗H1)

T (H2 ⊗H1) + λ2(L2 ⊗ L1)
T (L2 ⊗ L1)

]
x̂ = (H2 ⊗H1)

T g.

Using some properties of the Kronecker product, we obtain

(HT
1 H1)X̂(HT

2 H2) + λ2(LT
1 L1)X̂(LT

2 L2) = HT
1 GH2, (4)

where X̂ and G are the matrices of size n×p such that vec(X̂) = x̂ and vec(G) = g. Setting
A = HT

1 H1, B = LT
2 L2, C = −LT

1 L1, D = HT
2 H2, and E = HT

1 GH2, the linear matrix
equation (4) is referred to as the generalized Sylvester matrix equation and is written in
the following form

AX̂D − λ2CX̂B = E. (5)

A Tikhonov-Regularization method for the reconstruction of blurred and ... 73

3 The global-GMRES method for generalized Sylvester ma-
trix equations

In this section, we present a numerical Krylov subspace method for solving the generalized
Sylvester matrix equation

AXD − λ2CXB = E (6)

where A,C ∈ IRn×n; B,D ∈ IRp×p; E and X ∈ IRn×p.
Let Aλ be the linear operator defined from IRn×p onto IRn×p as follows

Aλ(X) = AXD − λ2CXB. (7)

Then the problem (6) can be written as

Aλ(X) = E. (8)

Let V be any n × p matrix and consider the matrix Krylov subspace associated to the
pair (Aλ, V) and to an integer k defined by Kk(Aλ, V) = span{V,Aλ(V), . . . ,Ak−1

λ (V)}.
We note that Ai

λ(V) is defined recursively as Ai
λ(V) = Aλ(Ai−1

λ (V)). Remark that the
matrix Krylov subspace Kk(Aλ, V) is a subspace of IRn×p. The modified global Arnoldi
algorithm constructs an F-orthonormal basis V1, V2, . . . , Vk of the matrix Krylov subspace
Kk(Aλ, V), i.e. 〈Vi, Vj〉F = δi,j for i, j = 1, · · · , k, where δi,j denotes the classical Kronecker
symbol. The algorithm is described as follows

ALGORITHM 1 Modified Global Arnoldi algorithm

1. Set V1 = V/‖V ‖F .
2. For j = 1, . . . , k. do

Ṽ = Aλ(Vj),
for i = 1, . . . , j. do

hi,j = 〈Vi, Ṽ 〉F , Ṽ = Ṽ − hi,jVi,
endfor

hj+1,j =‖ Ṽ ‖F , Vj+1 = Ṽ /hj+1,j .
EndFor.

Hereafter, we need some notations. Let Vk denote the n×kpmatrix: Vk = [V1, V2, . . . , Vk].
H̃k denotes the (k+ 1)× k upper Hessenberg matrix whose nonzero entries hi,j are defined
by Algorithm 1 and Hk is the k× k matrix obtained from H̃k by deleting its last row. Note
that the block matrix Vk is F-orthonormal which means that the matrices V1, . . . , Vk are
orthonormal with respect to the scalar product 〈 ., . 〉F . At step k, the approximate solution
Xk produced by the global-GMRES method is such that

Xk = X0 + Zk where Zk ∈ Kk(Aλ, R0), (9)

Rk = E −Aλ(Xk) ⊥F Aλ

(
Kk(Aλ, R0)

)
, (10)

where the notation ⊥F means the orthogonality with respect to the scalar product 〈., .〉F .
As can be seen from (9) and (10), we are dealing with an orthogonal projection method

74 Bouhamidi et al. Transgressive Computing

and then we have the minimization property

‖Rk‖F = min
X−X0∈Kk(Aλ,R0)

‖E −Aλ(X)‖F . (11)

Therefore, using the relation (9), the approximation Xk is given by Xk = X0 + Vk(yk ⊗ Ip)
where yk is the solution of the following small least-squares problem

min
y ∈ IRk

‖ ‖ R0 ‖F e1 − H̃ky ‖2, (12)

and e1 is the first unit vector of IRk+1.
In the practical implementation, we used the restarted global-GMRES(m) where m is

a chosen integer parameter. The global-GMRES(m) algorithm for solving the generalized
Sylvester matrix equation (6) is summarized as follows

ALGORITHM 2. The global-GMRES(m) for the generalized Sylvester equation

1. Choose X0, a tolerance ε and set k = 0.
Compute : R0 = E −Aλ(X0), β = ||R0||F and V1 = R0/β.

2. Construct the F-orthonormal basis V1, V2, . . . , Vm by applying Algorithm 1

to the pair (Aλ, V1).
3. Determine ym as the solution of the least squares problem:

min
y ∈ Rm

‖ β e1 − H̃my ‖2.

Compute: Xm = X0 + Vm(ym ⊗ Ip) and the corresponding residual Rm.
4. If ||Rm||F < ε Stop;

else X0 = Xm, R0 = Rm, β = ||R0||F , V1 = R0/β, k = k + 1, Goto 2.

Note that when the operator Aλ is symmetric, the matrix Hm is symmetric and tridiag-
onal and in this case the computational cost is reduced. The optimal value of the parameter
λ is determined by using the L-curve criterion or the GCV method.

4 Projection plus Tikhonv regularization

An economical approach is to project the original problem onto a Krylov subspace and
then apply Tikhonov regularization to the small projected minimization problem. Since
H = H2 ⊗H1, the initial minimization problem (1) can be expressed as

min
X∈X0+Kk(H,E)

‖G−H1XH
T
2 ‖F (13)

where the linear operator H is defined by H(V) = H1V H
T
2 and V is an n× p matrix.

To solve (13), we apply the global-GMRES method. Starting from an initial guess X0

and the corresponding residual R0, we form an F-orthonormal basis of the matrix Krylov
subspace Kk(H, R0) and get the (k + 1)× k matrix H̃k. The projected problem we wish to
solve is

min
y
‖βe1 − H̃ky‖2 (14)

A Tikhonov-Regularization method for the reconstruction of blurred and ... 75

where β = ‖R0‖F and e1 is the unit vector of IRk+1.
As the matrix H̃k may be ill-conditioned, we apply Tikhonov regularization to the

projected problem (14). Thus, we consider

min
y

(‖βe1 − H̃ky‖22 + λ2
k‖Lky‖22), (15)

where Lk is some chosen regularizing operator. Hence, we solve (15) and we compute the
approximation Xk = X0 + Vk(yk,λ ⊗ Ip) where yk,λ solves the minimization problem (15).
At each outer iteration k, an optimal value λk,opt of the parameter λ is determined by using
the GCV method. In our computations, we used the preceding algorithm in a restarted
mode. The algorithm is restarted every m iterations where m is a fixed parameter.

5 Numerical examples

In this section we give two examples illustrating our approach for computing the solution of
the linear discrete ill-posed problem (2). All computations were carried out using Matlab
6.5 on an Intel Pentium workstation with about 16 significant decimal digits. We illustrate
our method in the context of image restoration. The original image is denoted by X in
each example and it consists of 256× 256 grayscale pixel values in the range [0, 255]. Let x̂
be the vector whose entries are the pixel values of the original image X ordered row-wise
and let H represent the blurring matrix. Then the vector ĝ = Hx̂ represents the associated
blurred and noise-free image. We generated a blurred and noisy image g = ĝ+n, where n is
a noise vector with normally distributed random entries with zero mean and with variance
chosen such that ||n||/||g|| = 10−2. The original image and the noise are not available, but
the blurred and noisy image G = vec(g) together with the blurring matrix H are known.

5.1 Example 1

In this example, the original image is the corridor image. The blurring matrix H is given
by H = H2 ⊗H1 ∈ IR2562×2562

, where H1 = H2 = [hij] and [hij] is the Toeplitz matrix of
dimension 256 × 256 given by hij = 1

2r−1 for |i − j| ≤ r and hij = 0 for |i − j| > r, with
r = 10. The blurring matrix H models a uniform blur. In this example, the matrix L in
the linear discrete ill-posed problem (2) is L = L2 ⊗ L1, where L1 = I256 and L2 is the
tridiagonal matrix of size 256 × 256 given by L2 = tridiag([1, 2, 1]). The restored image
is obtained by applying the global GMRES(20) (Algorithm 2) to the problem (5). The
optimal value λopt ≃ 0.0014586 of the parameter λ is computed by using the GCV method.

In this example, the relative error was ||X−X20||F
||X||F ≃ 8.1395×10−2. The results are shown

if Figure 1.

5.2 Example 2

In the second example, we use the method described in Section 4. The original image is the
lena. The blurring matrix H is given by H = H2⊗H1 ∈ IR2562×2562

, where H1 = I256 and

76 Bouhamidi et al. Transgressive Computing

Original Image Blurred and noisy Image Restored Image with λ
opt

=0.0014586

Figure 1: Original image (left), degraded image (center) and restored image (right).

H2 = [hij] is the Toeplitz matrix of dimension 256 × 256 given by hij = 1
2r−1 exp(− |i−j|2

σ2)
for |i− j| ≤ r and hij = 0 for |i− j| > r, with r = 10 and σ = 7. At each outer iteration k,
k = 1, . . . , 10, the matrices Lk is the identity matrix. At each outer iteration k, the optimal
parameter λk,opt is computed by using the GCV method. The obtained optimal values are
λ1,opt = 2.0 × 10−2, λ2,opt = 1.2973 × 10−2, λ3,opt = 1.1892 × 10−2, λ4,opt = 8.8546 × 10−3,
λ5,opt = 9.6782×10−3 , λ6,opt = 7.0270×10−3 , λ7,opt = 8.1081×10−3 , λ8,opt = 5.9202×10−3 ,
λ9,opt = 7.0528 × 10−3, λ10,opt = 5.2252 × 10−3.

The results of this example are given in Figure 2.

Original Image Blurred and noisy Image Restored Image

Figure 2: Original image (left), degraded image (center) and restored image (right).

References

[1] C. Brezinski, M. Redivo Zaglia, G. Rodriguez and S. Seatzu, Extrapolation
techniques for ill-conditioned linear systems., Numer. Math, 81(1998) pp. 1–29.

[2] D. Calvetti, G.H. Golub and L. Reichel, Estimation of the L-curve via Lanczos
bidiagonalization, BIT, 39(1999) pp. 603–619.

A Tikhonov-Regularization method for the reconstruction of blurred and ... 77

[3] D. Calvetti, B. Lewis and L. Reichel, GMRES, L-curves and discrete ill-posed
problems, BIT, 42(2002) pp. 44–65.

[4] G.H. Golub, M. Heath, G. Wahba, Generalized cross-validation as a method for
choosing a good ridge parameter, , Technometrics 21(1979), pp 215–223.

[5] G.H. Golub, P.C. Hansen, D. P. O’Leary, Tikhonov regularization and total least
squares, SIAM J. Matrix Anal. Appl., 21(1)(1999), pp. 185–194.

[6] G.H. Golub, U. von Matt, Tikhonov regularization for large scale problems, in:
G.H. Golub, S.H. Lui, F. Luk, R. Plemmons (Eds.), Workshop on Scientific Computing,
Springer, New York, 1997, pp. 3–26.

[7] M. Hanke and P.C. Hansen, Regularization methods for large-scale problems, Sur-
veys Math. Indust., 3 (1993), pp. 253-315.

[8] P.C. Hansen and D.P. O’Leary, The use of the L-curve in the regularization of
discrete Ill-posed problems, SIAM J. Sci. Compt., 14(1993), pp. 1487-1503.

[9] K. Jbilou A. Messaoudi H. Sadok, Global FOM and GMRES algorithms for matrix
equations, Appl. Num. Math., Appl. Num. math., 31(1999), pp. 49–63.

[10] P. Lancaster, L. Rodman, Algebraic Riccati Equations, Clarendon Press, Oxford,
1995.

A. Bouhamidi
Laboratoire L.M.P.A

Université du Littoral, 50 rue F. Buisson BP699, F-62228 Calais Cedex, France.
E-mail: bouhamidi@lmpa.univ-littoral.fr;

K. Jbilou
Laboratoire L.M.P.A

Université du Littoral, 50 rue F. Buisson BP699, F-62228 Calais Cedex, France.
E-mail: jbilou@lmpa.univ-littoral.fr;

78 Bouhamidi et al. Transgressive Computing

Well known theorems on triangular systems and the D5 principle 79

Well known theorems on triangular systems and the D5

principle

François Boulier François Lemaire Marc Moreno Maza

Abstract

The theorems that we present in this paper are very important to prove the correct-
ness of triangular decomposition algorithms. The most important of them are not new
but their proofs are. We illustrate how they articulate with the D5 principle.

Introduction

This paper presents the proofs of theorems which constitute the basis of the triangular
systems theory: the equidimensionality (or unmixedness) theorem for which we give two
formulations (Theorems 1.1 and 1.6) and Lazard’s lemma (Theorem 2.1). The first section
of this paper is devoted to the proof of the equidimensionality theorem. Our proof is original
since it covers in the same time the ideals generated by triangular systems saturated by
the set of the initials of the system (i.e. of the form (A) : I∞A) and those saturated by
the set of the separants of the system (i.e. of the form (A) : S∞A). The former type of
ideal naturally arises in polynomial problems while the latter one naturally arises in the
differential context. Our proof shows also the key role of Macaulay’s unmixedness theorem
[24, chapter VII, paragraph 8, Theorem 26]. Its importance in the context of triangular
systems was first demonstrated by Morrison in [14] and published in [15]. In her papers,
Morrison aimed at completing the proof of Lazard’s lemma provided in [3, Lemma 2]. Thus
Morrison only considered the case of the ideals of the form (A) : S∞A , which are the ideals
w.r.t. which Lazard’s lemma applies. The case of the ideals of the form (A) : I∞A was
addressed in [2]. The proof of [2, Theorem 5.1] involves the same gap as that given in [3,
Lemma 2]. It was fixed in [1]. The proof provided in [1] does not explicitly use Macaulay’s
theorem but relies on the properties of regular sequences in Cohen–Macaulay rings, which
are the rings in which Macaulay’s theorem applies.

What is this gap in the proofs mentioned above ? Among all the indeterminates the
elements of a triangular system A depend on, denote t1, . . . , tm the ones which are not main
indeterminates. The proofs given in [2, Theorem 5.1] and in [3, Lemma 2] rely implicitly
on the assumption that the non zero polynomials which only depend on t1, . . . , tm are not
zero divisors modulo the ideal defined by A. This assumption is indeed true but certainly
deserves a specific proof.

In the case of the ideals of the form (A) : I∞A , let’s mention the equidimensionality result
of [19] which is not sufficient since it does not solve the problem of the embedded associated

80 Boulier et al. Transgressive Computing

prime ideals of (A):I∞A . In the case of the ideals of the form (A):S∞A , there is a simple proof
[16, 4] which unfortunately does not seem to generalize to the ideals of the form (A) : I∞A .

The second section of this paper is devoted to the proof of Lazard’s lemma. This lemma
was communicated by Lazard to the first author a few days before his PhD defense in
1994, with a sketch of proof. The proof given here is very close to the original one. As
stated above, Lazard’s lemma was first published in [3] but its first complete proof is due
to Morrison [14, 15]. Among the few other proofs published afterwards, let’s mention the
ones given in [18, 4, 8, 17].

In the remaining sections, we show how the equidimensionality theorem and Lazard’s
lemma apply to the so called “regular chains” [11, 9, 23, 2]. We last recall a few basic
algorithms which carry out a generalization of the “D5” principle [6] for regular chains and
which implictly rely on the equidimensionality theorem. Historically, the “D5” principle
suggests to compute modulo zero dimensional ideals presented by triangular systems as if
these ideals were prime (whenever a zero divisor is exhibited, the ideal is split). It is its
generalization to non zero dimensional ideals which requires the equidimensionality theorem.

Throughout this paper, K denotes a commutative field of characteristic zero.

1 The equidimensionality theorem

In the polynomial ring R = K[x1, . . . , xn, t1, . . . , tm], we consider a polynomial system
A = {p1, . . . , pn}. We assume that deg(pi, xi) > 0 and deg(pi, xk) = 0 for all 1 ≤ i ≤ n
and i < k ≤ n i.e. that A is a triangular system w.r.t. at least one ordering such that
x1 < · · · < xn and that the x indeterminates are precisely the main indeterminates of the
elements of A. The initial of a polynomial pi is the leading coefficient of pi, viewed as a
univariate polynomial in xi. The separant of pi is the polynomial ∂pi/∂xi.

In the following, h denotes either the product of the initials of all the elements of A or
the product of the separants of all the elements of A.

We are concerned by the properties of the ideal A = (A) : h∞ which is the set of all
the polynomials f ∈ R such that, for some nonnegative integer r and some λ1, . . . , λn ∈ R
we have hr f = λ1 p1 + · · · + λn pn. When h is the product of the initials of the elements
of A, the ideal A is often denoted (A) : I∞A in the literature. When h is the product of the
separants, the ideal A is often denoted (A) : S∞A .

In general, the ideal A may be the trivial ideal R (take A = {x1, x1 x2}). We assume
this is not the case.

Denote R0 = K(t1, . . . , tm)[x1, . . . , xn] the polynomial ring obtained by “moving the t
indeterminates in the base field” of R and A0 the ideal (A) : h∞ in the ring R0. Denote M
the multiplicative family K[t1, . . . , tm] \ {0} so that R0 = M−1R. Denote M/A the image
of M by the canonical ring homomorphism R → R/A. The elements of R0/A0, which is
isomorphic to (M/A)−1(R/A), have the form a/b where a ∈ R/A and b ∈ M/A. In this
section, we prove the following theorem.

Theorem 1.1. An element a ∈ R/A is zero (respectively regular1) if and only if every

1regular = not a zero divisor.

Well known theorems on triangular systems and the D5 principle 81

element a/b ∈ R0/A0 is zero (respectively regular).

Proposition 1.2. To prove Theorem 1.1, it is sufficient to prove that every element of M/A
is regular.

Proof. This is a very classical proposition. If every element of M/A is regular then R0/A0, is
a subring of the total ring of fractions of R/A [24, chapter IV, paragraph 9]. The proposition
then follows [24, chapter I, paragraph 19, Corollary 1].

Let us recall the Lasker–Noether theorem [24, chapter IV, Theorems 4 and 6].

Theorem 1.3. (Lasker–Noether theorem)
In a noetherian ring, every ideal is a finite intersection of primary ideals. Every repre-

sentation of an ideal A as an intersection of primary ideals can be minimized by removing on
the one hand the redundant primary ideals and by grouping on the other hand the primary
ideals whose intersection is itself primary. The so obtained minimal primary decomposition
of A is not uniquely defined. However, the number of its components and the radicals of its
components (the so called “associated prime ideals” of A) are uniquely defined.

All the rings considered in this section are noetherian.

Proposition 1.4. To prove Theorem 1.1, it is sufficient to prove that no associated prime
ideal of A meets M .

Proof. According to [24, chapter IV, paragraph 6, Corollary 3], if M does not meet any
associated prime ideal of A then every element of M/A is regular. Theorem 1.1 then follows
from Proposition 1.2.

Recall the definition of the dimension of an ideal.

Definition 1.5. The dimension dim p of a prime ideal p of a polynomial ring R with
coefficients in a field K is the transcendence degree of the fraction field of R/p over K. The
dimension dim B of an ideal B of R is the maximum of the dimensions of the associated
prime ideals of B.

The rest of this section is completely dedicated to the proof of the following theorem
which admits Theorem 1.1 as a corollary. This reformulation of Theorem 1.1 is often
convenient for writing proofs.

Theorem 1.6. The associated prime ideals of A have dimension m and do not meet M .

In order to apply Macaulay’s unmixedness theorem, one needs to get rid of the saturation
by h. For this, one may use the Rabinowitsch trick [20, section 16.5]. One introduces some
new indeterminate xn+1 and a new polynomial pn+1 = hxn+1 − 1. One denotes A′ the
triangular system of R′ = R[xn+1] obtained by adjoining pn+1 to A. One denotes A′ the
ideal (A′) of R′. Consider the two following canonical ring homomorphisms:

R
φ−−−→ h−1R ≃ R′/(pn+1)

π←−−− R′.

82 Boulier et al. Transgressive Computing

The isomorphism h−1R ≃ R′/(pn+1) is classical [7, Exercise 2.2, page 79]: every element
of R corresponds to itself, xn+1 corresponds to h−1. If B is an ideal of R, one denotes h−1B

or (φB) the ideal of h−1R generated by φB. If B′ is an ideal of R′ then πB′ is an ideal of
πR′ = R′/(pn+1).

Lemma 1.7. The ideal A′ is proper. If q′1 ∩ · · · ∩ q′r is a minimal primary decomposition
of A′ then φ−1(πq′1) ∩ · · · ∩ φ−1(πq′r) is a minimal primary decomposition of A.

Proof. We use the notations of extensions and contractions defined in [24, chapter IV,
paragraph 8], w.r.t. the ring homomorphism φ so that (φA) = Ae. The ideal πA′ is equal
to the ideal Ae since both ideals admit a same generating family: A. By [24, chapter IV,
Theorem 15 (a)] we have A = Aec since A = A : h∞. Therefore, since A is assumed to be
proper, so are Ae and A′.

Consider now a minimal primary decomposition q′1 ∩ · · · ∩ q′r of A′. According to [24,
chapter IV, paragraph 5, Remark concerning passage to a residue class ring], πq′1∩· · · ∩πq′r
is a minimal primary decomposition of πA′ = Ae. Since A = Aec, by [24, chapter IV,
Theorem 15 (b) and a comment just above this theorem], the associated prime ideals of A

do not meet M . By [24, chapter IV, Theorem 17] the intersection φ−1(πq′1)∩ · · · ∩φ−1(πq′r)
is a minimal primary decomposition of A.

Proposition 1.8. To prove Theorem 1.6, it is sufficient to prove that the associated prime
ideals of A′ have dimension m and do not meet M .

Proof. Let p′ be an associated prime ideal of A′ and p = φ−1(πp′) the corresponding
associated prime ideal of A according to Lemma 1.7. Let a be an element of the subring R
of R′. Then a ∈ p′ if and only if a/1 ∈ πp′ and a/1 ∈ πp′ if and only if a ∈ p. Therefore,
if p′ does not meet M then p does not either and dim p ≥ m. If moreover dim p′ =
m then x1, . . . , xn must depend algebraically on t1, . . . , tm modulo p′ hence they depend
algebraically on t1, . . . , tm modulo p and dim p ≤ m. Combining both inequalities, one
concludes that dim p = m.

One distinguishes two sorts of prime ideals associated to an ideal A: the isolated or
minimal ones and the embedded or imbedded ones. An embedded associated prime ideal
of A is an associated prime of A which contains another associated prime ideal of A. In
the context of polynomial rings, its algebraic variety is included (embedded) in that of
the associated prime ideal that it contains. One thus sees that, at least in the context
of polynomial rings, it is much easier to get informations on the minimal associated prime
ideals (they correspond to the irreducible components of the algebraic variety of the ideal [24,
chapter VII, paragraph 3, Corollary 3 to Hilbert’s Nullstellensatz]) than on the embedded
associated prime ideals, which have no such simple geometric meaning (see however [7,
section 3.8] for a geometric interpretation of embedded primes). In our case, the problem
of the minimal associated prime ideals is easily solved by Lemma 1.10. The problem of the
embedded associated prime ideals is solved by a difficult theorem: Macaulay’s unmixedness
theorem. Recall Krull’s principal ideal theorem [24, chapter VII, Theorem 22].

Well known theorems on triangular systems and the D5 principle 83

Theorem 1.9. (principal ideal theorem)
If a proper ideal A of a ring R = K[x1, . . . , xn] admits a generating family formed of k

elements (1 ≤ k ≤ n) then dim A ≥ n− k.

Let us come back to our study of the ideal A′ of R′.

Lemma 1.10. The dimension of A′ is m. Moreover, none of the m–dimensional associated
prime ideal of A′ meets M .

Proof. Consider an associated prime ideal p′ of A′.
First consider the case of h being the product of the initials of the elements of A. Then

none of these initials belongs to p′ (otherwise p′, which contains hxn+1 − 1 would also
contain 1). Thus x1, . . . , xn+1 are algebraically dependent on t1, . . . , tm over K in R′/p′

(the polynomials of A′ cannot degenerate at all).
Consider now the case of h being the product of the separants of the elements of A. Let

pℓ = ad x
d
ℓ + · · ·+a1 xℓ+a0 be any element of A′. Since its separant sℓ = d ad x

d−1
ℓ + · · ·+a1

does not belong to p′ (otherwise p′, which contains hxn+1 − 1 would also contain 1), at
least one of the coefficients ad, . . . , a1 does not belong to it2. Thus x1, . . . , xn+1 are alge-
braically dependent on t1, . . . , tm over K in R′/p′ (the polynomials of A′ cannot completely
degenerate).

In both cases, x1, . . . , xn+1 are algebraically dependent on t1, . . . , tm over K in R′/p′.
One then concludes, first that dim p′ ≤ m hence dim A′ ≤ m, second that if dim p′ = m
then p′ ∩M = ∅. The ideal A′ admits a basis made of n + 1 elements in a polynomial
ring in n +m + 1 indeterminates. According to the principal ideal theorem, dimA′ ≥ m.
Combining both inequalities, one concludes that dimA′ = m.

Let us recall Macaulay’s unmixedness theorem [24, chapter VII, Theorem 26].

Theorem 1.11. (Macaulay’s unmixedness theorem)
If a proper ideal A of a polynomial ring R = K[x1, . . . , xn] admits a basis made of

k elements (1 ≤ k ≤ n) and if dimA = n − k then all its associated prime ideals have
dimension n− k.

The following proposition, combined to Proposition 1.8, concludes the proof of Theo-
rem 1.6 hence that of Theorem 1.1.

Proposition 1.12. The associated prime ideals of A′ have dimension m and do not meet M .

Proof. The ideal A′ admits a basis made of n+1 elements in a polynomial ring in n+m+1
indeterminates. According to Lemma 1.10, its dimension is m. According to Macaulay’s
unmixedness theorem, all its associated prime ideals have dimension m. According to
Lemma 1.10 again, none of these prime ideals meets M .

Let us state a few easy corollaries to Theorem 1.1.

Corollary 1.13. The minimal primary decomposition of A is uniquely defined.

2The characteristic zero hypothesis is used here.

84 Boulier et al. Transgressive Computing

Proof. By Theorem 1.6, the ideal A has no embedded associated prime ideal. The corollary
then follows [24, chapter IV, paragraph 5, Theorem 8].

Corollary 1.14. Theorems 1.1 and 1.6 hold if A is replaced by any ideal (A) : S∞ where
S is any subset of R containing h, provided that (A) : S∞ is proper.

Proof. The ideal (A) : S∞ is the intersection of the primary components of (A) : h∞ which
do not meet the multiplicative family generated by S. Since the primary components of
(A) : h∞ do not meet M , the primary components of (A) : S∞ do not meet M either
and, Theorem 1.6 holds for this ideal also. Theorem 1.1 follows from Theorem 1.6 and
Proposition 1.4.

Corollary 1.15. Every regular element of R0/A0 is invertible.

Proof. Still a well known theorem. By Theorem 1.6, the ideal A0 has dimension zero. By [24,
chapter VII, paragraph 7], the associated prime ideals of A0 are maximal. The ideal A0 is
thus contained in finitely many prime ideals. There is a bijection [24, chapter III, Theorem
7] between the ideals of R0 which contain A0 and the ideals of R0/A0. This bijection maps
prime ideals to prime ideals [24, chapter III, Theorem 11]. The ring R0/A0 thus involves
only finitely many prime ideals p1, . . . , pr which are the associated primes of (0). Assume
a ∈ R0/A0 is regular. By [24, chapter IV, paragraph 6, Corollary 3], the element a belongs
to none of the ideals p1, . . . , pr. The ideal generated by a must contain 1 since it would
otherwise have associated prime ideals all different from p1, . . . , pr and there are no such
prime ideals. Thus there exists some ā ∈ R0/A0 such that a ā = 1 and a is invertible.

Corollary 1.16. Let 1 ≤ i ≤ n be an index. Denote Ai = {p1, . . . , pi}. If h is the product
of the initials of A, denote hi the product of the initials of the elements of Ai otherwise,
denote hi the product of the separants of the elements of Ai. Denote Ai = (Ai) : h∞i . Let
a ∈ R be any polynomial. If a is regular in Ri/Ai then a is regular in R/A.

Proof. Denote R0,i = K(t1, . . . , tm)[x1, . . . , xi] and A0,i = (Ai) : h∞i in R0,i. Assume a is
regular in Ri/Ai. Then, by Theorem 1.1 and Corollary 1.15, there exists some ā ∈ R0,i such
that a ā− 1 ∈ A0,i. Since R0,i ⊂ R0 and A0,i ⊂ A0, we have a ā− 1 ∈ A0 and a is invertible
in R0/A0. By Theorem 1.1 again, a is regular in R/A.

2 Lazard’s lemma

In this section, we keep the notations of section 1 but we restrict ourselves to the case of h
being the product of the separants of the elements of A. The ideal A = (A) : h∞ is often
denoted (A) : S∞A in the literature. It is assumed to be proper.

Theorem 2.1. (Lazard’s lemma)
The ideal A is radical.
The minimal prime ideals of A have dimension m and do not meet M .

Well known theorems on triangular systems and the D5 principle 85

Before proceeding, let us consider the basic case of a system A made of a single poly-
nomial p1 = t1 (x1 − 1)3 (x1 − 2). Then the separant h = t1 (x1 − 1)2 (4x1 − 7) involves as
a factor the polynomial t1 which does not depend on x1 and the multiple factor (x1 − 1)
of p1. The ideal A is generated by (x1 − 2) and satisfies Theorem 2.1. Observe that the
theorem would not hold in the case of h being the product of the initials of A only. In that
case, the ideal A, which would be generated by (x1 − 1)3 (x1 − 2), would not be radical.

Proposition 2.2. To prove Theorem 2.1, it is sufficient to prove that A0 is radical.

Proof. The second statement of Lazard’s lemma follows from Theorem 1.6. Let us assume
A0 is radical. Then R0/A0 does not involve any nilpotent3 element by [24, chapter IV,
Theorem 10 and Corollary]. Thus R/A does not either by Theorem 1.1 (for if a is a non
zero element of R/A then its image a/1 in R0/A0 is non zero ; if a power ad of a were zero,
then (a/1)d would be zero too and R0/A0 would involve nilpotent elements). Therefore, A

is radical and the proposition is proved.

In the rest of this section, we prove that A0 is radical by proving thatR0/A0 is isomorphic
to a direct product of fields. Since a direct product of fields does not involve any nilpotent
element, the ideal A0 is radical and the proof of Lazard’s lemma is complete.

Indeed, if R1, . . . , Rk are rings then one denotes S = R1× · · · ×Rk their direct product.
Elements of S are tuples with k components. Given any two elements a = (a1, . . . , ak) and
b = (b1, . . . , bk) of S one defines a+ b as (a1 + b1, . . . , ak + bk) and a b as (a1 b1, . . . , ak bk).
In the ring S, zero is equal to (0, . . . , 0) and one is equal to (1, . . . , 1). If the rings Ri do not
involve any nilpotent element then S does not either. This is the case in particular when
the rings Ri are fields. See [24, chapter III, paragraph 13] for an equivalent formulation
based on direct sums. The following theorem is a generalization of the Chinese Remainder
Theorem. See [24, chapter III, paragraph 13, Theorem 32] or [7, Exercise 2.6, page 79].

Theorem 2.3. (Chinese Remainder Theorem)
If A1, . . . ,Ak are ideals of R such that Ai + Aj = R whenever i 6= j then the ring

R/(A1 ∩ · · · ∩ Ak) is isomorphic to the direct product (R/A1)× · · · × (R/Ak).

The proposition below concludes the proof of Theorem 2.1. The scheme of its proof is
the original scheme of proof communicated by Daniel Lazard.

Proposition 2.4. The ring R0/A0 is isomorphic to a direct product of fields.

Proof. The ring R0/A0 can be constructed incrementally. It is isomorphic to the ring Sn
defined by:

S0 = K(t1, . . . , tm), Si = Si−1[xi]/(pi) : s∞i .

The proof is an induction on n.
The basis n = 0 is trivial.
Assume Sn−1 is a direct product of fields K1 × · · · ×Kr. Then Sn is isomorphic to the

direct product of the rings Kj [xn]/(pn) : s∞n for all 1 ≤ j ≤ r. In the formula above one

3A nilpotent element of a ring R is a nonzero element of R a power of which is zero.

86 Boulier et al. Transgressive Computing

assimilates the polynomials pn and sn with their images by the canonical ring homomor-
phisms, noticing that the image of the separant of pn in each Kj [xn] is the separant of the
image of pn in this ring.

Therefore, in each Kj [xn], the ideal (pn) : s∞n is generated by the product of the simple
irreducible factors of pn. It is thus the intersection of the maximal ideals mℓ generated
by these factors. According to the Chinese Remainder Theorem, each Kj [xn]/(pn) : s∞n
is isomorphic to the direct product of the fields Kj [xn]/mℓ. Since direct products are
associative, the ring Sn itself is a direct product of fields.

Corollary 2.5. Theorem 2.1 holds if A is replaced by any ideal (A) : S∞ where S is any
subset of R containing the separants of the elements of A, provided that (A) : S∞ is proper.

Proof. The ideal (A) : S∞ is the intersection of the primary components of A which do not
meet the multiplicative family generated by S. Since A is radical, its primary components
are prime ideals [24, chapter IV, Theorem 5]. Thus the primary components of (A) :S∞ are
prime ideals and (A) :S∞ is radical. The dimension properties shared by all the associated
prime ideals of A also hold for all the associated prime ideals of (A) : S∞.

3 Regular chains

We consider the polynomial ring R = K[x1, . . . , xn, t1, . . . , tm]. We assume that the m+ n
indeterminates are ordered according to some total ordering O. Let p be any polynomial
of R \K. The greatest indeterminate w.r.t. O among the indeterminates p depends on is
called the main indeterminate of p. We consider a triangular system A = {p1, . . . , pn} of R
i.e. a polynomial system whose elements have distinct main indeterminates. Renaming
the indeterminates if necessary, we assume that the main indeterminate of pi is xi for each
1 ≤ i ≤ n. The multiplicative family M , the initials and the separants of the elements of A
are then defined as in section 1.

Fix some 1 ≤ i ≤ n. Denote Ai the system {p1, . . . , pi}. Denote hi the product of the
initials of the elements of Ai. Denote Ri the ring K[t1, . . . , tm, x1, . . . , xi]. Denote R0,i the
ring K(t1, . . . , tm)[x1, . . . , xi]. Denote Ai the ideal (Ai):h

∞
i of R and A0,i the ideal (Ai):h

∞
i

of R0,i. Denote R0 = R0,n and A = An.

Definition 3.1. The system A is a regular chain if, for each 2 ≤ i ≤ n, the initial of pi is
regular in the ring Ri−1/Ai−1. Assume A is a regular chain. Then A is said to be squarefree
if, for each 1 ≤ i ≤ n, the separant of pi is regular in Ri/Ai.

The above definition is not exactly the same as that of [2, Definition 4.1] but they are
strictly equivalent. The difference is that, in [2], the t indeterminates greater than xi would
have been withdrawn from the rings Ri−1 and Ri. This change is not important for the
elements of Ai do not depend on the t indeterminates greater than xi and, by [24, chapter I,
paragraph 16, Theorem 6], if R̄ is a ring, a is one of its elements and x is an indeterminate
over it then a is zero (respectively regular) if and only if it is zero (respectively regular) in
the ring R̄[x]. The following results are corollaries to Theorems 1.1 and 2.1.

Well known theorems on triangular systems and the D5 principle 87

Corollary 3.2. The system A is a regular chain if, for each 2 ≤ i ≤ n, the initial of pi is
invertible in the ring R0,i−1/A0,i−1. Assume A is a regular chain. Then A is squarefree if,
for each 1 ≤ i ≤ n, the separant of pi is invertible in R0,i/A0,i.

Proof. It is an immediate corollary of Theorem 1.1 (enlarging the set of the t indeterminates
with the x indeterminates which are not needed).

Corollary 3.3. Assume A is a squarefree regular chain. Then A is radical. Its minimal
prime ideals have dimension m and do not meet M .

Proof. By Corollary 1.16 and the definition of squarefreeness, the separants of the elements
of A are regular in R/A. Thus they do not lie in any associated prime ideal of A by [24,
chapter IV, paragraph 6, Corollary 3]. Thus, denoting S∞A the multiplicative family that
they generate, A = A : S∞A and the proof follows from Corollary 2.5.

3.1 Splittings

In this section, we provide two propositions which permit to justify many algorithms carry-
ing out the “D5” principle for triangular systems [6]. We keep the notations of section 3 and
we assume that A is a regular chain. Let 1 ≤ i ≤ n be an index. Assume that there exists a
factorization pi = b c in (R0,i−1/A0,i−1)[xi] such that 0 < deg(b, xi), deg(c, xi) < deg(pi, xi).
For each 1 ≤ j ≤ n, denote Bj = Aj if j < i otherwise denote Bj = (Aj \{pi})∪{b}. Denote
B = Bn. For each 1 ≤ j ≤ n, denote hb,j the product of the initials of the elements of Bj
and Bj the ideal (Bj) :h∞b,j of R and B0,j the ideal (Bj) :h∞b,j of R0,j . Replacing b by c in the
formulas, define C and for each 1 ≤ j ≤ n, define Cj, hc,j, Cj and C0,j Denote B0 = B0,n

and C0 = C0,n.

Proposition 3.4. The triangular sets B and C are regular chains. For each 1 ≤ j ≤ n we
have Aj ⊂ Bj and Aj ⊂ Cj.

Proof. We focus on the set B. The arguments for C are similar. Since 0 < deg(b, xi) <
deg(pi, xi), the set B is triangular. For each 1 ≤ j < i we have Aj = Bj thus Aj = Bj and B
is a regular chain up to index i− 1. In the ring R0,i−1, the initial of pi is the product of the
initials of b and c. Since A is a regular chain, the initial of pi is invertible in R0,i−1/A0,i−1.
Therefore, the initial of b is invertible in R0,i−1/B0,i−1. By Corollary 3.2, the set B is a
regular chain up to index i and Ai ⊂ Bi. Let i < j ≤ n be an index. We have Aj ⊂ Bj .
Thus the initial of pj, which is invertible in R0,j−1/A0,j−1, is also invertible in R0,j−1/B0,j−1.
By Corollary 3.2, the set B is a regular chain up to any index and Aj ⊂ Bj .

We have proved that A ⊂ B ∩ C. In general the equality does not hold because of
possible common factors of b and c. In the particular case of squarefree regular chains, b
and c have no common factors and the equality holds, the following proposition shows.

Proposition 3.5. Assume A is squarefree. Then so are B, C and we have A = B ∩ C.
Moreover, the sets of the minimal prime ideals of B and C form a partition of the set of
the minimal prime ideals of A.

88 Boulier et al. Transgressive Computing

Proof. First we prove that B and C are squarefree regular chains. As in the above proof,
we focus on B. By Proposition 3.4, the set B is a regular chain. Assume A is squarefree.
Let 1 ≤ j < i be an index. Since Aj = Bj, the separant of pj is regular in Rj/Bj and B is a
squarefree regular chain up to index i− 1. Denote si, sb and sc the separants of pi, b and c.
We have si = sb c+ sc b. Let us prove that sb is regular in Ri/Bi. Since A is squarefree, si
is invertible in R0,i/A0,i. By Proposition 3.4, for each 1 ≤ j ≤ n we have Aj ⊂ Bj thus si
is also invertible in R0,i/B0,i. Then, using the fact that b ∈ Bi we see that sb c, hence sb,
is invertible in R0,i/B0,i. By Corollary 3.2, the set B is a squarefree regular chain up to
index i. Let i < j ≤ n be an index. Using again the fact that Aj ⊂ Bj , we see that the
separant of pj is regular in Rj/Bj . Thus B is a squarefree regular chain up to any index.

Similar statements prove that C is a squarefree regular chain.
By Corollary 3.3, the ideals B and C are radical. They are equal to the intersections

of their minimal prime ideals by [24, chapter IV, Theorem 5]. To conclude the proof of
the proposition, it is thus sufficient to prove that the sets of the minimal prime ideals of B

and C form a partition of the set of the minimal prime ideals of A. Denote V , Vb and Vc
the sets of zeros of A0, B0 and C0 in the algebraic closure of K(t1, . . . , tm). Since these
ideals have dimension zero, these sets are finite. The minimal prime ideals of A, B and C

have dimension m and do not meet M . Therefore, by [24, chapter IV, Theorem 15(d)], the
ring homomorphism R → R0 provides a bijection between the minimal prime ideals of A

(respectively B, C) and those of A0 (respectively B0, C0) hence, using [24, chapter VII,
paragraph 3, Corollary 2], a bijection between the minimal prime ideals of A (respectively
B, C) and the elements of V (respectively Vb, Vc). It is thus sufficient to prove that Vb
and Vc form a partition of V . The cardinal |V | of V is the product

∏n
j=1 deg(pj , xj).

Similar statements hold for Vb and Vc. Since deg(pi, xi) = deg(b, xi) + deg(c, xi) we see
first that |V | = |Vb|+ |Vc|. Second, we have Vb ⊂ V and Vc ⊂ V . Third, Vb∩Vc is empty for
a common zero of B and C would annihilate si = sb c + sc b which is invertible. Therefore
V = Vb ∪ Vc, the sets Vb and Vc form a partition of V and the proposition is proved.

3.2 The D5 principle for triangular systems

In this section, we provide the scheme of many algorithms carrying out the “D5” principle
for triangular systems. More efficient algorithms can be found in [13, 12]. See also [22, 21, 5].
The triangular set A is assumed to be a regular chain.

Definition 3.6. For every a ∈ R we define the pseudoremainder of a by A as

prem(a, A) =
def

prem(. . . prem(prem(a, pn, xn), pn−1, xn−1) . . . , p1, x1).

The pseudoremainder algorithm is based on [24, chapter I, paragraph 16, Theorem 9].
It is defined in [10, volume 2, page 407]. The next proposition is proved in [2, Theorem 6.1].

Proposition 3.7. For every a ∈ R we have a ∈ A if and only if prem(a, A) = 0.

The parameter a of algebraic inverse denotes an element of R. The function returns an
inverse of a in R0/A0 or fails. If it succeeds then a is proved invertible in R0/A0 hence regular

Well known theorems on triangular systems and the D5 principle 89

in R/A by Theorem 1.1. The function thus implicitly relies on the equidimensionnality
theorem. If it fails by encountering a zero divisor, it exhibits a nontrivial factorization of
some element pi of A. The exhibited factorization might allow some calling function to
split A as two regular chains by using Proposition 3.4. Observe that the function may fail
even if a is regular in R/A for it checks the regularity of many different elements of R/A.

function algebraic inverse (a, A)
begin

if a ∈ K(t1, . . . , tm) then
if a 6= 0 then

1/a
else

the inverse computation fails (inversion of zero)
endif

else
let xi be the main indeterminate of a
(u1, u2, u3) := extended Euclid (a, pi, xi, A)
if u3 6= 1 then

the inverse computation fails (inversion of a zero divisor): u3 is a factor of pi
else
u1

endif
endif

end

Here is the generalization of the extended Euclidean algorithm called by algebraic inverse.
The main indeterminate of the two polynomials a and b is xi. The polynomials a and b
are viewed as polynomials in (R0,i−1/A0,i−1)[xi]. The function fails or returns a triple
U = (u1, u2, u3) of elements of (R0,i−1/A0,i−1)[xi] satisfying a Bézout identity in the ring
(R0,i−1/A0,i−1)[xi] i.e. a relation u1 a+u2 b = u3. A proof that U satisfies a Bézout identity
can be designed by using the two following loop invariants (i.e. properties which hold each
time the loop condition is evaluated). These loop invariants are natural generalizations of
the very classical loop invariants of the basic extended Euclidean algorithm:

• u1 a+ u2 b = u3 and v1 a+ v2 b = v3 in (R0,i−1/A0,i−1)[xi] ;

• the set of the common divisors of u3 and v3 is equal to the set of the common divisors
of a and b.

Observe that the second invariant is stated without using the word “gcd” which would be
controversial in this context for the ring (R0,i−1/A0,i−1)[xi] is not a UFD. A definition of
the gcd in this context is however provided in [13]. Observe that the function needs to
recognize zero in R0,i−1/A0,i−1 in order to evaluate the loop condition and to determine the
degree of u3 after the loop execution. This is achieved by Proposition 3.7. The function also

90 Boulier et al. Transgressive Computing

needs to check the regularity of the leading coefficient of v3 before performing the Euclidean
division. This can be achieved using algebraic inverse.

function extended Euclid (a, b, xi, A)
begin
U := (1, 0, a)
V := (0, 1, b)
while v3 6= 0 do
q := the quotient of the Euclidean division of u3 by v3 in (R0,i−1/A0,i−1)[xi]
T := V
V := U − q V
U := T

done

c := the coefficient of x
deg(u3, xi)
i in u3

return algebraic inverse (c,A)U
end

References

[1] Philippe Aubry. Ensembles triangulaires de polynômes et résolution de systèmes algébriques.
Implantation en Axiom. PhD thesis, Univ. Paris VI, 1999.

[2] Philippe Aubry, Daniel Lazard, and Marc Moreno Maza. On the theories of triangular sets.
Journal of Symbolic Computation, 28:105–124, 1999.

[3] François Boulier, Daniel Lazard, François Ollivier, and Michel Petitot. Representation for the
radical of a finitely generated differential ideal. In proceedings of ISSAC’95, pages 158–166,
Montréal, Canada, 1995.

[4] François Boulier, Daniel Lazard, François Ollivier, and Michel Petitot. Computing represen-
tations for radicals of finitely generated differential ideals. Technical report, Université Lille I,
LIFL, 59655, Villeneuve d’Ascq, France, 1997. (ref. IT306, december 1998 version published in
the habilitation thesis of Michel Petitot).

[5] Driss Bouziane, Abdelillah Kandri Rody, and Hamid Maârouf. Unmixed–Dimensional Decom-
position of a Finitely Generated Perfect Differential Ideal. Journal of Symbolic Computation,
31:631–649, 2001.

[6] Jean Della Dora, Claire Dicrescenzo, and Dominique Duval. About a new method for computing
in algebraic number fields. In Proceedings of EUROCAL85, vol. 2, volume 204 of Lecture Notes
in Computer Science, pages 289–290. Springer Verlag, 1985.

[7] David Eisenbud. Commutative Algebra with a View Toward Algebraic Geometry, volume 150
of Graduate Texts in Mathematics. Springer Verlag, 1995.

[8] Évelyne Hubert. Factorization free decomposition algorithms in differential algebra. Journal of
Symbolic Computation, 29(4,5):641–662, 2000.

[9] Mickael Kalkbrener. A Generalized Euclidean Algorithm for Computing Triangular Represen-
tations of Algebraic Varieties. Journal of Symbolic Computation, 15:143–167, 1993.

Well known theorems on triangular systems and the D5 principle 91

[10] Donald Erwin Knuth. The art of computer programming. Addison–Wesley, 1966. Second
edition.

[11] Daniel Lazard. A new method for solving algebraic systems of positive dimension. Discrete
Applied Mathematics, 33:147–160, 1991.

[12] Marc Moreno Maza. On Triangular Decompositions of Algebraic Varieties. Technical report,
NAG, 2000. (presented at the MEGA2000 conference, submitted to the JSC).

[13] Marc Moreno Maza and Renaud Rioboo. Polynomial gcd computations over towers of algebraic
extensions. In Proceedings of AAECC11, pages 365–382. Springer Verlag, 1995.

[14] Sally Morrison. Yet another proof of Lazard’s lemma. private communication, december 1995.

[15] Sally Morrison. The Differential Ideal [P] : M∞. Journal of Symbolic Computation, 28:631–656,
1999.

[16] François Ollivier. A proof of Lazard’s lemma. private communication, october 1998.

[17] Brahim Sadik. Une note sur les algorithmes de décomposition en algèbre différentielle. Comptes
Rendus de l’Académie des Sciences, 330:641–646, 2000.

[18] Josef Schicho and Ziming Li. A construction of radical ideals in polynomial algebra. Technical
report, RISC, Johannes Kepler University, Linz, Austria, august 1995.

[19] Shang–Ching Chou and Xiao–Shan Gao. On the dimension of an arbitrary ascending chain.
Chinese Bulletin of Science, 38:799–904, 1993.

[20] Bruno Louis van der Waerden. Algebra. Springer Verlag, Berlin, seventh edition, 1966.

[21] Dongming Wang. Decomposing polynomial systems into simple systems. Journal of Symbolic
Computation, 25:295–314, 1998.

[22] Wu Wen Tsün. On the foundation of algebraic differential geometry. Mechanization of Mathe-
matics, research preprints, 3, 1987.

[23] L. Yang and J. Zhang. Searching dependency between algebraic equations: an algorithm applied
to automated reasoning. Artificial Intelligence in Mathematics, pages 147–156, 1994.

[24] Oscar Zariski and Pierre Samuel. Commutative Algebra. Van Nostrand, New York, 1958.

François Boulier
LIFL, Université Lille I, 59655 Villeneuve d’Ascq, France

boulier@lifl.fr, http://www.lifl.fr/̃ boulier

François Lemaire
LIFL, Université Lille I, 59655 Villeneuve d’Ascq, France

lemaire@lifl.fr, http://www.lifl.fr/̃ lemaire

Marc Moreno Maza
ORCCA, University of Western Ontario, London, N6A 5B7 Canada

moreno@orcca.on.ca, http://www.csd.uwo.ca/̃ moreno

92 Boulier et al. Transgressive Computing

Unique Normal Forms for Nilpotent Vector Fields of Higher Dimensions 93

Unique Normal Forms for Nilpotent Vector Fields of Higher

Dimensions ∗

Guoting Chen

Abstract

Unique normal forms for nilpotent planar vector fields have been studied under the
graded Lie algebra context. A unique normal form with respect to the classical degree up
to certain order is given for nilpotent vector fields in dimensions 3 and 4. New orderings
are used and the corresponding unique normal forms are given up to certain order. Their
comparison leads to the important conclusion that the unique normal form depends on
the ordering and the choices of complementary subspaces. Maple implementations are
used to study the problem and to compute the bases of some complementary subspaces.

Introduction

Normal forms of dynamical systems or vector fields are basic and important tools in bi-
furcation theory of vector fields, and this has a long history. Recently further reduction
of classical normal forms has been studied in many ways in order to obtain unique nor-
mal forms and some general methods are given ([2, 5, 9, 10, 13]). But the problem of the
unique (simplest) normal form for a given vector field is far from trivial. For non nilpotent
vector fields, unique normal forms are known in many cases in R2 and R3 (for example in
[2, 6, 9, 14, 15]). For the nilpotent cases the question is more difficult. In dimension 2 it is
first considered in [3] and [10]. A special case is studied in [6]. Other studies are done in
[4, 14].

In the present paper we study unique normal forms for formal vector fields in dimensions
3 and 4 with a nilpotent linear part of index one. For the dimensional 3 case a unique normal
form up to terms of degree 5 is given in [5], and up to terms of degree 8 is given in [16]. For
the dimensional 4 case, a unique normal form up to terms of degree 3 is given in [5].

Normal form theory in a graded Lie algebra context is given in [2]. New grading for
vector fields has been introduced in [10] and has been used successifuly for nilpotent planar
vector fields of dimension 2 in [3, 6, 10, 14]. Although in dimension 2 it seems that new
grading unique normal forms induce unique normal forms in the classical order, one can
ask the question: is it necessarily true in higher dimensional case? This question has never
been raised. In fact it seems that it is usually admitted. Our results give a negative answer
to this question.

∗Dedicated to Jean Della Dora on the occasion of his 60th birthday

94 Chen Transgressive Computing

We first consider vector fields in R3 with an equilibrium at the origin with a nilpotent
linear part of index one X1 = y∂x + z∂y, where ∂x = ∂/∂x, ∂y = ∂/∂y and ∂z = ∂/∂z. We
shall write X(x, y, z) =

∑+∞
k=1Xk, where Xk denotes the homogeneous part of degree k. We

use also notations for the corresponding dynamical system

ẋ = y + · · · , ẏ = z, ż = · · ·

where the dots represent terms of degree ≥ 2. The matrix of the linear part is the nilpotent
matrix of index one

A =

0 1 0
0 0 1
0 0 0

 .

In Section 1, we give a brief presentation of the method that we shall follow, that is the
graded Lie algebra and normal forms using multiple Lie brackets (see [2, 7]). In Section 2 we
compute the structure of unique normal form for nilpotent vector fields in R3 with respect
to the classical order (total degree). In Section 3, we consider a linear grading function
(see [10]) for vector fields in R3 and compute unique normal forms with respect to the new
grading by showing two different choices of complementary subspaces. In Section 4, some
comparisons are done with nilpotent vector fields in dimensions 4 where a unique normal
form is given up to certain order.

1 Preliminaries on unique normal forms in a graded Lie al-

gebra

We give a brief review of Baider’s method (see [2, 7]) for unique normal forms that we shall
follow in this paper. Notice that one can also use the method of [10].

Let {Lj} be a family of vector spaces over R, let ⊕Lj denote their direct sum, and
let L =

∏
j≥0Lj denote their complete direct sum. Elements of L are treated as (formal)

infinite series ℓ = ℓ0+ℓ1+ · · · with ℓj ∈ Lj. Elements of the form ℓ = 0+ · · ·+0+ℓj+0+ · · ·
are homogeneous (of order j), and in such cases we simply write ℓ = ℓj , thereby viewing Lj
as a subspace of L. Subscript always indicates homogeneity of the corresponding order.

Throughout the section we assume L =
∏
j≥0Lj is a graded Lie algebra, i.e. a Lie

algebra over R with bracket [,] satisfying [Li,Lj] ⊂ Li+j.
For any m ∈ L the adjoint mapping ad(m) : L → L is defined by ℓ→ [m, ℓ]. Note that

if m ∈ Li then ad(m)|Lj : Lj → Li+j. We have

exp(ad(m))ℓ =
∑

j≥0

1

j!
(ad(m))jℓ.

For each k ≥ 0 define the k-jet of ℓ = ℓ0 + ℓ1 + · · · ∈ L to be Jk(ℓ) = ℓ0 + · · ·+ ℓk. Note
for ℓ = ℓ0 + ℓ1 + · · · ∈ L, and m = mk +mk+1 + · · · , k ≥ 1, that

exp(ad(m))(ℓ) = Jk−1(ℓ) + (ℓk − [ℓ0,mk]) +Ok+1

Unique Normal Forms for Nilpotent Vector Fields of Higher Dimensions 95

where Ok+1 denotes terms of order greater or equal to k + 1.
For k ≥ 0 and ℓ ∈ L let

Ck(ℓ) := {m = m1 +m2 + · · · |ad(ℓ)(m) = Jk(ℓ) +Ok+1}

(the k-th order centralizer of ℓ). We have m ∈ Ck(ℓ) iff exp(ad(m)) fixes Jk(ℓ). Now
m ∈ Ck(ℓ) iff

i∑

j=1

[ℓi−j,mj] = 0, for i = 1, · · · , k, (1)

Now suppose that we have obtained a normal form up to the order k, i.e. Jk(ℓ) is in a
normal form. We look for a normal form up to order k + 1. Consider the linear mapping

φk+1(m) = [ℓ0,mk+1] + [ℓ1,mk] + · · ·+ [ℓk,m1],

where m ∈ Ck. We have φk+1(m) ∈ Lk+1. Assume that Ck+1 is a complementary subspace
of its image Vk+1 in Lk+1, so that the following splitting holds

Lk+1 = Vk+1 ⊕ Ck+1.

Then one can find m ∈ Ck(ℓ) such that Jk+1(exp(ad(m))ℓ) ∈ Ck+1, which is a normal form
of order k + 1.

Remark 1.1. Once a Ck+1 is chosen with a given basis, the homogeneous part of degree
k + 1 can be written under the given basis. So the chosen bases of the corresponding Ck
determine a structure or a model of the normal form. A normal form with a determined
model is unique. We shall compute the structure of unique normal forms for nilpotent
vector fields in dimensions 3 and 4 up to certain orders.

2 Unique normal form with respect to the classical degree in

R3

Let us first consider the classical graded Lie algebra H of vector fields in R3. The Lie
bracket is defined by [·, ·] : H ×H → H where

[U, V] = DV · U −DU · V

for any U, V ∈ H. For any k ≥ 0 we denote by Hk the vector space of homogeneous vector
fields in R3 of order k + 1 with respect to the classical order (total degree). (One remarks
that the subscript is k). Then {H, [·, ·]} forms a graded Lie algebra with respect to the
classical order, ie [Hi,Hj] ⊂ Hi+j.

Let X be a vector field in H with a nilpotent linear part X0 = y∂x + z∂y ∈ H0. We
shall study the unique normal form of X in H. In [5], we have proved that, via a near

96 Chen Transgressive Computing

identity transformation and a linear transformation, one can reduce generically the second
order terms of X to the following normal form

X1 = (x2 + µ2,2xy + µ2,3xz)∂z

where µ2,2, µ2,3 are parameters. It can be achieved by considering the linear map φ1(m1) =
[X0,m1] and via a linear change of coordinates. We shall suppose that this has been done
and study the normal form of higher order.

We now consider terms of order 3. We need to study the linear map

φ2(m1,m2) = [X0,m2] + [X1,m1]

subject to the condition [X0,m1] = 0. From [X0,m1] = 0 one obtains

m1 =
(
α1z

2 + α2(y
2 − 2xz) + α3yz + α4xz

)
∂x + (α3z

2 + α4yz)∂y + α4z
2∂z.

By computing the kernel of φ2, one finds that its dimension is 7 and if m = m1 +m2 ∈
ker(φ2) then m1 = α1z

2∂x. Then the image V2 of φ2 in H2 is of dimension 27 and hence
dim C2 = 30 − 27 = 3. One can prove that {x3, x2y, x2z} form a basis of a complementary
subspace C2 to the image V2 of φ2 in H2. The homogeneous part of degree 3 in a unique
normal form can be chosen to be in the form

X2 = µ3,1x
3 + µ3,2x

2y + µ3,3x
2z.

The method can be used to compute a basis of Ck successively for any k = 2, 3, · · · . We
have implemented the method in Maple and obtained a basis for all k ≤ 12 under some
non degeneracy conditions (algebraic conditions on the coefficients of the vector field). We
state the results in the following proposition.

Proposition 2.1. Let X be a nilpotent vector field in R3 as above. Then a non degenerate
unique normal form of X up to order 12 is

ẋ = y, ẏ = z,
ż = x2 + µ2,2xy + µ2,3xz + µ3,1x

3 + µ3,2x
2y + µ3,3x

2z + µ4,1x
4 + µ4,2x

3y
+µ5,1x

5 + µ5,2x
4y + µ5,3x

4z + µ6,1x
6 + µ6,2x

5y + µ6,3x
5z + µ6,4x

4y2

+µ7,1x
7 + µ7,2x

6y + µ7,3x
6z + µ7,4x

5y2 + µ7,5x
5yz + µ8,1x

8 + µ8,2x
7y

+µ8,3x
7z + µ8,4x

6y2 + µ9,1x
9 + µ9,2x

8y + µ9,3x
8z + µ9,4x

7y2 + µ9,5x
7yz

+µ9,6x
7z2 + µ10,1x

10 + µ10,2x
9y + µ10,3x

9z + µ10,4x
8y2 + µ10,5x

8yz
+µ11,1x

11 + µ11,2x
10y + µ11,3x

10z + µ11,4x
9y2 + µ11,5x

9yz + µ11,6x
9z2

+µ12,1x
12 + µ12,2x

11y + µ12,3x
11z + µ12,4x

10y2 + µ12,5x
10yz

+µ12,6x
10z2 + µ12,7x

9y2z +O13

In Table 1, we shall show the number of parameters in each degree remaining in a normal
form and compare with those obtained by other methods.

Unique Normal Forms for Nilpotent Vector Fields of Higher Dimensions 97

3 New ordering of vector fields in R3

3.1 Linear grading function

The idea of linear grading function is to define a new grading (new ordering) so that H
remains a graded Lie algebra with respect to the new ordering. It is first introduced in [10].
For details and properties of linear grading functions we refer to the original paper. The
method has been applied to nilpotent vector fields of dimension 2 in [6, 10, 14].

For our purpose we need the following linear grading function: for any i, j, k ∈ N,

δ(xiyjzk∂x) = 3i+ 4j + 5k − 3,

δ(xiyjzk∂y) = 3i+ 4j + 5k − 4,

δ(xiyjzk∂z) = 3i+ 4j + 5k − 5.

Let Hk (k ≥ 1) be the vector space spanned by all monomial vector fields of degree k with
respect to δ. One has [Hs,Ht] ⊂ Hs+t. Hence H =

∑
k≥1Hk is a graded Lie algebra. We

have for example
H1 = Span{y∂x, z∂y, x2∂z}
H2 = Span{z∂x, x2∂y, xy∂z}
H3 = Span{x2∂x, xy∂y, xz∂z , y

2∂z}.
The following lemma can be verified immediately using the definition of δ.

Lemma 3.1. We have

xiyjzk∂y ∈ HN iff xiyjzk∂x ∈ HN+1;
xiyjzk∂z ∈ HN iff xiyjzk∂y ∈ HN+1;
xiyjzk∂x ∈ HN iff xi+1yjzk∂z ∈ HN+1.

Consider the nilpotent vector field X of the preceding section in H. We can write
X =

∑
j≥1 Vj, with Vj ∈ Hj. As in the preceding section one can assume (see [5]) that

V1 = y∂x + z∂y + x2∂z.

Now we need to consider the adjoint map ad(V1) = [V1, ·] in the new graded Lie algebra
context. We have [V1, ·] : Hk →Hk+1.

Lemma 3.2. Let notations be as above. We have ker[V1, ·]|H1 = Span{V1}, and for any
2 ≤ k ≤ 60, ker[V1, ·]|Hk

= {0}, i.e. the linear map [V1, ·]|Hk
is injective.

Proof. Let m1 = α1y∂x + α2z∂y + α3x
2∂z ∈ H1. One has

[V1,m1] = (α1 − α2)z∂x + (α2 − α3)x
2∂y + 2(α3 − α1)xy∂z .

Then m1 ∈ ker[V1, ·]|H1 implies m1 = αV1. Hence ker[V1, ·]|H1 = Span{V1}.
This method can be used to compute the kernel of [V1, ·] in any Hk. We have imple-

mented the method in Maple and the computations show that [V1, ·] is injective for any
2 ≤ k ≤ 60.

98 Chen Transgressive Computing

Now we have dim Im[V1, ·]|H1 = 2. If C2 is a complementary subspace of Im[V1, ·]|H1 in
H2, then dimC2 = 1. We can prove that C2 = Span{xy∂z} is such a one. We obtain a
normal form in H whose homogeneous part of degree 2 with respect to δ is V2 = µ2xy∂z.

Proposition 3.3. (a) Let notations be as above. Let Cj be a complementary subspace to
the image of ad(V1)|Hj−1 in Hj. Then one can reduce the vector field to a normal form
V = V1 +

∑
j≥2 Vj with Vj ∈ Cj for j ≥ 2. Furthermore the normal form is unique up to

the order 60.
(b) One can choose the complementary subspaces to be

C3 = Span{xz∂z}, C4 = Span{x3∂z}, C5 = Span{z2∂z}, C6 = {0},

and for 7 ≤ N ≤ 60,
CN = Span{yjzk∂z : 4j + 5k − 5 = N}.

Proof. For part (a) it suffices to prove the uniqueness. Let V = V1 + · · ·+ Vk−1 + · · · be a
normal form up to the order k− 1 (with k <= 60). We now look for a normal form of order
k. Let m = m1 +m2 + · · ·+mk + · · · be such that

[V1,m1] = 0,
[V1,m2] + [V2,m1] = 0,
· · · · · ·
[V1,mk−1] + [V2,mk−2] + · · ·+ [Vk−1,m1] = 0.

Then according to Lemma 3.2, one has m1 = αV1. We obtain from the other equations that
mj = αVj . Hence

[V1,mk] + [V2,mk−1] + · · ·+ [Vk−1,m2] + [Vk,m1]
= [V1,mk − αVk] + [V2, αVk−1] + · · ·+ [Vk−1, αV2]
= [V1,mk − αVk].

Finally a normal form obtained by using ad(V1) is unique up to the order 60. Notice that
in the terminology of [10], our result shows that the first order normal form is unique up to
the given order.

We have implemented the algorithm in Maple. We have been able to obtain a basis of
CN for N ≤ 60 as stated in part (b) of the proposition.

We state the corresponding normal form in the following proposition.

Proposition 3.4. Let X be a nilpotent vector field as above. Then X can be generically
reduced to a unique normal form up to order 60 in the new ordering

ẋ = y, ẏ = z,

ż = x2 + µ2xy + µ3xz + µ4x
3 + µ5z

2 +
∑

7≤4j+5k−5≤60

µj,ky
jzk +O61.

where O61 represents terms of degree ≥ 61 in H.

Unique Normal Forms for Nilpotent Vector Fields of Higher Dimensions 99

The dimension of CN is given in the following lemma. This is useful for calculating the
number of parameters remaining in the normal form of the above proposition.

Lemma 3.5. For any N ≥ 2 let d = #{(j, k) ∈ N2|4j + 5k− 5 = N}. Let N + 5 = 20p+ s
with 0 ≤ s < 20. Then for s = 1, 2, 3, 6, 7, 11 we have d = p, and for other values of s, we
have d = p+ 1.

Proof. The assertion follows from a calculation of the number of solutions of 4j+5k−5 = N .
For example with s = 5 we have, with j′ = j + k,

d =
∑

4j+5k=20p+5

1 =
∑

4j′+k=20p+5

1 =
∑

k=4(5p−j′+1)+1

j=5(j′−4p−1)

1

=
∑

4p+1≤j′≤5p+1

1 = p+ 1.

The proof is similar for other s.

In Table 1, the number of parameters in each degree remaining in a normal form in H is
compared with that of Proposition 2.1. It leads to the important conclusion that with this
choice of complementary subspace the normal form obtained is not unique with respect to
the classical degree. One remarks that the third equation in the normal form of Proposition
3.4 contains all terms of the form yjzk with j + k ≥ 3.

In the following paragraphe we shall show that we can choose another complementary
subspace so that the normal form contains the same number of parameters as in the case
of the classical degrees.

Total degree Prop. 5.3 in [5] Prop. 2.1 Prop. 3.6 Prop. 3.4

3 3 3 3 5

4 2 2 2 5

5 3 3 3 6

6 4 4 7

7 5 5 8

8 4 4 9

9 6 6 10

10 5 5 11

11 6 6 12

12 7 7 13

13 8 14

14 8 15

15 9 16

Table 1. Comparison of the numbers of parameters.

100 Chen Transgressive Computing

3.2 Second choice of a complementary subspace

In the preceding paragraphe, the basis for CN do not contain x. To give another choice
of complementary subspaces, we have looked for bases so that the powers in x are the
maximum possible. We state the result in the following proposition. It is obtained by an
implementation of the method in Maple.

Proposition 3.6. Let X ∈ H be a nilpotent vector field as above. Then X can be generically
reduced to a unique normal form up to order 56 in the new grading :

ẋ = y, ẏ = z,
ż = x2 + µ2xy + µ3xz + µ4x

3 + µ5x
2y + µ7x

4 + µ8xz
2 + µ9x

3z + µ10x
5

+µ11x
4y + µ12x

4z + µ13x
6 + µ14x

5y + µ15x
4y2 + µ′15x

5z + µ16x
7

+µ17x
6y + µ18x

6z + µ19x
5yz + µ′19x

8 + µ20x
5z2 + µ′20x

7y + µ21x
7z

+µ22x
9 + µ23x

6z2 + µ′23x
8y + µ24x

7y2 + µ′24x
8z + µ25x

7yz + µ′25x
10

+µ26x
9y + µ27x

8y2 + µ′27x
9z + µ28x

6z3 + µ′28x
11 + µ29x

8z2 + µ′29x
10y

+µ30x
9y2 + µ′30x

10z + µ31x
9yz + µ′31x

12 + µ32x
9z2 + µ′32x

11y + µ33x
10y2

+µ′33x
11z + µ34x

10yz + µ′34x
13 + µ35x

9y2z + µ′35x
10z2 + µ′′35x

12y
+µ36x

11y2 + µ′36x
12z + µ37x

11yz + µ′37x
14 + µ38x

11z2 + µ′38x
13y

+µ39x
10yz2 + µ′39x

12y2 + µ′′39x
13z + µ40x

10z3 + µ′40x
12yz + µ′′40x

15

+µ41x
12z2 + µ′41x

14y + µ42x
13y2 + µ′42x

14z + µ43x
11z3 + µ′43x

13yz
+µ′′43x

16 + µ44x
12y2z + µ′44x

13z2 + µ′′44x
15y + µ45x

12yz2 + µ′45x
14y2

+µ′′45x
15z + µ46x

14yz + µ′46x
17 + µ47x

13y2z + µ′47x
14z2 + µ′′47x

16y
+µ48x

11z4 + µ′48x
15y2 + µ′′48x

16z + µ49x
13z3 + µ′49x

15yz + µ′′49x
18

+µ50x
14y2z + µ′50x

15z2 + µ′′50x
17y + µ51x

14yz2 + µ′51x
16y2 + µ′′51x

17z
+µ52x

14z3 + µ′52x
16yz + µ′′52x

19 + µ53x
15y2z + µ53x

16z2 + µ53x
18y

+µ54x
15yz2 + µ′54x

17y2 + µ′′54x
18z + µ55x

14y2z2 + µ′55x
15z3 + µ′′55x

17yz
+µ′′′55x

20 + µ56x
16y2z + µ′56x

17z2 + µ′′56x
19y +O57

Remark 3.7. In Table 1, the numbers of parameters in each degree remaining in the normal
forms of Propositions 2.1, 3.4 and 3.6 are compared for certain degrees.

One can conclude that a unique normal form obtained with respect to a new ordering
may not be a unique normal form with respect to the classical order. This gives a negative
answer to the question raised in the introduction.

Remark 3.8. According to Lemma 3.2, one may conjecture that the adjoint map [V1, ·] is
injective in Hk for any k ≥ 2. This is an interesting phenomena since it is not true in
dimensions 2 and 4 with respect to the linear grading function (see the following section for
the case of dimension 4). In fact in dimension 2 (see [6]) we have defined a new grading as
follows, for any i, j ∈ N,

δ′(xiyj∂x) = 2i+ 3j − 2,

δ′(xiyj∂y) = 2i+ 3j − 3.

One then has generically V ′
1 = y∂x + x2∂y. We have proved (see [6]) that [V ′

1 , ·]|Hk
is not

injective for any k = 6p+ 1, in which case

Unique Normal Forms for Nilpotent Vector Fields of Higher Dimensions 101

ker[V ′
1 , ·]|H6p+1 = Span{(x

3

3
− y2

2
)pV ′

1}.

4 Nilpotent vector fields in dimension 4 with respect to a
new ordering

Now we consider vector fields in dimension 4. We define a similar new ordering δ̃ as follows:

δ̃(xi1x
j
2x
k
3x

r
4∂1) = 4i+ 5j + 6k + 7r − 4,

δ̃(xi1x
j
2x
k
3x

r
4∂2) = 4i+ 5j + 6k + 7r − 5,

δ̃(xi1x
j
2x
k
3x

r
4∂3) = 4i+ 5j + 6k + 7r − 6,

δ̃(xi1x
j
2x
k
3x

r
4∂4) = 4i+ 5j + 6k + 7r − 7,

where ∂i = ∂/∂xi for 1 ≤ i ≤ 4. We denote by H̃N the space of vector fields of homogeneous
degree N with respect to the new ordering. Similarly to the three dimensional case, one has
generically Ṽ1 = x2∂1 + x3∂2 + x4∂3 + x2

1∂4 ∈ H̃1. We now consider the adjoint linear map
[Ṽ1, ·]|H̃j

. By computations in Maple we have proved that it is not injective for j = 13, 25

and 37. Therefore Lemma 3.2 shows that there is an interesting phenomena for nilpotent
vector fields in dimension 3 which is different from the dimensional 2 and 4 cases.

In fact we have ker[Ṽ1, ·]|H̃1
= Span{Ṽ1} similarly to the three dimensional case. One can

compute a unique normal form up to the order 13 by using the linear map [Ṽ1, ·]. For example
we obtain a normal form up to order 2 with Ṽ2 = µ2x1x2∂4. We have dim ker[Ṽ1, ·]|H̃13

= 1
with

ker[Ṽ1, ·]|H̃13
= Span

{
(
3

2
x2x

2
3 − 3x2

2x4 + x3
1x2)∂1 + (

3

2
x3

3 − 3x2x3x4 + x3
1x3)∂2

+(−3x2x
2
4 +

3

2
x2

3x4 + x3
1x4)∂3 + (−3x2

1x2x4 +
3

2
x2

1x
2
3 + x5

1)∂4

}
.

Therefore the image of [Ṽ1, ·]|H̃13
is of dimension dim H̃13− 1 = 19 and the dimension of its

complementary subspace is dim H̃14−19 = 3. We then compute a basis of a complementary
subspace to be {x4

1x2∂4, x
2
1x3x4∂4, x1x2x

2
3∂4}.

To find a unique normal form of order 15 we need to consider the following equations

[Ṽ1,m13] = 0, [Ṽ1,m14] + [Ṽ2,m13] = 0.

Under some non degeneracy condition (here µ2 6= 0) one has m13 = 0 and m14 = 0. Hence
the dimension of the image of the linear map φ2(m13,m14) in H̃15 is dim H̃14 + 1 = 23 and
the dimension of its complementary subspace is dim H̃15 − 23 = 1. One computes then a
complementary subspace to be Span{x4

1x3∂4}.
Similar arguments can be done to obtain a unique normal form for the order 27 and 39.

We have implemented the algorithm in Maple and obtained a unique normal form in H̃ up
to the order 40 which we state in the following.

102 Chen Transgressive Computing

Proposition 4.1. Consider a vector field X in dimension 4 with a nilpotent linear part of
index 1, i.e. X1 = x2∂1 + x3∂2 + x4∂3. Then a non degenerate unique normal form of X
up to the order 40 with respect to the new grading δ̃ is

ẋ1 = x2, ẋ2 = x3, ẋ3 = x4,

ẋ4 = µ1x
2
1 + µ2x1x2 + µ3x1x3 + µ4x1x4 + µ5x

3
1 + µ

(2)
5 x2

3 + µ6x
2
1x2

+µ7x
2
1x3 + µ8x

2
1x4 + µ9x

4
1 + µ10x

3
1x2 + µ

(2)
10 x1x3x4 + µ11x

3
1x3

+µ
(2)
11 x

2
1x

2
2 + µ12x

3
1x4 + µ

(2)
12 x

2
1x2x3 + µ13x

5
1 + µ

(2)
13 x

2
1x

2
3 + µ14x

4
1x2

+µ
(2)
14 x

2
1x3x4 + µ

(3)
14 x1x2x

2
3 + µ15x

4
1x3 + µ16x

4
1x4 + µ

(2)
16 x

3
1x2x3 + µ17x

6
1

+µ
(2)
17 x

3
1x

2
3 + µ

(3)
17 x

3
1x2x4 + µ18x

5
1x2 + µ

(2)
18 x

3
1x3x4 + µ

(3)
18 x

2
1x2x

2
3 + µ19x

5
1x3

+µ
(2)
19 x

4
1x

2
2 + µ

(3)
19 x

3
1x

2
4 + µ20x

5
1x4 + µ

(2)
20 x

4
1x2x3 + µ

(3)
20 x

2
1x

2
3x4 + µ21x

7
1

+µ
(2)
21 x

4
1x

2
3 + µ

(3)
21 x

4
1x2x4 + µ22x

6
1x2 + µ

(2)
22 x

4
1x3x4 + µ

(3)
22 x

3
1x2x

2
3 + µ23x

6
1x3

+µ
(2)
23 x

5
1x

2
2 + µ

(3)
23 x

4
1x

2
4 + µ

(4)
23 x

3
1x

3
3 + µ24x

6
1x4 + µ

(2)
24 x

5
1x2x3 + µ

(3)
24 x

4
1x

3
2

+µ
(4)
24 x

3
1x

2
3x4 + µ25x

8
1 + µ

(2)
25 x

5
1x

2
3 + µ

(3)
25 x

5
1x2x4 + µ

(4)
25 x

3
1x3x

2
4 + µ26x

7
1x2

+µ
(2)
26 x

5
1x3x4 + µ

(3)
26 x

4
1x2x

2
3 + µ

(4)
26 x

4
1x

2
2x4 + µ

(5)
26 x

3
1x

3
2x3 + µ27x

7
1x3

+µ
(2)
27 x

6
1x

2
2 + µ

(3)
27 x

5
1x

2
4 + µ28x

7
1x4 + µ

(2)
28 x

6
1x2x3 + µ

(3)
28 x

5
1x

3
2 + µ

(4)
28 x

4
1x

2
3x4

+µ
(5)
28 x

4
1x2x

2
4 + µ29x

9
1 + µ

(2)
29 x

6
1x

2
3 + µ

(3)
29 x

6
1x2x4 + µ

(4)
29 x

5
1x

2
2x3 + µ

(5)
29 x

4
1x3x

2
4

+µ30x
8
1x2 + µ

(2)
30 x

6
1x3x4 + µ

(3)
30 x

5
1x2x

2
3 + µ

(4)
30 x

5
1x

2
2x4 + µ

(5)
30 x

4
1x

3
4 + µ31x

8
1x3

+µ
(2)
31 x

7
1x

2
2 + µ

(3)
31 x

6
1x

2
4 + µ

(4)
31 x

5
1x

3
3 + µ

(5)
31 x

5
1x2x3x4 + µ32x

8
1x4 + µ

(2)
32 x

7
1x2x3

+µ
(3)
32 x

5
1x

2
3x4 + µ

(4)
32 x

5
1x2x

2
4 + µ

(5)
32 x

4
1x2x

3
3 + µ33x

10
1 + µ

(2)
33 x

7
1x

2
3 + µ

(3)
33 x

7
1x2x4

+µ
(4)
33 x

6
1x

2
2x3 + µ

(5)
33 x

5
1x3x

2
4 + µ

(6)
33 x

4
1x

4
3 + µ34x

9
1x2 + µ

(2)
34 x

7
1x3x4

+µ
(3)
34 x

6
1x2x

2
3 + µ

(4)
34 x

6
1x

2
2x4 + µ

(5)
34 x

5
1x

3
2x3 + µ

(6)
34 x

5
1x

3
4 + µ35x

9
1x3 + µ

(2)
35 x

8
1x

2
2

+µ
(3)
35 x

7
1x

2
4 + µ

(4)
35 x

6
1x

3
3 + µ

(5)
35 x

6
1x2x3x4 + µ

(6)
35 x

5
1x

2
2x

2
3 + µ

(7)
35 x

5
1x

3
2x4

+µ36x
9
1x4 + µ

(2)
36 x

8
1x2x3 + µ

(3)
36 x

7
1x

3
2 + µ

(4)
36 x

6
1x

2
3x4 + µ

(5)
36 x

6
1x2x

2
4

+µ
(6)
36 x

5
1x2x

3
3 + µ37x

11
1 + µ

(2)
37 x

8
1x

2
3 + µ

(3)
37 x

8
1x2x4 + µ

(4)
37 x

7
1x

2
2x3 + µ

(5)
37 x

6
1x3x

2
4

+µ
(6)
37 x

5
1x

4
3 + µ38x

10
1 x2 + µ

(2)
38 x

8
1x3x4 + µ

(3)
38 x

7
1x2x

2
3 + µ

(4)
38 x

7
1x

2
2x4

+µ
(5)
38 x

6
1x

3
2x3 + µ

(6)
38 x

6
1x

3
4 + µ

(7)
38 x

5
1x

3
3x4 + µ

(8)
38 x

5
1x2x3x

2
4 + µ39x

10
1 x3

+µ
(2)
39 x

9
1x

2
2 + µ

(3)
39 x

8
1x

2
4 + µ

(4)
39 x

7
1x

3
3 + µ

(5)
39 x

7
1x2x3x4 + µ

(6)
39 x

6
1x

2
2x

2
3

+µ40x
10
1 x4 + µ

(2)
40 x

9
1x2x3 + µ

(3)
40 x

8
1x

3
2 + µ

(4)
40 x

7
1x

2
3x4 + µ

(5)
40 x

7
1x2x

2
4

+µ
(6)
40 x

6
1x2x

3
3 + µ

(7)
40 x

6
1x

2
2x3x4 + µ

(8)
40 x

5
1x3x

3
4 +O41

In [5], a unique normal form with respect to the classical degree up to the order 3 is
given (see Proposition 5.5 in [5]). The homogeneous part of both degree 2 and 3 has 5 terms
which are the same as in the above proposition.

References

[1] V. I. Arnold, Geometrical methods in the theory of ordinary differential equations, New
York, Springer-Verlag, 1983.

Unique Normal Forms for Nilpotent Vector Fields of Higher Dimensions 103

[2] A. Baider, Unique normal forms for vector fields and Hamiltonians, J. Diff. Equa. 78

(1989), 33-52.

[3] A. Baider and J. A. Sanders, Further reductions of the Takens-Bogdanov normal form,
J. Diff. Equa. 99 (1992), 205-244.

[4] G. Chen, Further reduction of normal forms for vector fields, Numer. Algo., 27 (2001),
1-33.

[5] G. Chen and J. Della Dora, An algorithm for computing a new normal form for dy-
namical systems, J. Symb. Comp., 29(3) (2000), 393-418.

[6] G. Chen, D. Wang and X. Wang, Unique normal forms for nilpotent planar vector
fields, Inter. J. Bifur. Chaos, 12 (2002), 2159-2174.

[7] R. C. Churchill and M. Kummer, A unified approach to linear and nonlinear normal
forms for Hamiltonian systems, J. Symb. Comp. 27 (1999), 49-131.

[8] H. Dulac, Solution d’un système d’équations différentielles dans le voisinage des valeurs
singulières, Bull. Soc. Math. France, 40 (1912), 324-383.

[9] G. Gaeta, Reduction of Poincaré normal forms, Lett. Math. Phys. 42 (1997), 103-114.

[10] H. Kokubu, H, Oka and D. Wang, Linear grading function and further reduction of
normal forms, J. Diff. Equa. 132 (1996), 293-318.

[11] H. Poincaré, Notes sur les propriétés des fonctions définies par des équations diffé-
rentielles, Journal de l’Ecole Polytechnique, 45e cahier, 1878, 13-26.

[12] F. Takens, Singularities of Vector Fields, Publ. Math., IHES 43 (1974), 47-100.

[13] S. Ushiki, Normal forms for singularities of vector fields, Japan J. Appl. Math. 1 (1984),
1-34.

[14] D. Wang, J. Li, M. Huang and Y. Jiang, Unique normal forms of Bogdanov-Takens
singularities, J. Diff. Equa., 163 (2000), 223-238.

[15] J. Yang, Polynomial normal forms for vector fields on R3, Duke Math. J., 106 (2000),
1-18.

[16] P. Yu and Y. Yuan, The simplest normal form associated with a triple zero eigenvalue
of indices one and two, Nonlinear Anal. 47 (2001), 1105-1116.

Guoting CHEN
Laboratoire P. Painlevé, UMR CNRS 8524,

UFR de Mathématiques, Université de Lille 1,
59655 Villeneuve d’Ascq, France

gchen@math.univ-lille1.fr

104 Chen Transgressive Computing

A New Operation on Words Suggested by DNA Biochemistry: Hairpin ... 105

A New Operation on Words Suggested by DNA Biochemistry:

Hairpin Completion

Daniela Cheptea Carlos Mart́ın-Vide Victor Mitrana

Abstract

In this paper we propose a new formal operation on words and languages suggested
by DNA manipulation, called hairpin completion. By this operation, based on a Watson-
Crick-like complementarity, one can generate a set of words, starting from a single
word. Specifically, starting from one single stranded molecule x such that either a
suffix or a prefix of x is complementary to a subword of x a new word z, which is a
prolongation of x to the right or to the left, respectively, is obtained by annealing. This
operation is considered here as an abstract operation on formal languages. We settle
the closure properties under the non-iterated version of this operation of some classes in
the Chomsky hierarchy as well as some complexity classes. Then the effect of iterated
version on the space complexity classes is investigated. As an immediate consequence,
one gets that the iterated hairpin completion of every regular language is polynomially
recognizable.

1 Introduction

A DNA molecule consists of a double strand, each DNA single strand being composed
by nucleotides which differ from each other by their bases: A (adenine), G (guanine), C
(cytosine), and T (thymine). The two strands which form the DNA molecule are kept
together by the hydrogen bond between the bases: A always bonds with T, while C with
G. This paradigm of Watson-Crick complementarity will be one of the main concepts used
in defining the formal operation of hairpin completion investigated in the present paper.

Two other biological principles used as sources of inspiration in this paper are that of
annealing and that of lengthening DNA by polymerases. The first principle refers to fusing
two single stranded molecules by complementary base pairing while the second one refers
to adding nucleotides to one strand (in a more general setting to both strands) of a double
stranded DNA molecule. The former operation requires a heated solution containing the
two strands which is cooled down slowly. The latter one requires two single strands such
that one (usually called primer) is bonded to a part of the other (usually called template)
by Watson-Crick complementarity and a polymerization buffer with many copies of the four
nucleotides that polymerases will concatenate to the primer by complementing the template.

On the other hand, it is known that a single stranded DNA molecule might produce a
hairpin structure. In many DNA-based algorithms, these DNA molecules cannot be used
in the subsequent computations. Hairpin or hairpin-free DNA structures have numerous

106 Cheptea et al. Transgressive Computing

applications to DNA computing and molecular genetics. In a series of papers (see, e.g.,
[4, 6, 7]) the problem of finding sets of DNA sequences which are unlikely to lead to “bad”
hybridizations is considered. On the other hand, these molecules which may form a hairpin
structure have been used as the basic feature of a new computational model reported in [16],
where an instance of the 3-SAT problem has been solved by a DNA-algorithm in which the
second phase is mainly based on the elimination of hairpin structured molecules. Different
types of hairpin and hairpin-free languages are defined in [14], [3], and more recently in [10],
where they are studied from a language theoretical point of view.

We now informally explain the hairpin completion operation and how it can be related
to the aforementioned biological concepts. Let us consider the following hypothetical bio-
logical situation: we are given one single stranded DNA molecule z such that either a prefix
or a suffix of z is Watson-Crick complementary to a subword of z. Then the prefix or suffix
of z and the corresponding subword of z get annealed by complementary base pairing and
then z is lengthened by DNA polymerases up to a complete hairpin structure. The mathe-
matical expression of this hypothetical situation defines the hairpin completion operation.
Assume that we have an alphabet and a complementary relation on its letters. The hairpin
completion operation, which is a unary operation, might be defined as follows:

(i) a word w = αβαRγ in which a hairpin structure determined by the complementarity
of α and αR appears produces the new word γRαβαRγ.

(ii) a word w = γαβαR in which a hairpin structure determined by the complementarity
of α and αR appears produces the new word γαβαRγR.

This operation is schematically illustrated in Figure 1.

α

βαRγ

γR

Figure 1: Hairpin completion

α

βαRγR

γ

Of course, all these phenomena are considered here in an idealized way. For instance, we
allow polymerase to extend in either end (3’ or 5’) despite that, due to the greater stability
of 3’ when attaching new nucleotides, DNA polymerase can act continuously only in the
5’−→ 3’ direction. However, polymerase can also act in the opposite direction, but in short
“spurts” (Okazaki fragments). Moreover, in order to have a “stable” hairpin structure the
subword x should be sufficiently long.

This operation is considered here as an abstract operation on formal languages. This
line of research lies within a vividly investigated area, that of operations on words and
languages suggested and motivated by the biocomputing and bioinformatics fields:

sticking investigated in [9, 5, 12] (a particular type of polyominoes with sticky ends are
combined provided that the sticky ends are Watson-Crick complementary),

PA-matching considered in [11] which is related to both the splicing (an operation intro-
duced in [8] that opened a broad area of intensive research) and the annealing operations,

A New Operation on Words Suggested by DNA Biochemistry: Hairpin ... 107

superposition operation introduced in [1] (two words which may contain transparent
positions are aligned one over the other and the resulting word is obtained by reading the
visible positions as well as aligned transparent positions). A rather different superposition
based on a Watson-Crick-like complementarity is proposed in [2], where one generates a set
of words, starting from a pair of words, in which the contribution of a word to the result
need not be one subword only, as happens in classical bio-operations of DNA computing
[13].

The paper is organized as follows: the next section gives the definitions of the basic
notions and concepts. Then we consider the non-iterated hairpin completion and show that
the hairpin completion of a regular language is not necessarily regular but context-free,
while the hairpin completion of a context-free is not necessarily context-free but context-
sensitive. Actually, we prove that each space complexity class NSPACE(f(n)) is closed
under hairpin completion as soon as f(n) ≥ logn is space-constructible. Moreover, both
time complexity classes P and NP are closed under hairpin completion. The last section
presents two results concerning iterated hairpin completion. The first one extends the
results regarding the behavior of space complexity classes under hairpin completion to the
iterated version. As a consequence, we obtain that the iterated hairpin completion of every
regular language is polynomially recognizable.

2 Preliminaries

We assume the reader to be familiar with the fundamental concepts of formal language
theory and automata theory, particularly the notions of grammar and finite automaton
[15].

An alphabet is always a finite set of letters. For a finite set A we denote by card(A)
the cardinality of A. The set of all words over an alphabet V is denoted by V ∗. The empty
word is written ε; moreover, V + = V ∗ \ {ε}. Given a word w over an alphabet V , we
denote by |w| its length, while |w|a denotes the number of occurrences of the letter a in w.
If w = xyz for some x, y, z ∈ V ∗, then x, y, z are called prefix, subword, suffix, respectively,
of w.

Let Ω be a “superalphabet”, that is an infinite set such that any alphabet considered
in this paper is a subset of Ω. In other words, Ω is the universe of the languages in this
paper, i.e., all words and languages are over alphabets that are subsets of Ω. An involution
over a set S is a bijective mapping σ : S −→ S such that σ = σ−1. Any involution σ on
Ω such that σ(a) 6= a for all a ∈ Ω is said to be here a Watson-Crick involution. Despite
that this is nothing more than a fixed point-free involution, we prefer this terminology since
the hairpin completion defined later is inspired by the DNA lengthening by polymerases,
where the Watson-Crick complementarity plays an important role. Let · be a Watson-Crick
involution fixed for the rest of the paper. The Watson-Crick involution is extended to a
morphism from Ω∗ to Ω∗ in the usual way. We say that the letters a and a are complementary
to each other. For an alphabet V , we set V = {a | a ∈ V }. Note that V and V can intersect
and they can be, but need not be, equal. Remember that the DNA alphabet consists of

108 Cheptea et al. Transgressive Computing

four letters, VDNA = {A,C,G, T}, which are abbreviations for the four nucleotides and we
may set A = T , C = G.

We denote by (·)R the mapping defined by R : V ∗ −→ V ∗, (a1a2 . . . an)R = an . . . a2a1.
Note that R is an involution and an anti-morphism ((xy)R = yRxR for all x, y ∈ V ∗). Note
also that the two mappings · and ·R commutes, namely, for any string x, (x)R = xR holds.

A finite transducer is a 6-tuple M = (Q,Vi, Vo, q0, F, δ) where Q,Vi, Vo are finite and
nonempty sets (the set of states, the input alphabet, and the output alphabet, respectively),
q0 ∈ Q (the initial state), F ⊆ Q (the set of final states), and δ is the (transition-and-output)
function from Q × (Vi ∪ {ε}) to finite subsets of Q × V ∗

o . This function is extended in a
natural way to Q× V ∗

i . Every finite transducer M as above defines a finite transduction

M(α) = {β ∈ V ∗
o | there exists q ∈ F such that (q, β) ∈ δ(q0, α)}, α ∈ V ∗

i .

If M(α) 6= ∅, then we say that α is “accepted” by M . The language accepted by a finite
transducer M is the set of all α such that M(α) 6= ∅. The finite transduction M is extended
to languages L ⊆ V ∗

i in the obvious way, namely M(L) =
⋃

α∈LM(α). If we ignore Vo and
the output part of δ, then we obtain a finite automaton (with ε moves). A finite automaton
is denoted (Q,V, q0, F, δ). A language is regular iff it is accepted by a finite automaton.

Definition 2.1. Let V be an alphabet, for any w ∈ V + we define the k-hairpin completion
of w, denoted by →k, for some k ≥ 1, as follows:

w ⇀k = {γRw|w = αβαRγ, |α| = k, α, β ∈ V +, γ ∈ V ∗}
w ⇁k = {wγR|w = γαβαR, |α| = k, α, β ∈ V +, γ ∈ V ∗}
w →k = w ⇀k ∪w ⇁k

The hairpin completion of w is defined by

w → =
⋃

k≥1

w→k .

Clearly, w →k+1⊆ w →k for any w ∈ V + and k ≥ 1, hence w →= w →1. The hairpin
completion operation is naturally extended to languages by

L→k =
⋃

w∈L

w →k L→ =
⋃

w∈L

w → .

The iterated version of the hairpin completions is defined as usual by:

w(→k)0 = {w}, w(→k)n+1 = (w(→k)n)→k, w(→k)
∗ =

⋃
n≥0w(→k)n

w(→)0 = {w}, w(→)n+1 = (w(→)n)→, w(→)∗ =
⋃

n≥0 w(→)n

L(→k)
∗ =

⋃
w∈Lw(→k)

∗ L(→)∗ =
⋃

w∈Lw(→)∗.

A New Operation on Words Suggested by DNA Biochemistry: Hairpin ... 109

3 Non-iterated Hairpin Completion

In this section we consider the non-iterated hairpin completion as a formal operation on
languages. A family of languages F is closed under hairpin completion if the hairpin com-
pletion of any language from F lies in F . We show that the class of regular and context-free
languages are not closed under hairpin completion but almost all space complexity classes
are closed under hairpin completion.

Theorem 3.1. For any integer k ≥ 1, a language is linear if and only if it is the morphic
image of the k-hairpin completion of a regular language.

Proof. Let k ≥ 1 and L be a regular language over the alphabet V . Let further α be a word in
V ∗ of length k. We define the following two languages Lr(α) = L∩{γαβαR|β ∈ V +, γ ∈ V ∗}
and Ll(α) = L∩ {αβαRγ|β ∈ V +, γ ∈ V ∗} which are obviously regular languages. One can
easily observe that

L→k=
⋃

α∈V ∗, |α|=k

((Lr(α) ⇁k) ∪ (Ll(α) ⇀k)).

We prove that both languages Lr(α) ⇁k and Ll(α) ⇀k are linear for every α ∈ V ∗ with
|α| = k, therefore L→k is still linear as a finite union of linear languages. To this aim, we
construct a linear grammar generating Lr(α) ⇁k for an arbitrary α of length k. A similar
construction for the language Ll(α) ⇀k is left to the reader.

Let G = (N,V, S, P) be a regular grammar generating Lr(α). We define the linear
grammar G′ = (N ′, V ∪ V , S, P ′), where:

N ′ = N ∪ {A′ | A ∈ N} ∪ (N × {[x] | x is a suffix of α}) ∪
(N × {〈x〉 | x is a suffix of αR}),

and the set of rules P ′ is defined as follows:

• For each rule A→ aB ∈ P the set P ′ contains all rules:

A→ aBa A→ a(B, [α])a
(A, [ax])→ a(B, [x]), x ∈ V + (A, [a])→ aB′

A′ → aB′ A′ → a(B, 〈αR〉)
(A, 〈ax〉) → a(B, 〈x〉), x ∈ V ∗

• For each rule A→ a ∈ P the set P ′ contains the rule (A, 〈a〉)→ a.

For any γαβαRγR ∈ Lr(α) ⇁k, the string γαβαR ∈ Lr(α), hence γαβαR is generated
by G. Note that β 6= ε. It follows that S =⇒∗ γA1 =⇒∗ γαA2 =⇒∗ γαβA3 =⇒∗ γαβαR

and the following derivation is possible in G′:

S =⇒∗ γ(A1, [α])γR =⇒∗ γαA′
2γ

R =⇒∗ γαβ(A3, 〈αR〉)γR =⇒∗ γαβαRγR.

110 Cheptea et al. Transgressive Computing

This means that γαβαRγR is generated by G′. The converse inclusion, namely L(G′) ⊆
Lr(α) ⇁k, is left to the reader. The first part of the proof is complete as soon as we recall
that the class of linear languages is closed under morphisms.

Now, for a linear language L generated by a linear grammar G = (N,V, S, P) we con-
struct a regular language R and a morphism h such that L = h(R →k). Without loss of
generality we may assume that V ∩ V = ∅. Let G′ = (N,V ∪ V ∪ {#,#, $}, S, P ′) be the
right-linear grammar having the set P ′ defined as follows:

P ′ = {A→ xyRB | A→ xBy ∈ P} ∪ {A→ x#k$#
k | A→ x ∈ P}.

The regular language R we are looking for is exactly the language generated by G′. Clearly,
every word w ∈ R→k is of the form

w = x1y1
Rx2y2

R . . . xpyp
Rxp+1#

k$#
k
xp+1

Rypxp
R . . . y2x2

Ry1x1
R

for some p ≥ 0 and x1x2 . . . xpxp+1yp . . . y2y1 ∈ L. We now define the morphism h :
(V ∪ V ∪ {#,#, $})∗ −→ V ∗ by h(a) = a for any a ∈ V and h(b) = h(#) = h($) = ε for
any b ∈ V , which completes the proof.

As an immediate consequence we have:

Theorem 3.2. The hairpin completion of a regular language is not necessarily regular but
always linear.

Proposition 3.3. 1. For any k ≥ 1, there is a context-free language L such that L→k is
not context-free.

2. For any k ≥ 1 and any context-free language L, L→k is context-sensitive.

Proof. 1. Let L = {wawRbkcbk|w ∈ {0, 1}}; clearly, L →k= {wawRbkcbkwawR}. We
informally define a finite transducer working as follows:

• The first segment consisting of 0, 1 of the input word, as well as the next a, remain
unchanged.

• Then, the transducer removes all symbols until an occurrence of b is met before a
symbol in the alphabet {0, 1}.

• Now, the transducer copy the segment of 0, 1 until an a is read.

• The rest of the input word is removed.

The reader can easily write the formal details of this transducer. By applying this transducer
to L→k, one gets {waw | w ∈ 0, 1} which is a well-known non-context-free language.

2. The second assertion follows immediately by showing that L→k∈ NSPACE(n).
We infer as above that:

Theorem 3.4. The hairpin completion of a context-free language is not necessarily context-
free but always context-sensitive.

A New Operation on Words Suggested by DNA Biochemistry: Hairpin ... 111

It is known that the class of context-sensitive languages is a space complexity class, by
the above proof (see also the proof of Theorem 4.1) we can state that such classes are closed
under hairpin completion.

Theorem 3.5. NSPACE(f(n)), where f(n) ≥ log n is a space-constructible function, is
closed under hairpin completion.

The case of time complexity classes is slightly different, namely:

Proposition 3.6. 1. If L ∈ NTIME(f(n)), then L→k∈ NTIME(nf(n)) for any k ≥ 1.
2. If L ∈ DTIME(f(n)), then L→k∈ DTIME(nf(n)) for any k ≥ 1.

Proof. Let k ≥ 1, L ⊆ V ∗, and w ∈ V ∗. We prefer to give the argument in the form of a
recognizing algorithm for the language L ⇁k which can be easily implemented on a Turing
machine.

Algorithm 3.7.

i := 1;
while (i+ k + 1 ≤ n− i− k)

if (w[1..i + k] = w[n − k − i+ 1..n]R) and (w[1..n − i] ∈ L)
then Output : w ∈ L ⇁k; halt
else i := i+ 1

endif
endwhile
Output : w /∈ L ⇁k

In this algorithm, w[i..j] denotes the subword of w starting at position i and ending at
position j, 1 ≤ i ≤ j ≤ |w|. Since a similar recognizer can be designed for the language
L ⇀k, we are done.

As an immediate consequence, we state:

Theorem 3.8. Both classes P and NP are closed under hairpin completions.

We finish this section by pointing out two open problems:
1. Is it decidable whether or not the hairpin completion of a given regular language is

regular?
2. Is the n factor needed in Proposition 3.6?

4 Iterated Hairpin Completion

Theorem 4.1. NSPACE(f(n)), where f(n) ≥ log n is a space-constructible function, is
closed under iterated hairpin completion.

Proof. Let us consider the following recursive boolean function which determines whether
or not a given word x is in L(→k)

∗:

112 Cheptea et al. Transgressive Computing

Algorithm 4.2.

Function Membership(x,L(→k)
∗);

Membership:=false;
if x ∈ L then Membership:=true; endif; halt;
if (|x| ≤ 2k) and (x /∈ L) then halt; endif;
choose nondeterministically a decomposition x = γαβαRγR, with βγ 6= ε and |α| = k;
if (Membership(γαβαR, L(→k)∗) or Membership(αβαRγR, L(→k)

∗))
then Membership:=true; halt; endif;

This function can clearly be implemented on an off-line nondeterministic (multi-tape)
Turing machine in f(n) space provided that L is accepted by an off-line nondeterministic
(multi-tape) Turing machine in f(n) space.

Note that log n is needed in order to store the left- and right-hand border of the current
subword within the input word. By finite state one can keep track of whether or not this
subword is complemented.

By Theorem 3.2, the hairpin completion of a regular language is not necessarily regular
but always linear. A natural question regards the iterated hairpin completion of a regular
language. Is this language regular or still linear?

Proposition 4.3. For any k ≥ 1, the iterated k-hairpin completion of a regular language
is not necessarily context-free.

Proof. Let L = {akbakcnak | n ≥ 1} be a regular language, where a, b, c are letters. It is
easy to note that

(L(→k)
∗) ∩R = {akcnakcnakbakcnak | n ≥ 1},

provided that R is the regular language R = {akcnakcmakbakcpak | n,m, p ≥ 1}. As
(L(→k)

∗) ∩R is obviously not context-free, we are done.
However the iterated k-hairpin completion of a regular language is always recognizable

in polynomial time.

Theorem 4.4. If L is a regular language, then L(→k)
∗ ∈ P for any k ≥ 1.

Proof. The statement follows from Theorem 4.1 and the inclusionNSPACE(logn) ⊆P.
The following final problem which remains unsolved naturally arises: Can the last the-

orem be extended to any language in P? In other words, is P closed under iterated hairpin
completion?

References

[1] P. Bottoni, G. Mauri, P. Mussio, Gh. Păun, Grammars working on layered strings,
Acta Cybernetica, 13(1998), 339–358.

[2] P. Bottoni, A. Labella, V. Manca, V. Mitrana, Superposition based on Watson-Crick-
like complementarity, Theory of Computing Systems (to appear).

A New Operation on Words Suggested by DNA Biochemistry: Hairpin ... 113

[3] J. Castellanos, V. Mitrana, Some remarks on hairpin and loop languages, Words, Semi-
groups, and Tranlations, (M. Ito, Gh. Păun, S. Yu, eds.), World Scientific, Singapore,
2001 47–59.

[4] R. Deaton, R. Murphy, M. Garzon, D.R. Franceschetti, S.E. Stevens, Good encodings
for DNA-based solutions to combinatorial problems, Proc. of DNA-based computers II,
(L.F. Landweber, E. Baum, eds.), DIMACS Series, vol. 44, 1998, 247–258.

[5] R. Freund, Gh. Păun, G. Rozenberg, A. Salomaa, Bidirectional sticker systems, Third
Annual Pacific Conf. on Biocomputing, Hawaii, 1998 (R.B. Altman, A.K. Dunker, L.
Hunter, T.E. Klein, eds.), World Scientific, Singapore, 1998, 535–546.

[6] M. Garzon, R. Deaton, P. Neathery, R.C. Murphy, D.R. Franceschetti, E. Stevens, On
the encoding problem for DNA computing, The Third DIMACS Workshop on DNA-
Based Computing, Univ. of Pennsylvania, 1997, 230–237.

[7] M. Garzon, R. Deaton, L.F. Nino, S.E. Stevens Jr., M. Wittner, Genome encoding for
DNA computing, Proc. Third Genetic Programming Conference, Madison, MI, 1998,
684–690.

[8] T. Head, Formal language theory and DNA: an analysis of the generative capacity of
recombinant behaviors, Bulletin of Mathematical Biology, 49(1987), 737–759.

[9] L. Kari, Gh. Păun, G. Rozenberg, A. Salomaa, S. Yu, DNA computing, sticker systems,
and universality, Acta Informatica, 35, 5(1998), 401–420.

[10] L. Kari, S. Konstantinidis, P. Sosk, G. Thierrin, On hairpin-free words and languages,
Proc. Developments in Language Theory 2005 (C. De Felice, A. Restivo, eds.), LNCS
3572, Springer-Verlag, Berlin, 2005, 296-307.

[11] S. Kobayashi, V. Mitrana, Gh. Păun, G. Rozenberg, Formal properties of PA-matching,
Theoretical Comput. Sci., 262, 1-2(2001), 117–131.

[12] Gh. Păun, G. Rozenberg, Sticker systems, Theoret. Comput. Sci., 204(1998), 183–203.

[13] Gh. Păun, G. Rozenberg, and A. Salomaa, DNA Computing. New Computing
Paradigms, Springer-Verlag, Berlin, 1998, Tokyo, 1999.

[14] Gh. Păun, G. Rozenberg, T. Yokomori, Hairpin languages, Intern. J. Found. Comp.
Sci. 12, 6(2001), 837–847.

[15] G. Rozenberg, A. Salomaa, Eds., Handbook of Formal Languages, 3 volumes, Springer-
Verlag, Berlin, Heidelberg, 1997.

[16] K. Sakamoto, H. Gouzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yokomori, and M.
Hagiya, Molecular computation by DNA hairpin formation, Science 288(2000), 1223–
1226.

114 Cheptea et al. Transgressive Computing

Daniela Cheptea

Faculty of Mathematics and Computer Science
University of Bucharest

Str. Academiei 14, 010014, Bucharest, Romania
dcheptea@funinf.cs.unibuc.ro

Carlos Mart́ın-Vide

Research Group in Mathematical Linguistics
Rovira i Virgili University

Pl. Imperial Tarraco 1, 43005, Tarragona, Spain
carlos.martin@urv.net

Victor Mitrana

Faculty of Mathematics and Computer Science
University of Bucharest

Str. Academiei 14, 010014, Bucharest, Romania
and

Research Group in Mathematical Linguistics
Rovira i Virgili University

Pl. Imperial Tarraco 1, 43005, Tarragona, Spain
mitrana@fmi.unibuc.ro

Decision Problems for CD Grammar Systems and Grammars with Regulated ... 115

Decision Problems for CD Grammar Systems and Grammars

with Regulated Rewriting

Liliana Cojocaru

Abstract

In this paper we deal with cooperating distributed grammar systems (henceforth
CD grammar systems) that work under a powerful protocol, recently introduced in
[2]. The new protocol is based on the level of competence of a component to rewrite
a certain number of nonterminals occurring in the underlying sentential form. We
tackle the particular case of {≤ 1,= 1}-competence mode, for which we propose two
coverability structures, the coverability tree and the twin coverability tree associated
to the derivations in a CD grammar system working in {≤ 1,= 1}-competence mode.
The coverability tree structure has been adopted from Petri nets theory, and due to
the finiteness property that it has, it turned out to be a strong tool in solving decision
problems. Analysing the structure of the coverability tree and of the twin coverability
tree we solve several decision problems such as emptiness, finiteness, boundedness and
reachability problems for the above mentioned competence-based protocol. In [2] it has
been proved that there exists a strong relation between CD grammar systems working
in {≤ 1,= 1}-competence mode and forbidding random context grammars. Due to
this, the decidability results we have found have positive consequences upon several
decision problems left open in [10], for several grammars with regulated rewriting, such
as forbidding random context grammars and ordered grammars.

Introduction

A cooperating distributed grammar system is a set of Chomsky grammars that work sequen-
tially on a common sentential form according to a specified protocol of cooperation. At
a given moment only one component is active. The protocol decides which component is
active or idle. It gives running and stop conditions depending on the mode of derivation
used by the system. The system models the blackboard architecture in cooperative prob-
lem solving, in which the blackboard is the common working tape and the components are
knowledge sources (agents, processors, abstract computers, etc.). For the formal definition
and basic results related to CD grammar systems the reader is referred to [5], [7] and [8].

Recently, a new cooperation protocol, based on the level of competence of a component to
rewrite a certain number of different nonterminals on a sentential form has been introduced
in [2] and [6] with several forerunner related papers [3], [1]. Several variations on the same
theme have been considered in [9], in which the author deals with CD grammar systems
with start and stop conditions that work in maximal or full competence mode.

116 Cojocaru Transgressive Computing

In the case of {≤ k,= k,≥ k}-competence based protocols the common sentential form
is divided into pieces of work distributed rewritten by those components of the CD grammar
system that are {≤ k,= k,≥ k}-competent to proceed the derivation, k ≥ 1. With respect
to the cooperation protocol defined in [2], a component is ≤ k-competent, = k-competent
or ≥ k-competent, k ≥ 1, on a certain sentential form if it is able to rewrite at most, exactly,
or at least k distinct nonterminals occurring in the sentential form, respectively. Once a
component starts to be f -competent on a sentential form, it has to continue the derivation
as long as it is f -competent, f ∈ {≤ k,= k,≥ k}, k ≥ 1, on the newest sentential form.
The formal definition of competence-based protocols is provided in Section 1.

In [2] it is proved that competence-based protocols lead CD grammar systems to work
at least at the level of forbidding random context grammars for the case of {≤ 1,= 1}-
competence mode, at the level of ET0L systems for ≥ 1-competence mode, and at the level
of random context ETOL systems for ≥ k-competence mode, k ≥ 2. Finally, they are as
powerful as random context grammars for the case of {≤ k,= k}-competence mode, k ≥ 2,
i.e., they characterize the class of recursively enumerable languages.

In this paper we focus on a structural characterization of CD grammar systems that
work in {≤ 1,= 1}-competence mode, by means of the coverability tree-structure associated
to the derivations in such a system. This structure has been firstly introduced in [14], under
the name of reachability tree, in order to study the reachability problem for vector addition
systems. It has been adopted afterwards in Petri nets theory under the name of coverability
tree, where the structure provides a finite representation of every reachable marking in a
Petri net. Informally, the coverability tree is a method that consists of the reduction of an
infinite structure (as a derivation in a grammar system) to a finite one.

Besides the coverability tree, that gives a structural representation of the variation of the
number of nonterminals in the underlying sentential form, we introduce also the twin cover-
ability tree associated with a coverability tree for a certain CD grammar system that works in
{≤ 1,= 1}-competence mode. The twin coverability tree, offers a structural representation
of the number of terminal symbols pumped into the underlying sentential form at each step
of derivation. The formal definitions of these coverability trees for CD grammar systems
working in {≤ 1,= 1}-competence mode, are presented in Section 2. We give also several
examples that illustrate the manner in which we build these tree-structures. We prove in
Section 3.1 that these tree structures are well defined, i.e., they give a good representation
of CD grammar systems behaviour and that they are always finite. Therefore they can be
used as an analysis tool to check properties of grammar systems. Analysing the structure of
these trees, we solve in Section 3.2 several decision problems, such as emptiness, finiteness,
boundedness or reachability for CD grammar systems working in {≤ 1,= 1}-competence
mode. Furthermore, in [2] it has been proved, using a constructive method, that the class
of languages generated by CD grammar systems that work in the {≤ 1,= 1}-competence
mode includes the class of languages generated by forbidding random context grammars.
With an affirmative answer for the emptiness and finiteness problems for CD grammar sys-
tems that work in the {≤ 1,= 1}-competence mode we study in Section 4 the above decision
problems for several grammars with regulated rewriting, such as forbidding random context
grammars and ordered grammars.

Decision Problems for CD Grammar Systems and Grammars with Regulated ... 117

1 CD grammar systems working in competence mode

The aim of this section is to introduce the basic notions that concern CD grammar systems
that work in competence mode. Several basic results and a setting of the notations of
concepts from the topic covered in this paper will be given, too. For further information
the reader is referred to [8] and [12]. Let X be an alphabet, always composed of a finite set
of letters, |X| be the cardinal number of the set X, and X∗ be the set of all strings over
the alphabet X. The empty word is denoted by λ, and the number of occurrences of the
symbol a ∈ X in the string w ∈ X∗ is denoted by |w|a.

Definition 1.1. A cooperating distributed grammar system of degree s, is an (s+ 3)-tuple
Γ = (N,T, α, P1, ..., Ps), where N and T are disjoint alphabets, the nonterminal and the
terminal alphabet, respectively. P1, ..., Ps are finite sets of context-free rules over N × (N ∪
T)∗, called the system components, and α ∈ (N ∪ T)∗ is the system axiom.

Definition 1.2. Let Γ = (N,T, α, P1, ..., Ps) be a CD grammar system and dom(Pi) =
{A ∈ N |A → z ∈ Pi} be the domain of the component Pi, 1 ≤ i ≤ s. We say that Pi is
k-competent on a sentential form x, x ∈ (N ∪ T)∗, if and only if |alphN (x)∩ dom(Pi)| = k,
where alphN (x) = {A ∈ N ||x|A > 0}.

In the sequel we denote by clevi(x) the level of competence of the component Pi on x.
The cooperation protocol, based on the capability of a component Pi, 1 ≤ i ≤ s, to be
≤ k-competent, = k-competent, ≥ k-competent on a sentential form x, x ∈ (N ∪ T)∗, is
defined in [2] as follows.

Definition 1.3. Let Γ = (N,T, α, P1, ..., Ps) be a CD grammar system, x, y ∈ (N ∪ T)∗,
1 ≤ i ≤ s.
1. We say that y is derived from x in the ≤ k-competence mode of derivation, denoted by
x⇒≤k-comp.

i y, iff there exists a derivation x = x0 ⇒i x1 ⇒i ...⇒i xm−1 ⇒i xm = y
such that (a) clevi(xj) ≤ k for 0 ≤ j < m and (i) clevi(xm) = 0 or (ii) y ∈ T ∗, or

(b) clevi(xj) ≤ k for 0 ≤ j < m and clevi(xm) > k.
2. We say that y is derived from x in the = k-competence mode of derivation, denoted by
x⇒=k-comp.

i y, iff there exists a derivation x = x0 ⇒i x1 ⇒i ...⇒i xm−1 ⇒i xm = y
such that (a) clevi(xj) = k for 0 ≤ j < m and clevi(xm) 6= k or

(b) clevi(x0) = k, clevi(xj) ≤ k for 1 ≤ j ≤ m and y ∈ T ∗.
3. We say that y is derived from x in the ≥ k-competence mode of derivation, denoted by
x⇒≥k-comp.

i y, iff there exists a derivation x = x0 ⇒i x1 ⇒i ...⇒i xm−1 ⇒i xm = y
such that (a) clevi(xj) ≥ k for 0 ≤ j < m and clevi(xm) < k or

(b) clevi(x0) ≥ k and y ∈ T ∗.

Let M = {≤ k-comp.,= k-comp.,≥ k-comp.|k ≥ 1}, and let ⇒f denote ⇒f
i , for some i,

1 ≤ i ≤ s, f ∈M . We denote by ⇒∗f the reflexive and transitive closure of ⇒f .

Definition 1.4. The language generated by Γ in f -mode of derivation, f ∈M , is
Lf (Γ) = {w ∈ T ∗|α⇒∗f w}.

118 Cojocaru Transgressive Computing

The family of languages generated by CD grammar systems in f -mode, f ∈ M , is
denoted by L(CD, CF, f).

Definition 1.5. The Parikh vector associated with a string x ∈ X∗ with respect to the
alphabet X = {a1, a2, ..., ap} is ΨX(x) = (|x|a1 , |x|a2 , ..., |x|ap).

Definition 1.6. Let Γ = (N,T, α, P1, ..., Ps) be a CD grammar system and let Lf (Γ) be
the language generated by Γ in f -mode, f ∈ M . The set of all sentential forms obtained
during terminal derivations of a word w ∈ Lf (Γ), is denoted by

Sf (Γ, w) = {x|α⇒∗f x⇒∗f w,w ∈ Lf (Γ)}.
We denote by Sf (Γ) the set of all sentential forms obtained during the derivation process
of Lf (Γ), i.e., Sf (Γ) = {x|x ∈ Sf (Γ, w), w ∈ Lf (Γ)}.

The sentential form Parikh set associated to the language Lf (Γ), with respect to the
nonterminals alphabet N , starting with the axiom α, is the set of all Parikh vectors asso-
ciated with all possible sentential forms obtained during the derivation process of Lf (Γ).

The sentential form Parikh set associated with Lf (Γ), with respect to the nonterminal
alphabet N , is denoted by ΨN (Sf (Γ)) = {ΨN (x)|x ∈ Sf (Γ)}.

The sentential form Parikh set associated with Lf (Γ), with respect to the terminal
alphabet T , is analogously defined as ΨT (Sf (Γ)) = {ΨT (x)|x ∈ Sf (Γ)}.

2 Coverability trees for competence-based protocols

The coverability tree is a state-based structure intensively used to solve decision problems for
Petri nets. It is built starting from the initial state of the Petri net by exhaustively building
the reachable state space. Through the special symbol ω, representing the marking of an
unbounded transition node, the method functions also for unbounded nets. Thus, the set of
natural numbers N is extended to the set Nω = N ∪ {ω} defined by the arithmetical rules
ω + ω = ω + a = a+ ω = ω, ω − a = ω, ω · a = a · ω = ω for a ∈ N and a < ω.

Furthermore, we consider Nωt = N ∪ {ωt}, where ωt is a marked ω symbol used in the
construction of the coverability tree for CD grammar systems working in {≤ 1,= 1}-comp.-
mode. The addition and multiplication operations are defined for this special symbol as
follows: ωt+a = a+ωt = a, ωt+ωt = ωt, ωt +ω = ω+ωt = ω, ωt ·a = a ·ωt = ωt ·ωt = ωt,
for a ∈ N, and ωt < 1 ≤ a < ω. We denote by N{ω,ωt} = N ∪ {ω, ωt}. Observe that, by
definition ω and ωt cannot be decreased. The above operations defined on Nω, Nωt and
N{ω,ωt} can be extended in the same way for the space Nm

ω , Nm
ωt

and Nm
ω,ωt

, respectively.

For each U ∈ Nm
ω,ωt

we denote by U(j) the jth place of U . We say that between two
vectors U , V ∈ Nm

ω,ωt
, holds the relation U ≤ V , if and only if U(j) ≤ V (j), for 1 ≤ j ≤ m.

Due to many similarities that exist between distributed grammar systems and Petri nets,
the coverability tree-based method has been proved to be a strong decidability tool in the
theory of grammar systems, too. It has been already applied for parallel communicating
grammar systems in [20], [21], [16] and for cooperating distributed grammar systems in
[17], [18]. Our solution in solving decidability problems for CD grammar systems working
in {≤ 1,= 1}-comp.-mode is based on the same approaching.

Decision Problems for CD Grammar Systems and Grammars with Regulated ... 119

To have a better picture upon the way in which the coverability tree associated to the
derivations in a CD grammar system that work in {≤ 1,= 1}-comp.-mode is built, we
recall that for the = 1-comp.-mode a component is not allowed to perform a derivation
step if two or more than two different nonterminals occur in the current sentential form.
These nonterminals have to be rewritten by other components that are = 1-competent
on that sentential form, otherwise the derivation cannot continue anymore. However, a
component is allowed to keep on rewriting nonterminals as long as it is competent on the
newest sentential form. So that once a component becomes = 1-competent, it will be active
as long as the component is = 1-competent on the newest sentential form.

The ≤ 1-comp.-mode works in the same manner, with the difference that this protocol
can delay the process of derivation due to the freedom property to not rewrite nonterminals
on a given sentential form. This property has consequences only on the length of derivation.
It does not change the language, so that we have L(CD,CF,≤ 1-comp)= L(CD,CF, = 1-
comp).

Let Γ = (N,T, α, P1, ..., Ps) be a CD grammar system with s components, s ≥ 1,
N = {A1, A2, ..., Am} be the ordered set of nonterminal symbols, |N | = m, m ≥ 1, and
T = {a1, a2, ..., ap} be the ordered set of terminal symbols, |T | = p, p ≥ 1.

Let L = {1, 2, ..., s} be the set of labels attached to the system components. For each
component Pi, i ∈ L, we denote by Li = {1, 2, ..., |Pi |} the set of labels attached to pro-
ductions in Pi, where |Pi| is the number of rules of Pi. We denote by L the set of all pairs
(i, j) ∈N2 such that i ∈ L and j ∈ Li.

To any context-free rule r, of the form lhs(r) → rhs(r) we attach two vectors ∆r ∈
(N ∪ {−1})m, and ∆r,t ∈ Np, defined as:

∆r = (|rhs(r)|A1 − |lhs(r)|A1 , |rhs(r)|A2 − |lhs(r)|A2 , ..., |rhs(r)|Am − |lhs(r)|Am),
∆r,t = (|rhs(r)|a1 , |rhs(r)|a2 , ..., |rhs(r)|ap).

The sequential behaviour of Γ, working in {≤ 1,= 1}-comp.-mode, is characterized by
the next firing rules adopted from Petri net theory (see [19]).

The {≤ 1,= 1}-enabling rule:
The element ϑ ∈ L, ϑ = (i, j), i ∈ L, j ∈ Li, is enabled at the vector V ∈ Nm

ω,ωt
, abbreviated

V [ϑ〉Γ, if V (q) ≥ |lhs(r)|Aq , Aq ∈ dom(Pi), 1 ≤ q ≤ m, where r is the production from Pi
labeled by j, and there is no other place q′ in V , q 6= q′, such that V (q′) ≥ |lhs(r′)|A′

q
, A′

q ∈
dom(Pi), r

′ ∈ Pi.
The {≤ 1,= 1}-computing rule:

If V [ϑ〉Γ then ϑ may occur yielding a new vector V ′, computed with respect to the rule
r ∈ Pϑ(1), labeled by ϑ(2), nondeterministically chosen from Pϑ(1), with respect to the
{≤ 1,= 1}-enabling rule, to rewrite the nonterminal Aq. V

′ is defined by V ′ = V + ∆r. We
abbreviate this computing rule by V [ϑ〉ΓV ′.

Note that, due to the inequalities that characterize the ωt symbol, i.e., ωt < 1 ≤ a < ω,
the relation V (q) ≥ |lhs(r)|Aq , Aq ∈ dom(Pi), r a production in Pi, 1 ≤ i ≤ s, never
holds for V (q) = ωt. That is why enabling rules depend only on those values of V (q)
that are in Nω. Furthermore, if more than one component Pi, 1 ≤ i ≤ m, satisfies the
{≤ 1,= 1}-computing rule, then at a vector V ∈ Nm

ω,ωt
more than one vector ϑ ∈ L might

be enabled.

120 Cojocaru Transgressive Computing

Definition 2.1. The coverability tree attached to a grammar system Γ working in {≤ 1,=
1}-comp.-mode, is a rooted tree B(Γ) = (V, E), in which the vertices are elements in Nm

ω,ωt

and the edges are elements in L. The set of nodes and edges are defined as follows:
1) The root v0 is labeled by the Parikh vector, ΨN (α) associated to the system axiom

α, such that there is at least one element ϑ ∈ L, {≤ 1,= 1}-enabled at the vector ΨN (α).
The children of v0 are nodes labeled by those vectors ΨN (α′) such that ΨN (α)[ϑ〉ΓΨN (α′)
and ΨN (α′) = ΨN (α) + ∆r, where r is the rule labeled by ϑ(2) from Pϑ(1). In this case ϑ
is the label of the edge from v0 to its child labeled by ΨN (α′).

2) For any v ∈ V, v 6= v0, labeled by a vector ΨN (ᾱ) ∈ Nm
ω,ωt

, there is at least one
element ϑ ∈ L, {≤ 1,= 1}-enabled at the vector ΨN (ᾱ). Let us denote by L ⊆ L the set
of all these elements. Let vp be the parent node of v, and ϑp ∈ L be the label of the edge
from vp to v. We consider L1 = {ϑ|ϑ ∈ L, ϑ(1) = ϑp(1)} and L2 = {ϑ|ϑ ∈ L, ϑ(1) 6= ϑp(1)}.
Then L = L1 ∪ L2 and L1 ∩ L2 = ∅. The children of v are nodes labeled by those vec-
tors ΨN (ᾱ′) such that ΨN (ᾱ)[ϑ〉ΓΨN (ᾱ′) and ϑ ∈ L1 if L1 6= ∅, or ϑ ∈ L2 if L1 = ∅,
and there is no other node v̄ on the path from v0 to v labeled by ΨN (ᾱ′) and yielded by
ϑ. We say that ϑ is the label of the edge from v to its child labeled by ΨN (ᾱ′). Furthermore,

ΨN(ᾱ′)(j) =

ω,

-if there exists a node v̄ on the path from v0 to v labeled by
ΨN (α̂) such that ΨN (α̂) ≤ ΨN (ᾱ′) and ΨN (α̂)(j) < ΨN (ᾱ′)(j);
-if there exists j′, 1 ≤ j′ ≤ m, j′ 6= j, such that ΨN(ᾱ)(j′) = ω,
∆r(j) > 0, and r ∈ Pϑ(1), labeled by ϑ(2), rewrites Aj′ ;

ωt, if ΨN (ᾱ)(j) = ω, and ∆r(j) = −1;

ΨN (ᾱ)(j) + ∆r(j), otherwise.

Note that the above coverability tree attached to a CD grammar system Γ, simulates
the work of Γ, in the {≤ 1,= 1}-comp.-mode, as follows. The root is labeled by the Parikh
vector attached to the axiom α. Each child of the root is a node labeled by the Parikh
vector attached to the sentential form obtained from α after the application of only one
rule from the component that is {≤ 1,= 1}-competent on α. Once a component starts to
be {≤ 1,= 1}-competent on a sentential form, it continues the derivation as long as it is
{≤ 1,= 1}-competent on the newest sentential form. This characterization is given by the
ϑ(1) = ϑp(1) condition that is checked at each new node v added in the coverability tree,
where vp is the parent node of v.

In the case that at a given point of derivation an arbitrary number of nonterminals
are ”pumped” into the new sentential form, by nonlinear context-free rules, we use the
ω-notation in order to mark in the Parikh vector associated to the underlying sentential
form, those places with the above property. We call the new resulting vector an ω-Parikh
vector. Through this ”ω-marking”, any node v ∈ V, different from the root, is labeled by
the Parikh vector or by the ω-Parikh vector associated with the corresponding sentential
form obtained during the generative process.

A place V (q) in an ω-Parikh vector V ∈ Nm
ω , yielded by an element ϑ ∈ L, that has

the ω-value cannot be decreased. However, due to the {≤ 1,= 1}-competence protocol

Decision Problems for CD Grammar Systems and Grammars with Regulated ... 121

the nonterminals Aq settled at the place V (q), can be rewritten by rules of the component
Pϑ(1), of the form Aq → c, c ∈ T ∗, Aq → λ, or Aq → x, x ∈ (N ∪ T)∗, such that alphN (x)∩
dom(Pϑ(1)) = ∅, until all nonterminals Aq are rewritten by such rules. In order to overcome
this phenomenon we associate an emptiness limit ωt to each place V (q) in an ω-Parikh
vector V ∈ Nm

ω , that is entirely rewritten. The idea to introduce this limit comes from
the fact that once the component Pϑ(1) is = 1-competent on a sentential form it continues
the derivation until it loses its competence. As the sentential form x does not contain any
symbol from dom(Pϑ(1)) the above rules can be applied until Aq is fully rewritten. The
ωt symbol is seen as an emptiness limit for those places that do not hold any nonterminal
symbol anymore.

Leaves, in the above coverability tree, are those nodes that end or block the derivation
process, i.e., they are labeled by null vectors or by vectors from Nm

ωt
(because the underlying

sentential form contains only terminal symbols), or by vectors that have at least two places
that correspond to nonterminals that can be rewritten by only one component, so that
the derivation in the {≤ 1,= 1}-comp.-mode cannot continue anymore. In other words no
element of L can be enabled in these nodes. Finally, the last case stands for those nodes
v, labeled by a vector V for which the pair (ϑ, V ′), ϑ ∈ L, V ,V ′ ∈ Nm

ω,ωt
, where V [ϑ〉V ′,

occurs already on the path from the root to v, so that the node v cannot have any children
due to the item 2) in the definition of the coverability tree. We call these last types of
leaves cutting points, because they are in fact cutting points in loops that appear during
the derivation process.

To each coverability tree B(Γ) = (V, E), associated to the derivations in a CD grammar
system, Γ that works in {≤ 1,= 1}-comp.-mode, we associate a twin coverability tree,
denoted as Bt(Γ) = (Vt,E t), built with respect to the terminal symbols pumped into the
underlying sentential form at each step of derivation performed by Γ. Informally, the twin
coverability tree is built in the same manner as the coverability tree. The difference is
that each node introduced in the twin coverability tree is labeled by a vector in N

p
ω that

characterizes the number of terminals pumped at each step of derivation into the underlying
sentential form. Because in the twin coverability tree we take into account also the number
of terminals pumped into the sentential form when the system enters in a loop1, the twin
coverability tree might have more nodes and edges than the coverability tree. Formally, the
twin coverability tree is defined as follows.

Definition 2.2. The twin coverability tree attached to a coverability tree for a CD grammar
system Γ, working under the {≤ 1,= 1}-comp.-mode protocol, is a rooted tree Bt(Γ) =
(Vt,E t), in which the vertices are elements in N

p
ω and the edges are elements in L. The set

of nodes and edges are defined as follows:
1)The root v0 is labeled by the Parikh vector ΨT (α) attached to the system axiom α,

such that there is at least one element ϑ ∈ L, {≤ 1,= 1}-enabled at the vector ΨN (α). The
children of v0 are nodes labeled by those vectors ΨT (α′) defined as ΨT (α′) = ΨT (α) + ∆r,t

where r is the rule labeled by ϑ(2) from Pϑ(1), and ϑ is the label of the edge from v0 to the
child node labeled by ΨT (α′) such that ΨN (α)[ϑ〉ΓΨN (α′) and ΨN (α′) = ΨN (α) + ∆r.

1This phenomenon is marked in the coverability tree by cutting points.

122 Cojocaru Transgressive Computing

2) For any v ∈Vt, v 6= v0, labeled by a vector ΨT (ᾱ) ∈ N
p
ω, there exists at least one ele-

ment ϑ ∈ L, {≤ 1,= 1}-enabled at the vector ΨN (ᾱ). Let us denote by L ⊆ L the set of all
these elements. Next, we consider the same sets L1 and L2, as we have settled for the cover-
ability tree, more exactly L1 = {ϑ|ϑ ∈ L, ϑ(1) = ϑp(1)} and L2 = {ϑ|ϑ ∈ L, ϑ(1) 6= ϑp(1)}.
Then L = L1 ∪ L2 and L1 ∩ L2 = ∅. The children of v are nodes labeled by those vectors
ΨT (ᾱ′) defined by:

ΨT (ᾱ′)(j) =

ω, if there exists j′, 1 ≤ j′ ≤ m, such that ΨN (ᾱ)(j′) = ω,
∆r,t(j) > 0 and r ∈ Pϑ(1), labeled by ϑ(2), rewrites Aj′ ;

ΨT (ᾱ)(j) + ∆r,t(j), otherwise;

where ϑ is enabled at ΨN (ᾱ), ΨN (ᾱ)[ϑ〉ΓΨN (ᾱ′), and r is the rule from Pϑ(1), labeled by
ϑ(2). Furthermore, ϑ ∈ L1 if L1 6= ∅, and ϑ ∈ L2 if L1 = ∅, and there is no other node v̄ on
the path from v0 to v in the coverability tree, labeled by ΨN (ᾱ′) and yielded by ϑ.

In the case that there exists one node v̄ on the path from v0 to v, labeled by ΨN (ᾱ′)
and yielded by ϑ in the initial coverability tree, then a new node v̄′ is added in the twin
coverability tree attached to the coverability tree (which is the case of a cutting point in
the coverability tree). It is labeled by ΨT (ᾱ′) ∈ N

p
ω and it is defined by:

ΨT (ᾱ′)(j) =

if there exists at least one vector ϑ ∈ L enabled at one of
ω, the vectors V ∈ Nm

ω,ωt
that label the nodes from the path

v, v̄ to v, i.e., vv̄...v, in the coverability tree, such that
∆r,t(j) > 0, where r is the rule from Pϑ(1) labeled by ϑ(2);

ΨT (ᾱ)(j), otherwise (that is the case when no terminal is pumped
into the sentential form during the execution of the loop).

The label of the edge vv̄′, is the element ϑ enabled at ΨN (ᾱ).
Next we give two examples that illustrate the way in which the coverability and the

twin coverability trees are built.

Example 2.3. Let Γ = ({A,B,C,D,A′, B′,D′}, {a, b, c}, α, P1 , P2, P3) be a CD grammar
system that works in = 1-comp.-mode, that has:

P1 = {A→ aA′b1, A→ ab2, B → CB′
3, B → C4},

P2 = {D → D′
1,D

′ → AB2, A
′ → A3, B

′ → B4},
P3 = {B → c1, C → B2}.

Note that each time two (or more than two) nonterminals of the set {D,A′, B′,D′}
appear together on the same axiom or sentential form, the derivation in the = 1-comp.-
mode cannot be continued by the component P2. The derivation will be taken by one of
the components P1 or P3, in the case that only one nonterminal from dom(P1) or dom(P3)
occurs in the sentential form, otherwise the derivation will be blocked on that branch of
derivation. The same remark holds for the component P1 and P3 each time A, B or B, C
appear together in an axiom or sentential form, respectively. Next, let us consider α = AD.

Decision Problems for CD Grammar Systems and Grammars with Regulated ... 123

The coverability tree attached to Γ is B(Γ) = (V, E), where E= {v0vb, v0v1, v1v2, v2v3, v3v4,
v4v01, v4v5, v5v6, v6v02, v0v7, v7v8, v8v9, v9v10, v10v11, v11v12, v12v13, v13v14, v14v03, v14v15,
v15v16, v16v04, v10v17, v17v18, v18v05, v18v19, v9v20, v20v06, v20v21, v21v22, v22v07} and
V= {v0, vb, v1, ..., v22, v01, ..., v07}. The nodes are labeled by:

v0 = (1, 0, 0, 1, 0, 0, 0), v11 = (0, 0, 0, 0, 2, 0, 0), vb = (0, 0, 0, 1, 1, 0, 0),
v1 = (0, 0, 0, 1, 0, 0, 0), v10 = v12 = (1, 0, 0, 0, 1, 0, 0), v7 = (1, 0, 0, 0, 0, 0, 1),
v2 = (0, 0, 0, 0, 0, 0, 1), v9 = v13 = (2, 0, 0, 0, 0, 0, 0), v8 = (2, 1, 0, 0, 0, 0, 0),
v3 = (1, 1, 0, 0, 0, 0, 0), v4 = v6 = v14 = v16 = v18 = v20 = v22 = (1, 0, 0, 0, 0, 0, 0),
v5 = v15 = v17 = v19 = v21 = (0, 0, 0, 0, 1, 0, 0), v01 = ... = v07 = (0, 0, 0, 0, 0, 0, 0).

The edges are labeled by: v0vb = v4v5 = v9v10 = v10v11 = v14v15 = v18v19 = v20v21 = (1, 1),
v0v1 = v4v01 = v6v02 = v9v20 = v10v17 = v13v14 = v14v03 = v16v04 = v18v05 = v20v06 =
v22v07 = (1, 2), v1v2 = v0v7 = (2, 1), v2v3 = v7v8 = (2, 2), v5v6 = v11v12 = v12v13 =
v15v16 = v17v18 = v21v22 = (2, 3), v3v4 = v8v9 = (3, 1).
Observe that, in the node vb = (0, 0, 0, 1, 1, 0, 0) none of elements in L can be enabled,
because v(4) ≥ |lhs(r)|A4 , v(5) ≥ |lhs(r′)|A5 , and A4 = D, A5 = A′ ∈ dom(P2), r, r′ ∈ P2.
The node v6, is a cutting node, because the node v5, is yielded for the second time in the
path from the root v0 to v6, at ϑ = (1, 1) enabled at vector (1, 0, 0, 0, 0, 0, 0) attached to v6.
Due to the same phenomenon the nodes v13, v16, v19, and v22 are cutting points, too. The
language is generated as follows:

AD ⇒(1,1) aA
′bDvb

;
AD ⇒(1,2) abD ⇒(2,1) abD

′ ⇒(2,2) abAB ⇒(3,1) abAc ⇒(1,1) abaA
′bc ⇒(2,3) abaAbc ⇒(1,1)

...⇒(1,2) aba
mbmc;

AD ⇒(2,1) AD
′ ⇒(2,2) AAB ⇒(3,1) AAc ⇒(1,1) aA

′bAc ⇒(1,1) aA
′baA′bc ⇒(2,3) ... ⇒(1,2)

anbnambmc.
The twin coverability tree attached to Γ is Bt(Γ) = (Vt,E t), Vt =V∪{v′5, v′10, v′15, v′18, v′21}
and E t =E∪{v6v′5, v16v′15, v13v′10, v19v′18, v22v′21}. All the new looping edges are labeled by
the same vector (1, 1), with the exception of v19v

′
18 = (2, 3). The nodes are labeled by:

v0 = v7 = v8 = (0, 0, 0), v4 = v10 = v20 = (1, 1, 1), v9 = (0, 0, 1),
vb = v1 = v2 = v3 = (1, 1, 0), v′5 = v′10 = v′15 = v′18 = v′21 = (ω, ω, 1),
v5 = v6 = v11 = v12 = v13 = v17 = v18 = v01 = v06 = v21 = v22 = (2, 2, 1),
v14 = v19 = v02 = v05 = v07 = (3, 3, 1), v15 = v16 = v03 = (4, 4, 1), v04 = (5, 5, 1).

Note that, because v6v
′
5, v16v

′
15, v13v

′
10, v22v

′
21, are looping edges, labeled by (1, 1) that use

the first rule of the first component, they pump an unbounded number of terminals into
the newest sentential form. That is why v′5, v′10, v′15, v′21 are marked by an ω-vector. The
node v′18 is also labeled by an ω-vector, because the pumping process is performed during
the execution of the loop. The language is L=1-comp.(Γ) = {anbnambmc|n ≥ 1,m ≥ 1}.

Example 2.4. In order to have an example for a coverability tree with ω and ωt-notations,
we consider the following grammar, working in = 1-comp.-mode:

Γ = ({A,B,C,D,A′, B′,D′}, {a, b, c}, α, P1 , P2, P3)
P1 = {A→ aA′b1, A→ ab2, B → CB′

3, B → C4},
P2 = {D → D′

1,D
′ → AB2, A

′ → A3, B
′ → B4},

P3 = {B → c1, C → c2}.

124 Cojocaru Transgressive Computing

For the axiom α = B the coverability tree, following the ω and ωt-notations, is given by
B(Γ) = (V, E), where V= {v0, v1, ..., v15, v01, ..., v07} and E= {v0v01, v0v1, v1v02, v0v2, v2v3,
v3v4, v4v5, v5v03, v3v6, v6v7, v7v8, v8v9, v6v10, v10v11, v11v12, v12v05, v2v13, v13v14, v11v04, v14v06,
v14v15, v15v07}. The vectors2 that label the nodes are:

v0 = (0, 1, 0, 0, 0, 0, 0), v2 = (0, 0, 1, 0, 0, 1, 0), v3 = (0, 1, 1, 0, 0, 0, 0),
v4 = (0, 0, 2, 0, 0, 0, 0), v6 = (0, 0, ω, 0, 0, 1, 0), v9 = (0, 0, ωt, 0, 0, 0, 0),
v7 = (0, 1, ω, 0, 0, 0, 0,), v8 = (0, 0, ω, 0, 0, 0, 0) v11 = (0, 1, ωt, 0, 0, 0, 0),
v04 = (0, 0, ωt, , 0, 0, 0, 0) v10 = (0, 0, ωt, 0, 0, 1, 0), v13 = (0, 0, 0, 0, 0, 1, 0),
v1 = v5 = v12 = v15 = (0, 0, 1, 0, 0, 0, 0), v14 = (0, 1, 0, 0, 0, 0, 0),
v01 = ... = v07 = (0, 0, 0, 0, 0, 0, 0).

Edges are labeled by:
v0v2 = v3v6 = (1, 3), v0v1 = v3v4 = v7v8 = v11v12 = v14v15 = (1, 4),
v2v3 = v6v7 = v10v11 = v13v14 = (2, 4), v0v01 = v11v04 = v14v06 = (3, 1),
v1v02 = v4v5 = v5v03 = v8v9 = v6v10 = v2v13 = v15v07 = v12v05 = (3, 2).

The twin coverability tree attached to Γ is Bt(Γ) = (Vt,E t), where Vt =V∪{v′2, v′6, v′′2} and
E t =E∪{v11v′2, v7v′6, v14v′′2}. The new edges are labeled by the same vector (1, 3). The nodes
are labeled by:

v0 = v1 = v2 = v3 = v4 = v6 = v7 = v8 = v′6 = (0, 0, 0),
v01 = v02 = v5 = v13 = v14 = v15 = (0, 0, 1),
v9 = v10 = v11 = v12 = v04 = v05 = v′2 = v′′2 = (0, 0, ω),
v03 = v06 = v07 = (0, 0, 2).

The language in this case is: L=1-comp.(Γ) = {cn|n ≥ 1}.

3 Analysis upon the coverability tree

In this section we prove that the coverability tree and the twin coverability tree associated
with the derivations in a CDGS working in {≤ 1,= 1}-comp.-mode, are finite and well
defined. The finiteness property of these trees has significant consequences on several deci-
sion problems, such as emptiness, finiteness, boundedness or reachability problems for CD
grammar systems working in {≤ 1,= 1}-comp.-mode.

3.1 Coverability tree properties

Theorem 3.1. For any CD grammar system Γ, working in {≤ 1,= 1}-comp.-mode, the
coverability tree attached to Γ is a finite tree, and it can be effectively constructed.

Proof. To prove this statement we use the same method, based on the König’s Lemma, as
in [19]. Each node in the coverability tree attached to a CD grammar system that works in
{≤ 1,= 1}-comp.-mode, can have only a finite number of children. This holds due to the
fact that |L| is finite, and for each node in the tree an element from L can be enabled at
a vector V ∈ Nm

ω,ωt
only one time. Furthermore, on each path from the root to a leaf in

2Some of vectors are equal, but either they are reached on different subtrees, or they are enabled by
different elements from L.

Decision Problems for CD Grammar Systems and Grammars with Regulated ... 125

the coverability tree, a node labeled by a vector V ∈ Nm
ω,ωt

together with the element ϑ ∈L
enabled at V , is unique.

Let us consider τ an arbitrary path from the root to a given leaf in this tree. The
number of vectors that label nodes in this path can be parted into two groups, vectors that
can be compared with each other using the ≤ relation between two vectors defined at the
beginning of Section 2, and incomparable vectors. The first set of vectors is a finite set
because the growing of the value on a given position implies an ω-notation that stops this
phenomenon. The set of incomparable vectors is finite, too. Otherwise, due to the finite
dimension of these vectors, i.e., m, to accomplish the infinity condition at least one value
should infinitely increase, but then an ω-notation should be used reducing the cardinality
number of this set to a finite one.

Due to the König’s Lemma: Any rooted tree in which each node has a finite number of
successors and there is no infinite path emanating from the root is a finite tree. the above
coverability tree is finite. Due to this property the construction of this tree follows directly
from Definition 2.1.

As a consequence of Theorem 3.1 and Definition 2.2 we have.

Corollary 3.2. For any CD grammar system Γ, working in {≤ 1,= 1}-comp.-mode, the
twin coverability tree associated with the coverability tree attached to Γ is a finite tree, and
it can be effectively constructed.

Theorem 3.3. Let Γ be a CD grammar system working in {≤ 1,= 1}-comp.-mode, B(Γ) be
the coverability tree attached to Γ, and Lf (Γ), f ∈ {≤ 1-comp.,= 1-comp.}, be the language
generated by Γ in f -mode. The sentential form Parikh set associated to Lf (Γ) with respect
to the nonterminal alphabet N , i.e., ΨN (Sf (Γ)) defined in Definition 1.6, is completely
covered by the set of vectors in Nm

ω , that label the nodes in B(Γ), considering ωt = 0. The
same property holds for the sentential form Parikh set associated to Lf (Γ) with respect to
the terminal alphabet T , i.e., ΨT (Sf (Γ)).

Proof. This statement is a direct consequence of the way in which the coverability tree
simulates the work of a CD grammar system in the {≤ 1,= 1}-comp.-mode, (see also the
explanation given to this simulation that follows Definition 2.1). Due to the arithmetical
rules ω + ω = ω + a = a + ω = ω, ω − a = ω, ω · a = a · ω = ω, a < ω, a ∈ N, that are
valid in Nω, the set of all vectors and ω-vectors, that label nodes in the coverability tree,
considering ωt = 0, covers the set of all Parikh vectors associated with sentential forms from
Sf (Γ).

Due to Theorem 3.3 all paths in the coverability tree associated to a CD grammar system
that works in the {≤ 1,= 1}-comp.-mode, cover all possible derivations (terminal or not)
spent by the system during the generative process of a language. Furthermore, all possible
terminal derivations that generate the language Lf (Γ), f ∈ {≤ 1-comp.,= 1-comp.}-mode,
can be recovered between paths in the above coverability tree. We conclude that the above
tree structures are well defined and they give a good representation of the behaviour of CD
grammar systems working in {≤ 1,= 1}-comp.-mode. Therefore, these structures can be
successfully used as an analising tool in solving decision problems for these systems.

126 Cojocaru Transgressive Computing

3.2 Decidability results

Due to Theorem 3.1 and Theorem 3.3 several decision problems, such as: the emptiness
or the finiteness property of the generated language, the boundedness or the reachability
property of a component during the language generation process, can be solved through
a structural analysis of the above trees. We recall that the emtiness/finiteness problem
for grammar systems consists in deciding whether the language generated by a particular
grammar system is empty/finite or not. The next theorems deal with these problems.

Theorem 3.4. It is decidable whether the language generated by a CD grammar system,
starting with an arbitrary axiom, working in {≤ 1,= 1}-comp.-mode is empty or not.

Proof. In order to check whether the language generated in the {≤ 1,= 1}-comp.-mode, is
empty or not we have to check whether or not there exists at least one leaf in the coverability
tree labeled by a null vector or by a vector in Nm

ωt
.

Theorem 3.5. It is decidable whether a component of a CD grammar system, working
in {≤ 1,= 1}-comp.-mode, with an arbitrary axiom, is ever active (or reachable) in any
derivation (terminal or not). It is decidable whether a certain production of a certain
component of a CD grammar system, working in {≤ 1,= 1}-comp.-mode, with an arbitrary
axiom, is ever active (or reachable) in any (terminal) derivation.

Proof. Let Γ = (N,T, α, P1, ..., Ps) be a CD grammar system with s components, s ≥ 1,
and Pi be the component we are interested in. An inspection over all elements ϑ ∈ L that
label edges in E , where B(Γ) = (V, E) is the coverebility tree associated with Γ, such that
ϑ(1) = i, solves the first claim of the theorem. If we consider {r1, r2, ..., r|Pi|} the ordered
set of rules from Pi, where |Pi| is the number of rules in Pi, and rj , 1 ≤ j ≤ |Pi|, represents
the rule we are interested in, then an inspection over all elements ϑ ∈ L that label edges in
E , such that ϑ(1) = i and ϑ(2) = j, solves the second claim of the theorem.

Theorem 3.6. It is decidable whether a component of a CD grammar system, working in
the {≤ 1,= 1}-comp.-mode, with an arbitrary axiom, is activated of an unbounded number
of times in any (terminal) derivation.

Proof. Let Γ = (N,T, α, P1, ..., Ps) be a CD grammar system with s components, s ≥ 1.
Let Pi be the component we are interested in. From the definition of the coverability tree,
between each two consecutive nodes v and v′ labeled by V and V ′ (V , V ′ ∈ Nm

ω,ωt
) such

that ϑ is the element in L, enabled at vector V , we have the next firing rule V [ϑ〉ΓV ′. If ϑ ∈
L such that ϑ(1) = i, and ϑ yields a vector V ′ that labels a cutting point in the coverability
tree, then Pi is activated of an unbounded number of times. Otherwise, for any path from
the root to a leaf labeled by a null vector or ωt-vector, we check whether there exists at
least one element ϑ ∈ L, such that ϑ(1) = i, that yields an ω-vector, or not.

Corollary 3.7. It is decidable whether a component of a CD grammar system, working
in the {≤ 1,= 1}-comp.-mode, is activated at least q times, q ≥ 1, during a (terminal)
derivation.

Decision Problems for CD Grammar Systems and Grammars with Regulated ... 127

Definition 3.8. Let Γ be a CD grammar system working in {≤ 1,= 1}-comp.-mode,
B(Γ) and Bt(Γ) be the coverability tree and the twin coverability tree associated with Γ,
respectively. We say that the place V (q), V ∈ Nm

ω,ωt
(or V ∈ N

p
ω) is bounded in B(Γ) (or in

Bt(Γ)) if there exists a constant c such that V (q) ≤ c, for any vector V that is a label of
a node in V (or in Vt). We say that B(Γ) (or Bt(Γ)) is a bounded coverability tree if each
place V (q) is bounded, for any q, 1 ≤ q ≤ m (or 1 ≤ q ≤ p), and any vector V that is a
label of a node in V (or in Vt).

Note that if the coverability tree associated with a CD grammar system is bounded this
does not emerge that the twin coverability tree associated with it is bounded, too. Example
2.3, with the axiom α = AD deals with this case. That is why the boundedness property of
the coverability tree is not a sufficient condition for the finiteness of the language generated
by a CD grammar system. In order to cover this lack of the coverability tree analysis
method we have introduced the twin coverability tree structure.

Theorem 3.9. It is decidable whether the language generated by a CD grammar system
working in the {≤ 1,= 1}-comp.-mode, is finite or not.

Proof. In order to decide whether the language generated by a CD grammar system working
in the {≤ 1,= 1}-comp.-mode is finite or not it is enough to check whether the twin
coverability tree associated with the coverability tree of a CD grammar system is bounded
or not. This is done through a searching for the ω symbol in the twin coverability tree. If
no ω symbol occurs in any of the vectors that label nodes in this tree then the language is
finite. It is infinite otherwise.

4 Consequences on decision problems for grammars with
regulated rewriting

Almost all decision problems for grammars with regulated rewriting have been proved to
be decidable and NP-hard, see [10]. Several problems are undecidable, such as the context-
freeness problem of the languages generated by λ-free matrix grammars without appearance
checking or the emptiness and finiteness problems for λ-free matrix grammars with appear-
ance checking, for instance. However, there are many other decision problems for grammars
with regulated rewriting that are still open. We recall here only a few of them: the member-
ship, emptiness and finiteness problems for ordered (O) grammars and forbidding random
context (fRC) grammars, or the emptiness and finiteness problems for λ-free ordered gram-
mars. For CD grammar systems that work in {≤ 1,= 1}-comp.-mode, from [2] we have.

Theorem 4.1. For X ∈ {CF,CF − λ}, L(fRC,X)⊆L(CD, X, f-comp.), f ∈ {≤ 1,= 1}.

In Section 3 we proved that the emptiness and finiteness problems are decidable for CD
grammar systems working in {≤ 1,= 1}-comp.-mode. With an affirmative answer for these
systems, due to the constructive proof in [2] of Theorem 4.1, we have a positive answer for
the emptiness and finiteness problems for the class of languages generated by fRC grammars,

128 Cojocaru Transgressive Computing

with or without λ-rules. On the other hand from [10] we know that the class of languages
generated by fRC grammars equals the class of languages generated by ordered grammars,
see Theorem 4.2.

Theorem 4.2. For X ∈ {CF,CF − λ}, L(fRC,X) = L(O,X).

Due to the above theorem and due to the constructive character of the proof in [10],
the emptiness and finiteness problems are decidable for ordered grammars, too. So that the
following theorem holds.

Theorem 4.3. The emptiness and finiteness problems are decidable for forbidding random
context grammars and ordered grammars.

On the other hand, it is well known from [10], that the class of languages generated by
ordered grammars is closed under intersection with regular sets. Considering an arbitrary
word w, for which we want to decide whether or not w ∈ L, L ∈L(O, X), we have to
compute the intersection L ∩ {w} ∈ L(O,X), X ∈ {CF,CF − λ}, and decide with respect
to Theorem 4.3, whether L ∩ {w} is empty or not. Thus w ∈ L if L ∩ {w} 6= ∅, and w /∈ L,
otherwise. From the above explanation and Theorem 4.2, we have.

Theorem 4.4. The membership problem is decidable for forbidding random context gram-
mars and ordered grammars.

In this way we settled the emptiness, finiteness and membership problems for forbidding
random context grammars and ordered grammars left open in [10].

5 Conclusions

In this paper we proposed two coverability structures, the coverability tree and the twin
coverability tree, associated to the derivations in a CD grammar system that works in
{≤ 1,= 1}-comp.-mode. A structural analysis upon these coverability trees gives positive
answers to several decision problems, such as the finiteness, emptiness, boundedness and
reachability problems for CD grammar systems working in {≤ 1,= 1}-comp.-mode. Using
the generative power of these systems we solved several open problems such as the finiteness,
emptiness and membership problems for the class of languages generated by forbidding
random context grammars and ordered grammars. The structure of the coverability trees
and the analysis of these trees, for the general case {≤ k,= k,≥ k} of competence-based
protocols, k ≥ 2 are left open for further research. Our intuition is that the transition from
an ω-Parikh vector to an ωt-Parikh vector, used for the case of {≤ 1,= 1}-comp.-mode,
is not possible in all the cases. This requires another method to be applied, such as the
simulation of these systems by several other classes of Petri nets, described in [4], [11], [13],
[15], [22].

Decision Problems for CD Grammar Systems and Grammars with Regulated ... 129

6 Acknowledgments

The author is indebted to Professor Erzsébet Csuhaj-Varjú for the useful discussions upon
the topic of this paper, and the referees for their comments concerning this work. This work
has been also supported by the Agencia Espanõla de Cooperación Internacional through a
Becas-MAE fellowship for 2004-2005.

References

[1] M.H. ter Beek, E. Csuhaj-Varjú, M. Holzer, G. Vaszil. On competence in cooperating
distributed grammar systems, Technical Report 2002/1, Research Group on Modeling
Multi-Agent Systems, MTA SZTAKI, Budapest. 2002.

[2] M.H. ter Beek, E. Csuhaj-Varjú, M. Holzer, G. Vaszil. On competence in CD grammar
systems, Proceedings of the 8th International DLT Conference, Auckland, New Zealand,
December 2004, LNCS 3340, 76–88. 2004.

[3] H. Bordihn, E. Csuhaj-Varjú. On competence and completeness in CD grammar sys-
tems, Acta Cybernetica, 12(4), 347–361. 1996.

[4] S. Crespi-Reghizzi, D. Mandrioli. Petri nets and Szilard languages, Information and
Control, 33, 177–192. 1977.

[5] E. Csuhaj-Varjú, J. Dassow. On cooperating/distributed grammar systems, Journal of
Information Processing and Cybernetics EIK, 26(1-2), 49–63. 1990.

[6] E. Csuhaj-Varjú, J. Dassow, M. Holzer. On competence-based cooperation strategy
in CD grammar systems, Technical Report, 2004/3, Theoretical Computer Science
Research Group, MTA SZTAKI, Budapest. 2004.

[7] E. Csuhaj-Varjú, J. Kelemen. Cooperating grammar systems: A syntactical framework
for blackboard model of problem solving, Proceedings of AIICSR’89, I. Plander ed.,
Elsevier Publishing Company, Amsterdam, 121–127. 1989.

[8] E. Csuhaj-Varjú, J. Dassow, J. Kelemen, Gh. Păun. Grammar Systems: A Grammati-
cal Approach to Distribution and Cooperation, Gordon and Breach Science Publishers,
Yverdon. 1994.

[9] J. Dassow. On cooperating distributed grammar systems with competence based start
and stop conditions, Proceedings of Grammar System Week, E. Csuhaj-Varjú and G.
Vaszil eds., MTA SZTAKI, Budapest, Hungary. 2004.

[10] J. Dassow, G. Păun. Regulated Rewriting in Formal Language Theory, EATCS Mono-
graphs on Theoretical Computer Science, Springer-Verlag Berlin. 1989.

[11] C. Dufourd, A. Finkel, P. Schnoebelen. Reset nets between decidability and undecid-
ability, Proceedings ICALP ’98, LNCS 1443, 103–115, Springer-Verlag. 1998.

130 Cojocaru Transgressive Computing

[12] Handbook of Formal Languages. Volume 1-3, G. Rozenberg and A. Salomaa eds.,
Springer-Verlag, Berlin. 1997.

[13] D. Hauschildt, M. Jantzen. Petri net algorithms in the theory of matrix grammars,
Acta Informatica, Vol. 31, No. 9, 719–728. 1994.

[14] R.M. Karp, R.E. Miller. Parallel program schemata, Journal of Computer and System
Science, 3, 147–195. 1969.

[15] R. Melinte, O. Oanea, I. Olga, F.L. Ţiplea. The home marking problem and some
related concepts, Acta Cybernetica, 15(3), 467–478. 2002.

[16] V. Mihalache. On the expressiveness of coverability trees for PC grammar systems, In
Grammatical Models of Multi-Agent Systems, G. Păun, A. Salomaa eds., Gordon and
Breach Science Publishers, 86–98. 1999.

[17] V. Mihalache. Cooperation, Communication, Control. Investigations on Grammar Sys-
tems, TUCS Dissertations, No 9, June. 1998.

[18] V. Mihalache. Decidability problems in grammar systems, Theoretical Computer Sci-
ence, 215, 169–189. 1999.

[19] W. Reisig. Petri Nets. An Introduction, EATCS Monographs on Theoretical Computer
Science, Springer-Verlag Berlin. 1985.

[20] F.L. Ţiplea, C. Ene. A Coverability structure for parallel communicating grammar
systems, Journal Information Processing Cybernetics, EIK, 29, (5), 303–315. 1993.

[21] F.L. Ţiplea, C. Ene, C.M. Ionesco, O. Procopiuc. Some decision problems for parallel
communicating grammar systems, Theoretical Computer Science, 134, 365–385. 1994.

[22] F.L. Ţiplea. On conditional grammars and conditional Petri nets, In Mathematical
Aspects of Natural and Formal Languages, Gh.Păun ed., World Scientific, Singapore,
431–456. 1994.

Liliana Cojocaru
Research Group on Mathematical Linguistics

Rovira i Virgili University of Tarragona
Pl. Imperial Tarraco 1, 43005, Spain

liliana.cojocaru@estudiants.urv.es

Adaptive and Hybrid Algorithms: classification and illustration on ... 131

Adaptive and Hybrid Algorithms: classification and

illustration on triangular system solving∗

Van Dat Cung Vincent Danjean Jean-Guillaume Dumas
Thierry Gautier Guillaume Huard Bruno Raffin Christophe Rapine

Jean-Louis Roch Denis Trystram

Abstract

We propose in this article a classification of the different notions of hybridization
and a generic framework for the automatic hybridization of algorithms. Then, we detail
the results of this generic framework on the example of the parallel solution of multiple
linear systems.

Introduction

Large-scale applications, software systems and applications are getting increasingly com-
plex. To deal with this complexity, those systems must manage themselves in accordance
with high-level guidance from humans. Adaptive and hybrid algorithms enable this self-
management of resources and structured inputs. In this paper, we propose a classification of
the different notions of hybridization and a generic framework for the automatic hybridiza-
tion of algorithms. We illustrate our framework in the context of combinatorial optimiza-
tions and linear algebra, in a sequential environment as well as in an heterogeneous parallel
one. In the sequel, we focus on hybrid algorithms with provable performance. Performance
is measured in terms of sequential time, parallel time or precision.
After surveying, classifying and illustrating the different notions of hybrid algorithms in
section 1, we propose a generic recursive framework enabling the automation of the process
of hybridization in section 2. We then detail the process and the result of our generic
hybridization on the example of solving linear systems in section 3.

1 A survey and classification of hybrid algorithms

1.1 Definitions and classification

In this section we propose a definition of hybrid algorithm, based on the notion of strategic
choices among several algorithms. We then refine this definition to propose a classification

∗This work is supported by the INRIA-IMAG project AHA: Adaptive and Hybrid Algorithms.

132 Cung et al. Transgressive Computing

of hybrid algorithms according to the number of choices performed (simple, baroque) and the
amount of inputs/architecture information used (tuned, adaptive, introspective, oblivious,
engineered). Figure 1 summarizes this classification.

Definition 1.1 (Hybrid). An algorithm is hybrid (or a poly-algorithm) when there is a
choice at a high level between at least two distinct algorithms, each of which could solve
the same problem.

The choice is strategic, not tactical. It is motivated by an increase of the performance of the
execution, depending on both input/output data and computing resources. The following
criterion on the number of choices to decide is used to make a first distinction among hybrid
algorithms.

Definition 1.2 (Simple versus Baroque). A hybrid algorithm may be

• simple: O(1) choices are performed whatever the input (e.g. its size) is. Notice that,
while only a constant number of choises are done, each choice can be used several
times (an unbounded number of times) during the execution. Parallel divide&conquer
algorithms illustrate this point in next section.

• baroque: the number of choices is not bounded: it depends on the input (e.g. its size).

While choices in a simple hybrid alogrithm may be defined statically before any execution,
some choices in baroque hybrid algorithms are necessarily computed at run time.
The choices may be performed based on machine parameters. But there exist efficient
algorithms that do not base their choices on such parameters. For instance, cache-oblivious
algorithms have been successfully explored in the context of regular [11] and irregular [1]
problems, on sequential and parallel machine models [2]. They do not use any information
about memory access times, or cache-line or disk-block sizes. This motivates a second
distinction based on the information used.

Definition 1.3 (oblivious, tuned, engineered, adaptive, introspective). Considering
the way choices are computed, we distinguishe the following class of hybrid algorithms:

• A hybrid algorithm is oblivious, if its control flow depends neither on the particular
values of the inputs nor on static properties of the resources.

• A hybrid algorithm is tuned, if a strategic decision is made based on static resources
such as memory specific parameters or heterogeneous features of processors in a dis-
tributed computation.
A tuned algorithm is engineered if a strategic choice is inserted based on a mix of the
analysis and knowledge of the target machine and input patterns. A hybrid algorithm
is self-tuned if the choices are automatically computed by an algorithm.

• A hybrid algorithm is adaptive if it avoids any machine or memory-specific parame-
terization. Strategic decisions are made based on resource availability or input data

Adaptive and Hybrid Algorithms: classification and illustration on ... 133

Choices
O(1)

{{xx
xx

xx
xx

x
choices→∞

$$HHHHHHHHH
Architecture/Input Dependent

uujjjjjjjjjjjjjjj

��))TTTTTTTTTTTTTTTT

Simple

��))SSSSSSSSSSSSSSS
Baroque

��

adaptive

��

Tuned

�� **TTTTTTTTTTTTTTTT Oblivious

Static Dynamic introspective engineered self − tuned

Figure 1: Classification of hybrid algorithms

properties, both discovered at run-time (such as idle processors).
An adaptive algorithm is introspective if a strategic decision is made based on assess-
ment of the algorithm performance on the given input up to the decision point.

In [12], Ganek and Corbi defined autonomic computing to be the conjunction of self-
configuring, self-healing, self-optimizing and self-protecting systems. Self-configuring re-
lates to what we call adaptivity, self-optimizing to self-tuning. Autonomic computing thus
adds fault-tolerance (self-healing) and security (self-protecting) to our notion of hybrid com-
puting. Above definitions deliberately focus on a general characterization of adaptation in
the algorithm. They consider neither implementation nor performance. To implement an
adaptive algorithm, we may distinguish two approaches. Either the choices are included in
the algorithm itself, or they may be inserted dynamically to change the software itself, or
its execution environment. An algorithm is evolutive (or interactive) if a strategic choice
is inserted dynamically. Reflexive languages enable to change the behavior of a program
dynamically [18]. Polymorphism or template specialization is a way to optimize an algo-
rithm. We view polymorphism and template mechanisms as a possible way to implement
the different kinds of hybrid algorithm we propose.

1.2 Illustrations on examples

We illustrate the previous criteria on some examples of hybrid algorithms or libraries.

BLAS libraries. ATLAS [23] and GOTO [?] are libraries that implement basic linear
algebra subroutines. Computation on matrices are performed by blocks. The block size
and the sequential algorithm used for a basic block are chosen based on performance mea-
sures on the target architecture. The decisions are computed automatically at installation
with ATLAS while they are provided only for some architectures with GOTO. ATLAS
implements self-tuned simple hybrid algorithms and GOTO simple engineered ones.

Granularity in sequential divide&conquer algorithms. Halting recursion in di-
vide&conquer to complete small size computations with another more efficient algorithm is

134 Cung et al. Transgressive Computing

a classical technique to improve the practical performance of sequential algorithms. The re-
sulting algorithm is a simple hybrid one. Often the recursion threshold is based on resource
properties. This is the case for the GMP integer multiplication algorithm that succes-
sively couples four algorithms: Schönhage-Strassen Θ(n log n log log n), Toom-Cook 3-way
(Θ(n1.465)), Karatsuba Θ(nlog23) and standard Θ(n2) algorithms.

Linpack benchmark for parallel LU factorization. Linpack [6] is one milestone in
parallel machines’ power evaluation. It is the reference benchmark for the top-500 ranking
of the most powerful machines. The computation consists in a LU factorization, with raw
partial pivoting in the ”right-looking” variant [6], the processors assumed being identical.
To limit the volume of communication to O(n2√p), a cyclic bidimensional block partitioning
is used on a virtual grid of q2 = p processors. The block (i, j) is mapped to the processor of
index P (i, j) = (i mod q)q+(j mod q) and operations that modify block (i, j) are scheduled
on processor P (i, j). Linpack has a standard implementation on top of MPI with various
parameters that may be tuned: broadcast algorithm (for pivot broadcasting on a line of
processors), level of recursion in the ”right-looking” decomposition algorithm and block
size. The parallel architecture may also be tuned to improve the performance [21]. Linpack
is an engineered tuned simple hybrid algorithm.

FFTW. FFTW [10] is a library that implements discrete Fourier transform of a vector
of size n. We summarize here the basic principle of FFTW. For all 2 ≤ q ≤ √n, the FFT

Cooley-Tuckey recursive algorithm reduces to q FFT subcomputations of size
⌈
n
q

⌉
and

⌈
n
q

⌉

FFT subcomputations of size q, plus O(n) additional operations. Hybridization in FFTW
occurs at two levels:

• at installation on the architecture. For a given n0 the best unrolled FFT algorithm
for all n ≤ n0 is chosen among a set of algorithms by experimental performance
measurements. This hybrid algorithm is simple tuned.

• at execution. FOr a given size n of the input vectors and for all n0 ≤ m ≤ n, a
planner precomputes the splitting factor qm that will be further used for any recursive
FFT with size m. This precomputation is performed by dynamic programming: it
optimizes each sub-problem of sizem locally, independently of the larger context where
it is invoked. The planner adds a precomputation overhead. This overhead may be
amortized by using the same plan for computing several FFTs of the same size n.
FFTW3 also proposes heuristic algorithms to compute plans with smaller overhead
than dynamic programming.

The number of choices in FFTW depends on the size n of the inputs. FFTW is a self-tuned
baroque hybrid algorithm.

Granularity in parallel divide&conquer algorithms. Parallel algorithms are often
based on a mix of two algorithms: a sequential one that minimizes the number of operations

Adaptive and Hybrid Algorithms: classification and illustration on ... 135

T1 and a parallel one that minimizes the parallel time T∞. The cascading divide&conquer
technique [16] is used to construct a hybrid algorithm with parallel time O(T∞) while per-
forming O(T1) operations. For instance, iterated product of n elements can be performed
in parallel time T∞ = 2. log n with n

logn processors by choosing a grain size of log n. Even
if this choice depends on the input size n, it can be computed only once at the beginning
of the execution. The algorithm is a simple hybrid one.
Other examples of such parallel simple hybrid algorithms are: computation of the maximum
of n elements in asymptotic optimal time Θ(log log n) on a CRCW PRAM with n

log logn pro-

cessors [16]; solving of a triangular linear system in parallel time O(
√
n log n) with Θ(n2)

operations [19]. In section 3 we detail an extended baroque hybridization for this problem,
enabling a higher performance on a generic architecture.

Parallel adaptive algorithms by work-stealing - Kaapi. Cilk [17], Athapascan/Kaapi
[15] and Satin [22] are parallel programming interfaces that support recursive parallelism
and implement a work-stealing scheduling based on the work first principle. A program ex-
plicits parallelism and synchronization. While Cilk and Satin are restricted to serie-parallel
tasks DAGs, Kaapi accepts any kind of dataflow dependencies. However, all are based on
a sequential semantics: both depth first sequential search (DFS) and width (or breadth)
first parallel search (BFS) are correct executions of the program. Then the program imple-
ments a parallel algorithm (BFS) that can also be considered as a sequential one (DFS).
The (recursive) choices between both are performed by the scheduler. To save memory,
depth-first execution (DFS) is always locally preferred. When a processor becomes idle, it
steals the oldest ready task on a non-idle processor This stealing operation then corresponds
to a breadth first execution (BFS). Since each parallel task creation can be performed ei-
ther by a sequential call (DFS algorithm) or by creation of a new thread (BFS algorithm)
depending on resource idleness, any parallel program with non-fixed degree of parallelism
is a hybrid baroque algorithm. Because the choice does not depend on the input size but
only on resource idleness, the algorithm is adaptive. In section 2.3 we detail a more general
coupling for this problem.

2 Generic algorithmic schemes for hybrid algorithms

In this section we detail a generic scheme to control the time overhead due to choices in
a hybryd algorithm, providing a proven upperbound for sequential and parallel baroque
hybridization.

2.1 Basic representation

Let f be a problem with input set I and output set O. For the computation of f , a hybrid
algorithm is based on the composition of distinct algorithms (fi)i=1,...,k, each solving the
problem f . Since an algorithm is finite, the number k ≥ 2 of algorithms is finite; however,
each of those algorithms may use additional parameters, based on the inputs, outputs or
machine parameters (e.g. number of processors).

136 Cung et al. Transgressive Computing

We assume that each of those algorithms is written in a recursive way: to solve a given
instance of f , algorithm fi reduces it to subcomputations instances of f of smaller sizes. Hy-
bridization then consists in choosing for each of those subcomputations the suited algorithm
fj to be used (fig. 2). This choice can be implemented in various ways. For instance, f may

Algorithm fi (I n, input, O output, . . .) {
. . .
f(n-1, . . .) ;
. . .
f(n / 2, . . .) ;
. . .
};

Figure 2: Recursive description of a hybrid algorithm fi.

be implemented as a pure virtual function, each of the fi being an inherited specialization.

Scheme for decreasing overhead due to choices. For baroque algorithms the choices
between the different fi’s are performed at runtime. Therefore an important problem is
related to reducing the overhead related to the computation of each choice. In the next
section, we describe an original alternative scheme to decrease the overhead induced by
the choices for each call to f in the previous algorithm. Generalization to various com-
putations [5] (namely Branch&X computations and linear algebra) is based on the use of
an exception mechanism. For a given subcomputation, a default given computation fj is
favored. However, this choice may be changed under some exceptional circumstances de-
pending on values or machine parameters. Then, if the total number of such exceptions is
small with respect to the total number of subcomputations, the overhead due to choices
become negligible. We detail such a scheme in next section.

2.2 Baroque coupling of sequential and parallel algorithms

We presented the coupling of a sequential algorithm fseq and a parallel one fpar that solve
the same problem f . For the sake of simplicity, we assume that the sequential algorithm
performs a first part of the sequential computation (called ExtractSeq) and then performs
a recursive terminal call to f to complete the computation. Besides, we assume that the
sequential algorithm is such that at any time of its execution, the sequence of operations
that completes the algorithm fseq can be performed by another parallel recursive (fine grain)
algorithm fpar. The operation that consists in extracting the last part of the sequential
computation in progress to perform it in parallel with fpar is called ExtractPar. After
completion of fpar, the final result is computed by merging both the result of the first
part computed by fseq (not affected by ExtractPar) and the result of the ExtractPar part
computed by fpar.

Adaptive and Hybrid Algorithms: classification and illustration on ... 137

More precisely, given a sequential algorithm fseq (resp. parallel fpar), the result r of its
evaluation on an input x is denoted fseq(x) (resp. fpar(x)). We assume that x has a
list structure with a concatenation operator ♯ and that there exists an operator ⊕ (not
necessarily associative) for merging the results. At any time of evaluation of fseq(x), x
can be split into x1♯x2, due to either an ExtractSeq or an ExtractPar operation on x. The
result computed by the parallel algorithm is then fpar(x) = f(x1)⊕ f(x2). We assume that
both results fseq(x) and fpar(x) are equivalents with respect to a given measure. In the
restricted framework of list homomorphism [3], this hypothesis can be written as f(x♯y) =
f(x)⊕f(y). However, it is possible to provide parallel algorithms for problems that are not
list homomorphisms [4] at the price of an increase in the number of operations.
To decrease overhead related to choices for f between fseq and fpar, fseq is the default choice
used. Based on a workstealing scheduling, fpar is only chosen when a processor becomes
idle, which leads to an ExtractPar operation.
This exception mechanism can be implemented by maintaining during any execution of
fseq(x) a lower priority process ready to perform an ExtractPar operation on x resulting in
an input x2 for fpar only when a processor becomes idle.
Then the overhead due to choices is only related to the number of ExtractPar operations
actually performed.
To analyze this number, we adopt the simplified model of Cilk-5 [17] also valid forKaapi [15].

It relies on Graham’s bound (see Equation 2 in [17]). Let T
(seq)
1 (resp. T

(par)
1) be the exe-

cution time on a sequential processor (i.e. work) of fseq (resp. fpar), and let T
(par)
∞ be the

execution time of fpar on an unbounded number of identical processors.

Theorem 2.1. When the hybrid program is executed on a machine with m identical pro-
cessors, the number of choices that result in a choice fpar for f instead of fseq is bounded

by (m− 1).T
(par)
∞

Proof. On an infinite number of processors, all the computation is performed by fpar; the

parallel time of the hybrid algorithm is then T
(par)
∞ . Then the number of steal requests is

bounded by T
(par)
∞ on each processor (Graham’s bound), except for the one running fseq.

The latter only executes the sequential algorithm, but is subject to ExtractPar, due to steal
requests from the others. This is true for any execution of such hybrid baroque algorithm.

The consequence of this theorem is that for a fine grain parallel algorithm that satisfies

T
(par)
∞ ≪ T

(seq)
1 , even if the hybrid algorithm is baroque (non constant number of choices),

the overhead in time due to choices in the hybrid algorithm is negligible when compared to
the overall work.

Remark. The overhead due to the default call to ExtractSeq can also be reduced. Ideally,
ExtractSeq should extract a data whose computations by fpar would require a time at least

T
(par)
∞ , which is the critical time for fpar.

138 Cung et al. Transgressive Computing

2.3 Application to the coupling of DFS/BFS for combinatorial optimiza-
tion

The performance and overhead of the previous scheme were experimentally determined for
the Quadratic Assignment Problem (for instance NUGENT 221). This application imple-
ments a Branch&Bound algorithm: it recursively generates nodes in the search tree, which
has 221938 nodes and a maximal depth of 22.
Locally, each processor implements by default a sequential algorithm fseq that implements
a depth first search (DFS) in the tree. It enables to save memory and also to optimize
branching in the tree without copy (sons of a node n are sequentially created from the value
of n with backtracking). To minimize critical time, the alternative fpar parallel algorithm
implements a breadth first search (BFS) algorithm. When a processor becomes idle, it
picks the oldest node of a randomly chosen non-idle processor (ExtractPar). This parallel
algorithm introduces an overhead due to node copy.
The experiments were conducted on the iCluster22, a cluster of 104 nodes interconnected by
a 100Mbps Ethernet network. Each node features two Itanium-2 processors (900 MHz) and 3
GB of local memory. The algorithm was parallelized using Kaapi. The degree of parallelism
(threshold) can be adjusted: after a given depth, the subtree of a node is computed locally
by fseq. This thresold defined the minimum granularity and should be chosen such that the
time of the local computation by fseq is comparable to the time overhead of parallelism.

Figure 3: Impact of granularity Figure 4: Execution time (sequential time: 34,695s)

The sequential execution time (C++ code without Kaapi) was 34,695 seconds. With Kaapi,
at fine grain (threshold ≥ 10), the execution on a single processor generated 225,195 tasks
and ran in 34,845 seconds. The impact of the degree of parallelism can be seen in Figure 3
that gives the number of parallel tasks generated for different thresholds. The degree of
parallelism increases drastically for threshold 5 and approaches its maximum at threshold
10. Figure 4 shows that the application is scalable with a fine threshold (8, i.e. 209406
nodes). Since the critical time T∞ is small, there are few successful steals and the overhead
of hybridation between fseq and fpar has small impact on efficiency.

1http://www.opt.math.tu-graz.ac.at/qaplib
2http://www.inrialpes.fr/sed/i-cluster2

Adaptive and Hybrid Algorithms: classification and illustration on ... 139

Notice that Kaapi also includes a (hybrid) checkpoint/restart mechanism [15] to support the
resilience and the addition of processors. This features makes the application itself oblivious
to dynamic platforms. The overhead of this checkpoint mechanism appears negligible for
this application (Figure 4).
In the next section, we detail various forms of hybridation on a single example, the solving
of a triangular system.

3 Hybridization for triangular system solving

3.1 Triangular system solving with matrix right-hand side

Exact matrix multiplication, together with matrix factorizations, over finite fields can now
be performed at the speed of the highly optimized numerical BLAS routines. This has
been established by the FFLAS and FFPACK libraries [8, 9]. In this section we discuss
the implementation of exact solvers for triangular systems with matrix right-hand side (or
equivalently left-hand side). This is also the simultaneous resolution of n triangular systems.
Without loss of generality for the triangularization, we here consider only the case where the
row dimension, m, of the the triangular system is less than or equal to the column dimension,
n. The resolution of such systems is e.g. the main operation in block Gaussian elimination.
For solving triangular systems over finite fields, the block algorithm reduces to matrix
multiplication and achieves the best known algebraic complexity. Therefore, from now on
we will denote by ω the exponent of square matrix multiplication (e.g. from 3 for classical,
to 2.375477 for Coppersmith-Winograd). Moreover, we can bound the arithmetical cost
of a m × k by k × n rectangular matrix multiplication (denoted by R(m,k, n)) as follows:
R(m,k, n) ≤ Cωmin(m,k, n)ω−2max(mk,mn, kn) [14]. In the following subsections, we
present the block recursive algorithm and two optimized implementation variants.

3.2 Scheme of the block recursive algorithm

The classical idea is to use the divide and conquer approach. Here, we consider the upper
left triangular case without loss of generality, since any combination of upper/lower and
left/right triangular cases are similar: if U is upper triangular, L is lower triangular and B
is rectangular, we call ULeft-Trsm the resolution of UX = B. Suppose that we split the
matrices into blocks and use the divide and conquer approach as follows:

A X B
︷ ︸︸ ︷[
A1 A2

A3

] ︷ ︸︸ ︷[
X1

X2

]
=

︷ ︸︸ ︷[
B1

B2

]

1. X2 :=ULeft-Trsm(A3, B2);

2. B1 := B1 −A2X2;

3. X1 :=ULeft-Trsm(A1, B1);

140 Cung et al. Transgressive Computing

With m = n and classical matrix multiplication, the arithmetic cost of this algorithm is
TRSM(m) = m3 as shown e.g. in [9, Lemma 3.1].
We also now give the cost of the triangular matrix multiplication, TRMM, and of the
triangular inversion, INVT, as we will need them in the following sections.
To perform the multiplication of a triangular matrix by a dense matrix via a block decom-
position, one requires four recursive calls and two dense matrix-matrix multiplications. The
cost is thus TRMM(m) = 4TRMM(m/2) + 2MM(m/2). The latter is TRMM(m) = m3

with classical matrix multiplication.
Now the inverse of a triangular matrix requires two recursive calls to invert A1 and A3.
Then, the square block of the inverse is −A−1

1 A2A
−1
3 . The cost is thus INV T (m) =

2INV T (m/2) + 2TRMM(m/2). The latter is INV T (m) = 1
3m

3 with classical matrix
multiplication.

3.3 Two distinct hybrid degenerations

3.3.1 Degenerating to the BLAS “dtrsm”

Matrix multiplication speed over finite fields was improved in [8, 20] by the use of the nu-
merical BLAS3 library: matrices were converted to floating point representations (where
the linear algebra routines are fast) and converted back to a finite field representation after-
wards. The computations remained exact as long as no overflow occurred. An implementa-
tion of ULeft-Trsm can use the same techniques. Indeed, as soon as no overflow occurs one
can replace the recursive call to ULeft-Trsm by the numerical BLAS dtrsm routine. But
one can remark that approximate divisions can occur. So we need to ensure both that only
exact divisions are performed and that no overflow appears. However when the system is
unitary (only 1’s on the main diagonal) the division are of course exact and will even never
be performed. Our idea is then to transform the initial system so that all the recursive calls
to ULeft-Trsm are unitary. For a triangular system AX = B, it suffices to factor first the
matrix A into A = UD, where U , D are respectively an upper unit triangular matrix and
a diagonal matrix. Next the unitary system UY = B is solved by any ULeft-Trsm (even a
numerical one), without any division. The initial solution is then recovered over the finite
field via X = D−1Y . This normalization leads to an additional cost of O(mn) arithmetic
operations (see [9] for more details).
We now care for the coefficient growth. The use of the BLAS routine trsm is the resolution
of the triangular system over the integers (stored as double for dtrsm). The restriction is
the coefficient growth in the solution. Indeed, the kth value in the solution vector is a linear
combination of the (n − k) already computed next values. This implies a linear growth in
the coefficient size of the solution, with respect to the system dimension: for a given p, the
dimension n of the system must satisfy p−1

2

[
pn−1 + (p− 2)n−1

]
< 2ma where ma is the size

of the mantissa [9]. Then the resolution over the integers using the BLAS trsm routine is
exact. For instance, with a 53 bits mantissa, this gives quite small matrices, namely at most
55× 55 for p = 2, at most 4× 4 for p ≤ 9739, and at most p = 94906249 for 2× 2 matrices.

3
www.netlib.org/blas

Adaptive and Hybrid Algorithms: classification and illustration on ... 141

Nevertheless, this technique is speed-worthy in many cases.
In the following, we will denote by SBLAS(p) the maximal matrix size for which the BLAS
resolution is exact. Also, BLASTrsm is the recursive block algorithm, switching to the BLAS
resolution as soon as the splitting gives a block size lower than SBLAS(p).

3.3.2 Degenerating to delayed modulus

In the previous section we noticed that BLAS routines within Trsm are used only for small
systems. An alternative is to change the cascade: instead of calling the BLAS, one could
switch to the classical iterative algorithm: Let A ∈ Z/pZ

m×m and B,X ∈ Z/pZ
m×n such

that AX = B, then ∀i,Xi,∗ = 1
Ai,i

(Bi,∗−Ai,[i+1..m]X[i+1..m],∗) The idea is that the iterative

algorithm computes only one row of the whole solution at a time. Therefore its threshold
t is greater than the one of the BLAS routine, namely it requires only t(p − 1)2 < 2ma for
a 0..p − 1 unsigned representation, or t(p − 1)2 < 2ma+1 for a 1−p

2 ..p−1
2 signed one. Now

we focus on the dot product operation, base for matrix-vector product. According to [7],
where different implementations of a dot product are proposed and compared on different
architecture (Zech log, Montgomery, float, ...), the best implementation is a combination
of a conversion to floating point representation with delayed modulus (for big prime and
vector size) and an overflow detection trick (for smaller prime and vector size).
DelayTrsmt is the recursive block algorithm, switching to the delayed iterative resolution as
soon as the splitting gives a block size lower than t (of course, t must satisfy t ≤ SBLAS(p)).

3.4 Tuning the “Trsm” implementation

3.4.1 Experimental tuning

As shown in section 3.2 the block recursive algorithm Trsm is based on matrix multiplica-
tions. This allows us to use the fast matrix multiplication routine of the FFLAS package
[8]. This is an exact wrapping of the ATLAS library4 used as a kernel to implement the
Trsm variants. The following table results from experimental results of [9] and expresses
which of the two preceding variants is better. Mod<double> is a field representation from
[7] where the elements are stored as floating points to avoid one of the conversions. G-Zpz

is a field representation from [13] where the elements are stored as small integers.

n 400 700 1000 2000 5000
Mod<double>(5) BLASTrsm BLASTrsm BLASTrsm BLASTrsm BLASTrsm

Mod<double>(32749) DelayTrsm50 DelayTrsm50 DelayTrsm50 BLASTrsm BLASTrsm

G-Zpz(5) DelayTrsm100 DelayTrsm150 DelayTrsm100 BLASTrsm BLASTrsm

G-Zpz(32749) DelayTrsm50 DelayTrsm50 DelayTrsm50 DelayTrsm50 DelayTrsm50

Table 1: Best variant for Trsm on a P4, 2.4GHz

In the following, we will denote by SDel(n, p) the threshold t for which DelayTrsmt is the
most efficient routine for matrices of size n. SDel(n, p) is set to 0 if e.g. the BLASTrsm routine

4
http://math-atlas.sourceforge.net[23]

142 Cung et al. Transgressive Computing

is better. The experiment shows that SDel(n, p) can be bigger or smaller than SBLAS(p)
depending on the matrix size, the prime and the underlying arithmetic implementation.

3.4.2 Hybrid tuned algorithm

The experimental results of previous section, thus provide us with an hybrid algorithm where
we can tune some static threshold in order to benefit from all the variants. Moreover, some
choices have to be made for the splitting size k in order to reach the optimal complexity
Topt:

Topt(m) = Mink{Topt(k) + Topt(m− k) +R(m− k, k, n)}.
Algorithm ULeft-Trsm(A,B)
Input: A ∈ Z/pZ

m×m, B ∈ Z/pZ
m×n.

Output: X ∈ Z/pZ
m×n such that AX = B.

if m ≤ SDel(m, p) then // Hybrid modulus degeneration 3.3.2
X := DelayTrsm(A,B);

else if m ≤ SBLAS(p) then // Hybrid BLAS degeneration 3.3.1
X := BLASTrsm(A,B);

else // Hybrid block recursive 3.2
k := Choice(1..⌊m2 ⌋);
Split matrices into k and m−k blocks

[
A1 A2

A3

] [
X1

X2

]
=

[
B1

B2

]

X2 :=ULeft-Trsm(A3, B2);
B1 := B1 −A2X2;
X1 :=ULeft-Trsm(A1, B1);

return X;

3.5 Baroque hybrid parallel Trsm

The previous algorithm takes benefit of parallelism at the level of Blas matrix product
operations. However, using the scheme proposed in §2.2, it is possible to obtain an algo-
rithm with more parallelism in order to decrease the critical time when more processors are
available. Furthermore, this also improves the performance of the distributed work-stealing
scheduler.
Indeed, while X2 and B1 are being computed, additional idle processors may proceed to
the parallel computation of A−1

1 . Indeed, X1 may be computed in two different ways:

i. X1 = TRSM(A1, B1): the arithmetic cost is T1 = k3 and T∞ = k;

ii. X1 = TRMM(A−1
1 , B1): the arithmetic cost is the same T1 = k3 but T∞ = log k.

Indeed the version (ii) with TRMM is more efficient on a parallel point of view: the two
recursive calls and the matrix multiplication in (ii) (TRMM) are independent. They can
be performed on distinct processors requiring less communications than TRSM.

Adaptive and Hybrid Algorithms: classification and illustration on ... 143

Since precomputation of A−1
1 increases the whole arithmetic cost, it is only performed if

there are extra unused processors during the computation of X2 and B1; the latter has
therefore higher priority.
The problem is to decide the size k of the matrix A1 that will be inverted in parallel.
With the optimal value of k, the computation of A−1

1 completes simultaneously with that
of X2 and B1. This optimal value of k depends on many factors: number of processors,
architecture of processors, subroutines, data. The algorithm presented in the next paragraph
uses the oblivious adaptive scheme described in 2.2. to estimate this value at runtime using
the hybrid coupling of a “sequential” algorithm fs with a parallel one fp.

3.5.1 Parallel adaptive TRSM

We assume that the parallel hybrid TRSM is spawned by a high priority process. Then the
parallel hybrid TRSM consists in computing concurrently in parallel (Figure 5):

• “sequential” computation (fs) at high priority: bottom-up computation of X =
TRSM(A,B) till reaching k, implemented by BUT algorithm (Bottom-Up TRSM
- §A.1); all processes that perform parallel BLAS operations in BUT are executed at
high priority;

• parallel computation (fp) at low priority: parallel top-down inversion of A till reach-
ing k, implemented by TDTI algorithm (Top Down Triangular Inversion - §A.2); all
processes that participates in parallel TDTI are executed at low priority.

Algorithm HybridParallelTrsm(A;B)
kBUT

k I kB

kTDTI

Top−Down

Inverse

Bottom−Up

TRSM

1 m

Figure 5: Parallel adaptive TRSM

Input: A ∈ Z/pZ
m×m, B ∈ Z/pZ

m×n.
Output: X ∈ Z/pZ

m×n such that AX = B.
kTDTI := 0 ; kBUT := m;
Parallel {

At high priority: (X2, B
′
1) := BUT (A,B);

At low priority: M := TDTI(∅, A);
}
Here, BUT has stopped TDTI and kBUT ≤ kTDTI .
Now, let A

′−1
1 = M1..kBUT ,1..kBUT

;

X1 := A
′−1
1 .B′

1;

At each step, the sequential bottom-up BUT algorithm
(resp. the parallel top-down TDTI) performs an Ex-
tractSeq (resp. ExtractPar) operation on a block of size kB (resp. kI) (Figure 5 and detailed
subroutines BUT and TDTI in appendices). Note that the values of kB and kI may vary
during the execution depending on the current state.

144 Cung et al. Transgressive Computing

3.5.2 Definiton of parameters kI and kB

Parameters kB (resp. kI) corresponds to the ExtractSeq (resp. ExtractPar) operations
presented in §2.2. The choice of their values is performed at each recursive step, depending
on resources availability. This section analyzes this choice in the case where only one system
is to be solved, i.e. n = 1.
Let r = kBUT − kTDTI .

• On the one hand, to fully exploit parallelism, kB should not be larger than the critical
time T∞ of TDTI, i.e. kB = log2 r.

• On the other hand, in order to keep an O(n2) number of operations if no more pro-
cessors become idle, the number of operations O(k3

I) required by TDTI should be
balanced by the cost of the update, i.e. kI .r, which leads to kI =

√
r.

With those choices of kI and kB , and assuming that there are enough processors, the number
of choices for kI (and so kB) will then be O(

√
r); the cost of the resulting hybrid algorithm

becomes T1 = O(n2) and T∞ = O(
√
n log2(n)), a complexity similar to the one proposed

in [19] with a fine grain parallel algorithm, while this one is coarse grain and dynamically
adapts to resource idleness. Notice that if only a few processors are available, the parallel
algorithm will be executed at most on one block of size

√
n. The BUT algorithm will

behave like the previous hybrid tuned TRSM algorithm. Also, the algorithm is oblivious to
the number of resources and their relative performance.

4 Conclusion

Designing efficient hybrid algorithms is the key to get most of the available resources and
most of the structure of the inputs of numerous applications as we have shown e.g. for linear
algebra or for combinatorial optimization Branch&X. In this paper, we have proposed a
classification of the distinct forms of hybrid algorithms and a generic framework to express
this adaptivity. On a single simple example, namely solving linear systems, we show that
several of these “hybridities” can appear. This enables an effective hybridization of the
algorithm and a nice way to adapt automatically its behavior, independent of the execution
context. This is true in a parallel context where coupling of algorithms is critical to obtain
a high performance.
The resulting algorithm is quite complex but can be automatically generated in our simple
framework. The requirements are just to provide recursive versions of the different methods.
In the AHA group5, such coupling are studied in the context of many examples: vision and
adaptive 3D-reconstruction, linear algebra in general, and combinatorial optimization.

Acknowledgments. The authors gratefully acknowledge David B. Saunders for useful
discussions and suggestions for the classification of hybrid algorithms.

5aha.imag.fr

Adaptive and Hybrid Algorithms: classification and illustration on ... 145

References

[1] Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton. Cache-oblivious
b-trees. SIAM J. Comput., 35(2):341–358, 2005.

[2] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Bradley C. Kuszmaul.
Concurrent cache-oblivious b-trees. In SPAA’05: Proceedings of the 17th annual ACM
symposium on Parallelism in algorithms and architectures, pages 228–237, New York,
NY, USA, 2005. ACM Press.

[3] R.S. Bird. Logic of Programming and Calculi of Discrete Design, chapter Introduction
to the Theory of Lists. Springer-Verlag, 1987.

[4] M. Cole. Parallel programming with list homomorphisms. Parallel Processing Letters,
5(2):191–204, 1995.

[5] El-Mostafa Daoudi, Thierry Gautier, Aicha Kerfali, Rémi Revire, and Jean-Louis Roch.
Algorithmes parallèles à grain adaptatif et applications. Technique et Science Infor-
matiques, 24:1—20, 2005.

[6] F. D’Azevedo and J. Dongarra. The design and implementation of the parallel out-of-
core scalapack lu, qr and cholesky factorization routines. Technical Report CS-97-347,
University of Tenessee, january 1997. http://www.netlib.org.

[7] Jean-Guillaume Dumas. Efficient dot product over finite fields. In Victor G. Ganzha,
Ernst W. Mayr, and Evgenii V. Vorozhtsov, editors, Proceedings of the seventh In-
ternational Workshop on Computer Algebra in Scientific Computing, Yalta, Ukraine,
pages 139–154. Technische Universität München, Germany, July 2004.

[8] Jean-Guillaume Dumas, Thierry Gautier, and Clément Pernet. Finite field linear alge-
bra subroutines. In Teo Mora, editor, Proceedings of the 2002 International Symposium
on Symbolic and Algebraic Computation, Lille, France, pages 63–74. ACM Press, New
York, July 2002.

[9] Jean-Guillaume Dumas, Pascal Giorgi, and Clément Pernet. FFPACK: Finite field
linear algebra package. In Jaime Gutierrez, editor, Proceedings of the 2004 International
Symposium on Symbolic and Algebraic Computation, Santander, Spain, pages 63–74.
ACM Press, New York, July 2004.

[10] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3. Pro-
ceedings of the IEEE, 93(2), 2005. special issue on ”Program Generation, Optimization,
and Adaptation”.

[11] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
Cache-oblivious algorithms. In FOCS ’99: Proceedings of the 40th Annual Sympo-
sium on Foundations of Computer Science, page 285, Washington, DC, USA, 1999.
IEEE Computer Society.

146 Cung et al. Transgressive Computing

[12] Alan G. Ganek and Thomas A. Corbi. The dawning of the autonomic computing era.
IBM Systems Journal, 42(1):5–18, 2003.

[13] Thierry Gautier, Gilles Villard, Jean-Louis Roch, Jean-Guillaume Dumas, and Pascal
Giorgi. Givaro, une bibliothque c++ pour le calcul formel : arithmétique exacte et
structures de données. Software, ciel-00000022, October 2005. www-lmc.imag.fr/

Logiciels/givaro.

[14] Xiaohan Huang and Victor Y. Pan. Fast rectangular matrix multiplications and im-
proving parallel matrix computations. In ACM, editor, PASCO ’97. Proceedings of the
second international symposium on parallel symbolic computation, July 20–22, 1997,
Maui, HI, pages 11–23, New York, NY 10036, USA, 1997. ACM Press.

[15] Samir Jafar, Thierry Gautier, Axel W. Krings, and Jean-Louis Roch. A check-
point/recovery model for heterogeneous dataflow computations using work-stealing.
In LNCS Springer-Verlag, editor, EUROPAR’2005, Lisboa, Portogal, August 2005.

[16] J. Jájá. An Introduction to Parallel Algorithms. Addison-Wesley, Reading, Massachus-
sets, 1992.

[17] K. H. Randall M. Frigo, C. E. Leiserson. The implementation of the cilk-5 multi-
threaded language. In Proceedings of the ACM SIGPLAN 1998 conference on Pro-
gramming language design and implementation, pages 212–223. ACM Press, 1998.

[18] Frederic Ogel, Bertil Folliot, and Ian Piumarta. On reflexive and dynamically adaptable
environments for distributed computing. In ICDCS Workshops, pages 112–117. IEEE
Computer Society, 2003.

[19] Victor Y. Pan and Franco P. Preparata. Work-preserving speed-up of parallel matrix
computations. SIAM Journal on Computing, 24(4), 1995.

[20] Clément Pernet. Implementation of Winograd’s matrix multiplication over finite fields
using ATLAS level 3 BLAS. Technical report, Laboratoire Informatique et Distribution,
July 2001. www-id.imag.fr/Apache/RR/RR011122FFLAS.ps.gz.

[21] B. Richard, P. Augerat, N. Maillard, S. Derr, S. Martin, and C. Robert. I-cluster:
Reaching top500 performance using mainstream hardware. Technical Report HPL-
2001-206 20010831, HP Laboratories Grenoble, August 2001.

[22] Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann, and Henri E. Bal. Satin:
Simple and efficient java-based grid programming. Scalable Computing: Practice and
Experience, 6(3):19–32, September 2005.

[23] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical op-
timizations of software and the ATLAS project. Parallel Computing, 27(1–2):3–35,
January 2001. www.elsevier.nl/gej-ng/10/35/21/47/25/23/article.pdf.

Adaptive and Hybrid Algorithms: classification and illustration on ... 147

Van Dat Cung and Christophe Rapine
GILCO Laboratory, ENSGI-INPG, H building, Office H123.

46, avenue Félix-Viallet, 38031 Grenoble, FRANCE.
{Van-Dat.Cung,Christophe.Rapine}@gilco.inpg.fr,

gilco.inpg.fr/∼{cung,rapine}.

Vincent Danjean, Thierry Gautier, Guillaume Huard, Bruno Raffin, Jean-Louis Roch and
Denis Trystram

Laboratoire Informatique et Distribution, ENSIMAG - antenne de Montbonnot
ZIRST 51, avenue Jean Kuntzmann, 38330 Montbonnot Saint Martin, FRANCE.

FirstName.LastName@imag.fr, www-id.imag.fr/Membres.

Jean-Guillaume Dumas
Laboratoire de Modélisation et Calcul, Université Joseph Fourier, Grenoble I

51, av. des Mathématiques, BP 53X, 38041 Grenoble, FRANCE.
Jean-Guillaume.Dumas@imag.fr,

www-lmc.imag.fr/lmc-mosaic/Jean-Guillaume.Dumas

A Appendix

A.1 Bottom-up TRSM

We need to group the last recursive ULeft-Trsm call and the update of B1. The following
algorithm thus just computes these last two steps ; the first step being performed by the
work stealing as shown afterwards.
Algorithm BUT

Input: (A2;A3;B).
Output: X2, kBUT .

Mutual Exclusion section {
if (kTDTI ≥ kBUT) Return;
kB := Choice(1..(kBUT − kTDTI)).
Split remaining columns into kTDTI ..(kBUT−kB) and (kBUT−kB)..kBUT

A2,1 A2,2

A3,1 A3,2

A3,3

[
X2,1

X2,2

]
=

B1

B2,1

B2,2

kBUT := kBUT − kB ;
}
X2,2 :=ULeft-Trsm(A3,3, B2,2);
B1 := B1 −A2,2X2,2;
B2,1 := B2,1 −A3,2X2,2;

X2,1 :=BUT

(
A2,1;A3,1;

[
B1

B2,1

])

148 Cung et al. Transgressive Computing

A.2 Top down triangular inversion of A1

Algorithm TDTI

Input:
(
A−1

1 ;A2;A3

)
.

Output: A−1, kTDTI .
Mutual Exclusion section {

if (kTDTI ≥ kBUT) Return;
kI := Choice(1..(kBUT − kTDTI)).
Split remaining columns of A2 and A3 into kTDTI ..(kTDTI + kI) and (kTDTI +

kI)..kBUT

A2,1 A2,2

A3,1 A3,2

A3,3

}
Parallel {

A−1
3,1 :=Inverse(A3,1);

T := A−1
1 .A2,1

}
A′

2,1 = −T.A−1
3,1

Now, let A
′−1
1 =

[
A−1

1 A′
2,1

A−1
3,1

]
and A′

2 =

[
A2,2

A3,2

]

Mutual Exclusion section {
kTDTI := kTDTI + kI ;

}
A−1

3,3 :=TDTI(A
′−1
1 ;A′

2;A3,3);

On the complexity of the D5 principle 149

On the complexity of the D5 principle

Xavier Dahan Marc Moreno Maza Éric Schost Yuzhen Xie

March 17, 2006

Abstract

The D5 Principle was introduced in 1985 by Jean Della Dora, Claire Dicrescenzo
and Dominique Duval in their celebrated note “About a new method for computing
in algebraic number fields”. This innovative approach automatizes reasoning based on
case discussion and is also known as “Dynamic Evaluation”. Applications of the D5
Principle have been made in Algebra, Computer Algebra, Geometry and Logic.

Many algorithms for solving polynomial systems symbolically need to perform stan-
dard operations, such as GCD computations, over coefficient rings that are direct prod-
ucts of fields rather than fields. We show in this paper how asymptotically fast algo-
rithms for polynomials over fields can be adapted to this more general context, thanks
to the D5 Principle.

1 Introduction

The standard approach for computing with an algebraic number is through the data of
its irreducible minimal polynomial over some base field k. However, in typical tasks such
as polynomial system solving, involving many algebraic numbers of high degree, following
this approach will require using probably costly factorization algorithms. Jean Della Dora,
Claire Dicrescenzo and Dominique Duval introduced “Dynamic Evaluation” techniques (also
termed “D5 Principle”) as a means to compute with algebraic numbers, while avoiding
factorization. Roughly speaking, this approach leads one to compute over direct products
of field extensions of k, instead of only field extensions.

Applications of Dynamic Evaluation have been made by many authors: González-López
and Recio (1993), Gómez D́ıaz (1994), Duval (1994), Lombardi (2003) and others. Many
algorithms for polynomial system solving rely on this philosophy; see, for instance, the work
of Lazard (1992), Kalkbrener (1993), Dellière (1999), Moreno Maza (2000), Mora (2003).
Boulier et al. (2006).

This work is aiming at filling the lack of complexity results for this approach. The
addition and multiplication over a direct product of fields are easily proved to be quasi-
linear (in a natural complexity measure). As for the inversion, it has to be replaced by
quasi-inversion: following the D5 philosophy, meeting zero-divisors in the computation will
lead to splitting the direct product of fields into a family thereof. It is much more tricky to
prove quasi-linear complexity estimate for quasi-inversion, because the algorithm relies on

150 Dahan et al. Transgressive Computing

other algorithms, for which such an estimate has to be proved: the GCD and the splitting
algorithms.

In this article, direct product of fields will be described using triangular sets. In what
follows, we assume that the base field k is perfect.

Definition 1.1. A triangular set T is a family of n-variate polynomials over k:

T = (T1(X1) , T2(X1,X2) , . . . , Tn(X1, . . . ,Xn)) ,

which forms a reduced Gröbner basis for the lexicographic order induced by Xn > · · · > X1,
and such that the ideal 〈T 〉 generated by T in k[X1, . . . ,Xn] is radical.

If T is a triangular set, the residue class ring K(T) := k[X1, . . . ,Xn]/〈T 〉 is a direct prod-
uct of fields. Hence, our questions can be basically rephrased as studying the complexity of
operations (addition, multiplication, quasi-inversion) modulo triangular sets. The following
notation helps us quantify the complexity of these algorithms.

Definition 1.2. We denote by degi(T) the degree of Ti in Xi, for all 1 ≤ i ≤ n, and by
deg(T) the product deg1(T) · · · degn(T). We call it the degree of T .

Observe that 〈T 〉 is zero-dimensional and that for all 1 ≤ i ≤ n, the set (T1 . . . , Ti) is a
triangular set of k[X1, . . . ,Xi]. The zero-set of T in the affine space An(k̄) has a particular
feature: it is equiprojectable (Aubry and Valibouze, 2000; Dahan and Schost, 2004); besides,
its cardinality equals deg(T).

Definition 1.3. A triangular decomposition of a zero-dimensional radical ideal I ⊂ k[X1,
. . . ,Xn] is a family T = T 1, . . . , T e of triangular sets, such that I = 〈T 1〉 ∩ · · · ∩ 〈T e〉 and
〈T i〉+ 〈T j〉 = 〈1〉 for all i 6= j. A triangular decomposition T′ of I refines another decompo-
sition T if for every T ∈ T there exists a (necessarily unique) subset decomp(T,T′) ⊆ T′

which is a triangular decomposition of 〈T 〉.

Let T be a triangular set, let T = T 1, . . . , T e be a triangular decomposition of 〈T 〉, and
define K(T) := K(T 1)×· · ·×K(T e). Then by the Chinese remainder theorem, K(T) ≃ K(T).
Now let T′ be a refinement of T. For each triangular set T i in T, denote by U i,1, . . . , U i,ei

the triangular sets in decomp(T i,T′). We have the following e isomorphism:

φi : K(T i) ≃ K(U i,1)× · · · ×K(U i,ei), (1)

which extend to the following e isomorphisms, where y is a new variable.

Φi : K(T i)[y] ≃ K(U i,1)[y]× · · · ×K(U i,ei)[y]. (2)

Definition 1.4. For h = (h1, . . . , he) ∈ K(T 1)[y] × · · · × K(T e)[y], we call split of h with
respect to T and T′, and write split(h,T,T′) the vector (Φ1(h1), . . . ,Φe(he)).

On the complexity of the D5 principle 151

Note that if g ∈ K(T)[y], then we have split(g, {T},T′) = split(split(g, {T},T),T′). For
simplicity, we define split(g,T) = split(g, {T},T).

We now introduce a fundamental notion, that of non-critical decompositions. It is
motivated by the following remark. Let T = T 1, . . . , T e be a family of triangular sets, with
T j = (T j1 , T

j
2 , . . . , T

j
n). For 1 ≤ i ≤ n, we write T j≤i = T j1 , T

j
2 , . . . , T

j
i and define the family

T≤i by:

T≤i = {T j≤i | j ≤ e } (with no repetition allowed).

Even if T is a triangular decomposition of a 0-dimensional radical ideal I ⊂ k[X1, . . . ,Xn],
T≤i is not necessarily a triangular decomposition of I ∩ k[X1, . . . ,Xi]. Indeed, with n = 2
and e = 2, consider T 1 = ((X1 − 1)(X1 − 2),X2) and T 2 = ((X1− 1)(X1 − 3),X2 − 1). The
family T = T 1, T 2 is a triangular decomposition of the ideal I = 〈T 1〉 ∩ 〈T 2〉. However,
the family of triangular sets

T≤1 = {T 1
1 = (X1 − 1)(X1 − 2), T 1

2 = (X1 − 1)(X1 − 3)}

is not a triangular decomposition of I ∩ k[X1] since 〈T 1
1 〉+ 〈T 2

1 〉 = 〈X1 − 1〉.
Definition 1.5. Let T be a triangular set in k[X1, . . . ,Xn]. Two polynomials a, b ∈ K(T)[y]
are coprime if the ideal 〈a, b〉 ⊂ K(T)[y] equals 〈1〉.
Definition 1.6. Let T 6= T ′ be two triangular sets, with T = (T1, . . . , Tn) and T ′ =
(T ′

1, . . . , T
′
n). The least integer ℓ such that Tℓ 6= T ′

ℓ is called the level of the pair {T, T ′}.
The pair {T, T ′} is critical if Tℓ and T ′

ℓ are not coprime in k[X1, . . . ,Xℓ−1]/〈T1, . . . , Tℓ−1〉[Xℓ].
A family of triangular sets T is non-critical if it has no critical pairs, otherwise it is said to
be critical.

The pair {T 1, T 2} in the above example has level 1 and is critical. Consider U1,1 =
(X1 − 1,X2), U

1,2 = (X1 − 2,X2), U
2,1 = (X1 − 1,X2 − 1) and U2,2 = (X1 − 3,X2 − 1).

Observe that U = {U1,1, U1,2, U2,1, U2,2} is a non-critical triangular decomposition of I
refining {T 1, T 2} and that U≤1 is a triangular decomposition I ∩ k[X1,X2].

This notion of critical pair is fundamental. In fact, fast algorithms for the innocuous
splitting operations Φi of Equation (2) are not guaranteed for critical decompositions, as
shown in the following extension of the previous example. Consider a third triangular set
T 3 = ((X1 − 2)(X1 − 3),X2 +X1 − 3). One checks that V = {T 1, T 2, T 3} is a triangular
decomposition of T = ((X1−1)(X1−2)(X1−3),X2(X2−1)). However, splitting an element
p from {T} to V requires to compute

p mod (X1 − 1)(X1 − 2), p mod (X1 − 1)(X1 − 3), p mod (X1 − 2)(X1 − 3),

whence some redundancies. In general, these redundancies prevent the splitting compu-
tation from being quasi-linear w.r.t. deg(T). But if the triangular decomposition is non-
critical, then there is no more redundancy, and the complexity of splitting p can be hoped
to be quasi-linear.

Removing critical pairs of a critical triangular decomposition in order to be able to
split fast requires to delete the common factors between the polynomials involved in the

152 Dahan et al. Transgressive Computing

decomposition. To do it fast (in quasi-linear time), the coprime factorization or gcd-free
basis computation algorithm is used. Of course to implement this algorithm over a direct
product of fields, one first need to be able to compute GCD’s over such a product in quasi-
linear time.

Since K(T) is a direct product of fields, any pair of univariate polynomials f, g ∈ K(T)[y]
admits a GCD h in K(T)[y], in the sense that the ideals 〈f, g〉 and 〈h〉 coincide, see Moreno
Maza and Rioboo (1995). However, even if f, g are both monic, there may not exist a monic
polynomial h in K(T)[y] such that 〈f, g〉 = 〈h〉 holds: consider for instance f = y + a+1

2
(assuming that 2 is invertible in k) and g = y + 1 where a ∈ K(T) satisfies a2 = a, a 6= 0
and a 6= 1. GCD’s with non-invertible leading coefficients are of limited practical interest;
this leads us to the following definition.

Definition 1.7. Let f, g be in K(T)[y]. An extended greatest common divisor (XGCD) of
f and g is a sequence ((hi, ui, vi, T

i), 1 ≤ i ≤ e), where T = T 1, . . . , T e is a non-critical
decomposition of T and for all 1 ≤ i ≤ e, hi, ui, vi are polynomials in K(T i)[y], such that
the following holds. Let f1, . . . , fe = split(f, {T},T) and g1, . . . , ge = split(g, {T},T); then
for 1 ≤ i ≤ e, we have:

• hi is monic or null,

• the inequalities deg ui < deg gi and deg vi < deg fi hold,

• the equalities 〈fi, gi〉 = 〈hi〉 and hi = uifi + vigi hold.

One easily checks that such XGCD’s exists, and can be computed, for instance by
applying the D5 Principle to the Euclidean algorithm. To compute GCD’s in quasi-linear
time over a direct product of fields, we will actually adapt the Half-GCD techniques (Yap,
1993) in Section 4.

Our last basic ingredient is the suitable generalization of the notion of inverse to direct
products of fields.

Definition 1.8. A quasi-inverse of an element f ∈ K(T) is a sequence of couples ((ui, T
i), 1 ≤

i ≤ e) where T = T 1, . . . , T e is a non-critical decomposition of T and ui is an element of
K(T i) for all 1 ≤ i ≤ e, such that the following holds. Let f1, . . . , fe = split(f, {T},T);
then for 1 ≤ i ≤ e we have either fi = ui = 0, or fiui = 1.

Obtaining fast algorithms for GCD’s, quasi-inverses and removal of critical pairs requires
a careful inductive process that we summarize in this paper.

• We first need complexity estimates for multiplication modulo a triangular set and
splitting w.r.t. triangular decompositions. This is done in Section 3.

• Assuming that multiplications and quasi-inverse computations can be computed fast
in K(T), and assuming that we can remove critical pairs from critical triangular
decompositions of 〈T 〉, we obtain in Section 4 a fast algorithm for computing GCD’s
in K(T)[y]. Note that Langemyr (1991) states that GCD’s over products of fields can
be computed in quasi-linear time, but with no proof.

On the complexity of the D5 principle 153

• Assuming that GCD’s can be computed fast in K(T1, . . . , Tn−1)[Xn], we present fast
algorithms for quasi-inverses in K(T) (Section 5), coprime factorization for polynomi-
als in K(T1, . . . , Tn−1)[Xn] (Section 6) and refining a triangular decomposition T of
T into a non-critical one (Section 7).

These are the basic blocks for our inductive process, which yields our main results:

Theorem 1.9. For any ε > 0, there exists Aε > 0 such that addition, multiplication and
quasi-inversion in K(T) can be computed in Anε deg(T)1+ε operations in k.

Theorem 1.10. There exists G > 0, and for any ε > 0, there exists Aε > 0, such that one
can compute an extended greatest common divisor of polynomials in K(T)[y], with degree at
most d, using at most GAnε d

1+ε deg(T)1+ε operations in k.

Due to space constraints, it is not possible to give all details of our algorithms in this
paper. Hence, some algorithms like GCD receive a detailed treatment, while we have to be
more sketchy on other ones.

2 Complexity notions

We start by recalling basic results for operations on univariate polynomials.

Definition 2.1. A multiplication time is a map M : N→ R such that:

• For any ring R, polynomials of degree less than d in R[X] can be multiplied in at
most M(d) operations (+,×) in R.

• For any d ≤ d′, the inequalities M(d)
d ≤ M(d′)

d′ and M(dd′) ≤ M(d)M(d′) hold.

Note that in particular that the inequalities M(d) ≥ d and M(d) + M(d′) ≤ M(d + d′)
hold for all d, d′. Using the result of Cantor and Kaltofen (1991), that follows the work
of Schönhage and Strassen, we know that there exists c ∈ R such that the function d 7→
c d logp(d) logp logp(d) is a multiplication time. In what follows, the function logp is defined
by logp(x) = 2 log2(max{2, x}): this function turns out to be more convenient than the
classical logarithm for handling inequalities.

Fast polynomial multiplication is the basis of many other fast algorithms: Euclidean
division, computation of the subproduct tree (see Chapter 10 in von zur Gathen and Gerhard
(1999) and Section 6 of this article), and multiple remaindering.

Proposition 2.2. There exists a constant C ≥ 1 such that the following holds over any
ring R. Let M be a multiplication time. Then:

1. Dividing in R[X] a polynomial of degree less than 2d by a monic polynomial of degree
at most d requires at most 5M(d) +O(d) ≤ CM(d) operations (+,×) in R.

2. Let F be a monic polynomial of degree d in R[X]. Then additions and multiplications
in R[X]/F requires at most 6M(d) +O(d) ≤ CM(d) operations (+,×) in R.

154 Dahan et al. Transgressive Computing

3. Let F1, . . . , Fs be non-constant monic polynomials in R[X], with sum of degrees d.
Then one can compute the subproduct tree associated to F1, . . . , Fs using at most
M(d) logp(d) operations (+,×) in R.

4. Let F1, . . . , Fs be non-constant monic polynomials in R[X], with sum of degrees d.
Then given A in R[X] of degree less than d, one can compute A mod F1, . . . , A mod Fs
within 11M(d) logp(d) +O(d logp(d)) ≤ CM(d) logp(d) operations (+,×) in R.

5. Assume that R is a field. Then, given two polynomials in R[X] of degree at most
d, computing their monic GCD and their Bézout coefficients can be done in no more
than 33M(d) logp(d) +O(d logp(d)) ≤ CM(d) logp(d) operations (+,×, /) in R.

6. Assume that R is a field and that F is a monic squarefree polynomial in R[X] of degree
d. Then, computing a quasi-inverse modulo F of a polynomial G ∈ R[X] of degree less
than d can be done in no more than 71M(d) logp(d) +O(d logp(d)) ≤ CM(d) logp(d)
operations (+,×, /) in R.

Proof. The first point is proved in Theorem 9.6 of (von zur Gathen and Gerhard,
1999) and implies the second one. The third and fourth points are proved in Lemma 10.4
and Theorem 10.15 of the same book. The fifth point is reported in Theorem 11.5 of that
book (with a better constant), and is a particular case of Section 4 of this article. If F has
no multiple factors in R[X], a quasi-inverse of G modulo F can be obtained by at most
two extended GCD computations and one division with entries of degree at most d. Using
estimates for the GCD leads to the result claimed in point 6.

We now define our key complexity notion, arithmetic time for triangular sets.

Definition 2.3. An arithmetic time is a function T 7→ An(T) with real positive values and
defined over all triangular sets in k[X1, . . . ,Xn] such that the following conditions hold.

(E0) For every triangular decomposition T = T 1, . . . , T e of T , we have An(T
1) + · · · +

An(T
e) ≤ An(T).

(E1) Every addition or multiplication in K(T) can be done in at most An(T) operations
in k.

(E2) Every quasi-inverse in K(T) can be computed in at most An(T) operations in k.

(E3) Given a triangular decomposition T of T , one can compute a non-critical triangular
decomposition T′ which refines T, in at most An(T) operations in k.

(E4) For every α ∈ K(T) and every non-critical triangular decomposition T of T , one can
compute split(α, {T},T) in at most An(T) operations in k.

Our main goal in this paper is then to give estimates for arithmetic times. This is done
through an inductive proof; the following proposition gives such a result for the base case,
triangular sets in one variable.

On the complexity of the D5 principle 155

Proposition 2.4. If n = 1, then T ∈ k[X1] 7→ CM(deg T) logp(deg T) is an arithmetic
time.

Proof. A triangular set in one variable is simply a squarefree monic polynomial in
k[X1]. Hence, (E1), (E2) and (E4) respectively follow from points 2, 6 and 4 in Proposi-
tion 2.2. Property (E0) is clear. Since n = 1, all triangular decompositions are non-critical,
and (E3) follows.

3 Basic complexity results: multiplication and splitting

This section is devoted to give first complexity results for triangular sets: we give upper
bounds on the cost of multiplication, and splitting. In general, we do not know how to
perform this last operation in quasi-linear time; however, when the decomposition is non-
critical, quasi-linearity can be reached.

Proposition 3.1. Let M be a multiplication function, and let C be the constant from
Proposition 2.2. Let T be a triangular set in k[X1, . . . ,Xn]. Then:

• Additions and multiplications modulo T can be done in at most Cn
∏
i≤n M(degi T)

operations in k.

• If T is a non-critical decomposition of T , then for any h in K(T), split(h, {T},T) can
be computed in at most nCn

∏
i≤n M(degi T) logp(degi T) operations in k.

Proof. The first part of the proposition is easy to deal with: the case of additions is
obvious, using the inequality M(d) ≥ d; as to multiplication, an easy induction using point
(1) in Proposition 2.2 gives the result. The end of the proof uses point (4) in Proposition 2.2;
the non-critical assumption is then used through the following lemma.

Lemma 3.2. Consider a non-critical decomposition T of the triangular set T = (T1, . . . , Tn).
Write T≤n−1 = {U1, . . . , U s}, and, for all i ≤ s, denote by T i,1, . . . , T i,ei the triangu-
lar sets in T such that T i,j ∩ k[X1, . . . ,Xn−1] = U i (thus T is the set of all T i,j, with
i ≤ s and j ≤ ei). Then T≤n−1 is a non-critical decomposition of the triangular set
(T1, . . . , Tn−1). Moreover, for all i ≤ s, we have:

∑

j≤ei

degn T
i,j = degn T.

As an illustration, consider again, for n = 2, the triangular sets

T 1 = ((X1 − 1)(X1 − 2), X2)
T 2 = ((X1 − 1)(X1 − 3), X2 − 1)

and T 3 = ((X1 − 2)(X1 − 3), X2 +X1 − 3).

These triangular sets form a critical decomposition T of the ideal 〈T 1〉 ∩ 〈T 2〉 ∩ 〈T 3〉, which
is also generated by T = ((X1 − 1)(X1 − 2)(X1 − 3),X2(X2 − 1)).

156 Dahan et al. Transgressive Computing

Here, T≤1 is given by {U1, U2, U3} = {(X1−1)(X1−2), (X1−1)(X1−3), (X1−1)(X1−
3)}, so that s = 3. Take for instance U1 = (X1 − 1)(X1 − 2); then we have e1 = 1 and
T 1,e1 = T 1. Note then that deg2 T

1,e1 = 1 differs from deg2 T = 2, so the conclusion of the
previous lemma is indeed violated.

4 Fast GCD computations modulo a triangular set

GCD’s of univariate polynomials over a field can be computed in quasi-linear time by means
of the Half-GCD algorithm (Brent et al., 1980; Yap, 1993). We show how to adapt this
technique over the direct product of fields K(T) and how to preserve its complexity class.
Throughout this section, we consider an arithmetic time T 7→ An(T) for triangular sets in
k[X1, . . . ,Xn].

Proposition 4.1. For all a, b ∈ K(T)[y] with deg a, deg b ≤ d, one can compute an extended
greatest common divisor of a and b in O(M(d)log(d))An(T) operations in k.

We prove this result by describing our GCD algorithm over the direct product of fields
K(T) and its complexity estimate. We start with two auxiliary algorithms.

Monic forms. Any polynomial over a field can be made monic by division through its
leading coefficient. Over a product of fields, this division may induce splittings. We now
study this issue.

Definition 4.2. A monic form of f ∈ K(T)[y] is a sequence of quadruples ((ui, vi,mi, Ti),
1 ≤ i ≤ e), where T = T 1, . . . , T e is a non-critical decomposition of T , ui, vi are in K(T i)
and mi is in K(T i)[y] for all 1 ≤ i ≤ e, and such that the following holds.

Let f1, . . . , fe = split(f, {T},T). Denote by lc(fi) the leading coefficient of fi. Then,
for all 1 ≤ i ≤ e we have ui = lc(fi), and mi = vifi, and either ui = vi = 0 or uivi = 1.

Observe that for all 1 ≤ i ≤ e, the polynomial mi is monic or null.

The following algorithm shows how to compute a monic form. This function uses a
procedure quasiInverse(f ,T). This procedure takes as input a triangular decomposition
T = T 1, . . . , T e of T and a sequence f = f1, . . . , fe in K(T 1)[y]× · · · ×K(T e)[y] and returns
a sequence (((fij , T

ij), 1 ≤ j ≤ ei), 1 ≤ i ≤ e) where ((fij , T
ij), 1 ≤ j ≤ ei) is a quasi-inverse

of fi modulo T i and such that (T ij , 1 ≤ j ≤ ei, 1 ≤ i ≤ e) is a non-critical refinement of T.
Its complexity is studied in Section 5.

The number at the end of a line, multiplied by An(T), gives an upper bound for the
total time spent at this line. Therefore, the following algorithm computes a monic form of
f in at most (8d+ 6)An(T) operations in k.

monic(f, T) ==
1 T := {T}
2 v := (0)
3 g := f

On the complexity of the D5 principle 157

4 while g 6= 0 repeat

4.1 u := split(lc(g), {T},T) [d+ 1]
4.2 (w,T′) := quasiInverse(u,T) [3d + 3]
4.3 v := split(v,T,T′) [d+ 1]
4.4 for 1 ≤ i ≤ #v repeat

4.4.1 if vi = 0 then vi := wi [d+ 1]
4.5 T := T′

4.6 g := g − leadingTerm(g)
5 f := split(f, {T},T) [d]
6 u := lc(f)
7 m := v · f [d]
8 return ((ui, vi,mi, T

i), 1 ≤ i ≤ #T)

Division with monic remainder. The previous notion can then be used to compute
Euclidean divisions, producing monic remainders: they will be required in our fast Euclidean
algorithm for XGCD’s.

Definition 4.3. Let f, g ∈ K(T)[y] with g monic. A division with monic remainder of
f by g is a sequence of tuples ((gi, qi, vi, ui, ri, T

i), 1 ≤ i ≤ e) such that T = T 1, . . . , T e

is a non-critical decomposition of T , and, for all 1 ≤ i ≤ e, we have ui, vi ∈ K(T i) and
gi, qi, ri,∈ K(T i)[y], and such that the following holds.

Let f1, . . . , fe = split(f, {T},T) and g1, . . . , ge = split(g, {T},T). Then, for all 1 ≤ i ≤
e, the polynomial ri is null or monic, we have either ui = vi = 0 or uivi = 1, and the
polynomials qi and uiri are the quotient and remainder of fi by gi in K(T i)[y].

The following algorithm computes a division with monic remainder of f by g and requires
at most (5M(d) + O(d))An(T) operations in k. We write (q, r) = div(f, g) for the quotient
and the remainder in the (standard) division with remainder in K(T)[y].

mdiv(f, g, T) ==
1 (q, r) := div(f, g) [5M(d) +O(d)]
2 ((ui, vi, ri, T

i), 1 ≤ i ≤ #T) := monic(r, T) [8d− 2]
3 (qi, 1 ≤ i ≤ #T) := split(q, {T},T) [d+ 1]
4 (gi, 1 ≤ i ≤ #T) := split(g, {T},T) [d]
5 return ((gi, qi, ui, vi, T

i), 1 ≤ i ≤ #T)

XGCD’s. We are now ready to generalize the Half-Gcd method as exposed in Yap (1993).
We introduce the following operations. For a, b ∈ K(T)[y] with 0 < deg b < deg a =
d, each of the following algorithms Mgcd(a, b, T) and Mhgcd(a, b, T) returns a sequence
((M1, T

1), . . . , (Me, T
e)) where

(s1) T = T 1, . . . , T e is a non-critical triangular decomposition of T ,

158 Dahan et al. Transgressive Computing

(s2) Mi is a square matrix of order 2 with coefficients in K(T i)[y],

such that, if we define (a1, . . . , ae) = split(a, {T},T) and (b1, . . . , be) = split(b, {T},T),
then, for all 1 ≤ i ≤ e, defining (ti, si) = (ai, bi)

tMi, we have

(s3) in the case of Mgcd, the polynomial ti is a GCD of ai, bi and si = 0 holds,

(s′3) in the case of Mhgcd, the ideals 〈ti, si〉 and 〈ai, bi〉 of K(T i)[y] are identical, and deg si <
⌈d/2⌉ ≤ deg ti holds.

The algorithm below implements Mgcd(a, b, T), and is an extension of the analogue
algorithm known over fields. Observe that if the input triangular set T is not decomposed
during the algorithm, in particular if K(T) is a field, then the algorithm yields generators
of the ideal 〈a, b〉. If T is decomposed, then the lines from 5 to 7.3.1 guarantee that
Mgcd(a, b, T) generates a non-critical triangular decomposition of T .

Mgcd(a, b, T) ==
0 G := []; T := [];
1 ((Mi, T

i), 1 ≤ i ≤ e) := Mhgcd(a, b, T) [H(d)]
2 (a1, . . . , ae) := split(a, (T i, 1 ≤ i ≤ e)) [O(d)]
3 (b1, . . . , be) := split(b, (T i, 1 ≤ i ≤ e)) [O(d)]
4 for i in 1 · · · e repeat

4.1 (ti, si) := (ai, bi)
tMi [4M(d) +O(d)]

4.2 if si = 0 then

4.2.1 G := G, (Mi, T
i)

4.2.2 T := T, T i

4.3 ((sij , qij, rij , uij , vij , T
ij), 1 ≤ j ≤ ei) := mdiv(ti, si) [52M(d) +O(d)]

4.4 (Mij , 1 ≤ j ≤ ei) := split(Mi, (T
ij , 1 ≤ j ≤ ei)) [O(d)]

4.5 for j in 1 · · · ei repeat

4.5.1 Mij :=

(
0 1
vij −qijvij

)
Mij [2M(d) +O(d)]

4.5.2 if rij = 0 then

4.5.2.1 G := G, (Mij , T
i)

4.5.2.2 T := T, T ij

4.5.3 ((Nijk, T
ijk), 1 ≤ k ≤ eij) := Mgcd(sij, rij , T

ij) [G(d/2)]
4.5.4 (Mijk, 1 ≤ k ≤ eij) := split(Mij , (T

ijk, 1 ≤ k ≤ eij)) [O(d)]
4.5.5 for k in 1 · · · eij repeat

4.5.5.1 Mijk := NijkMijk [8M(d) +O(d)]
4.5.5.2 G := G, (Mijk, T

ijk)
4.5.5.3 T := T, T ijk

5 T′ := removeCriticalPairs(T) [1]
6 Res := []
7 for (M,T) ∈ G repeat

7.1 U := decomp(T,T′)
7.2 (Mℓ, 1 ≤ ℓ ≤ #U) := split(M, {T},U) [O(d)]

On the complexity of the D5 principle 159

7.3 for 1 ≤ ℓ ≤ #U do

7.3.1 Res := Res, (Mi, U
i)

8 return Res

The Half-GCD algorithm can be adapted to K(T)[y] (not reported here due to space
consideration) leading to an implementation of Mhgcd(a, b, T). It has a structure very similar
to Mgcd(a, b, T), see (Yap, 1993) for details in the case when the coefficients lie in a field.

Now, we give running time estimates for Mhgcd(a, b, T) and Mgcd(a, b, T). For 0 <
deg b < deg a = d, we denote byG(d) andH(d) respective upper bounds for the running time
of Mgcd(a, b) and Mhgcd(a, b), in the sense that both operations can be done in respective
times G(d)An(T) and H(d)An(T).

The number at the end of an above line, multiplied by An(T), gives an upper bound
of the running time of this line. These estimates follow from the super-linearity of the
arithmetic time for triangular sets, the running time estimates of the operation mdiv(f, g, T)
and classical degree bounds for the intermediate polynomials in the Extended Euclidean
Algorithms; see for instance Chapter 3 in (von zur Gathen and Gerhard, 1999). Therefore,
counting precisely the degrees appearing, we have: G(d) ≤ G(d/2) +H(d) + (33/2)M(d) +
O(d). The operation Mhgcd(a, b, T) makes two recursive calls with input polynomials of
degree at most d/2, leading to H(d) ≤ 2H(d/2) + (33/2)M(d) + O(d). The superlinearity
of M implies

H(d) ≤ 33

2
M(d) log d+O(d log d) and G(d) ≤ 2H(d) + 2M(d) +O(d).

This leads to the result reported in Proposition 4.1.
We conclude with a specification of a function used in the remaining sections. For

a triangular decomposition T = T 1, . . . , T e of T , two sequences f = f1, . . . , fe and g =
g1, . . . , ge of polynomials in K(T 1)[y], . . . ,K(T e)[y], the operation xgcd(f ,g,T) returns a
sequence (((gij , uij , vij , T

ij), 1 ≤ j ≤ ei), 1 ≤ i ≤ e) where ((gij , uij , vij , T
ij), 1 ≤ j ≤ ei) is

an extended greatest common divisor of fi and gi and such that (T ij , 1 ≤ j ≤ ei, 1 ≤ i ≤ e)
is a non-critical refinement of T.

Proposition 4.1 implies that if f1, . . . , fe, g1, . . . , ge have degree at most d then xgcd(f ,g,T)
runs in at most O(M(d)log(d))An(T) operations in k.

5 Fast computation of quasi-inverses

Throughout this section, we consider an arithmetic time An−1 for triangular sets in n − 1
variables. We explain how a quasi-inverse can be computed fast with the algorithms split,
xgcd, and removeCriticalPairs.

Proposition 5.1. Let T = (T1, . . . , Tn) be a triangular set with degi(T) = di for all
1 ≤ i ≤ n. Let f be in K(T). Then one can compute a quasi-inverse of f modulo T
in O

(
M(dn) log(dn)

)
An−1(T<n) operations in k.

160 Dahan et al. Transgressive Computing

We consider first the case where f is a non-constant polynomial and its degree w.r.t. Xn

is positive and less than dn; we give the algorithm, followed by the necessary explanations.
Here, the quantity at the end a line, once multiplied by An−1(T<n), gives the total amount
of time spent at this line. At the end of this section, we briefly discuss the other cases to
be considered for f .

quasiInversen(f, T) ==
1 ((gi, ui, vi, T

i
<n), 1 ≤ i ≤ e) := xgcd(f, Tn, T<n)

[
O
(
M(dn) log(dn)

)]

2 (T in, . . . , T
e
n) := split(Tn, {T<n}, {T 1

<n, . . . , T
e
<n}) [O(dn)]

3 (fi, . . . , fe) := split(f, {T<n}, {T 1
<n, . . . , T

e
<n}) [O(dn)]

4 T := {}; C := {}; result := {};
5 for i = 1 . . . e do

5.1 if deg(gi) = 0 then

5.1.1 C := C, (ui, T
i
<n ∪ T in); T := T, T i<n ∪ T in

5.2 else if deg(gi) > 0 then

5.2.1 C := C, (0, T i<n ∪ gi); T := T, T i<n ∪ gi
5.2.2 qi := quotient(T in, gi) [5M(dn) +O(dn)]

5.2.3 ((gij , uij , vij , T
ij
<n), 1 ≤ j ≤ ei) := xgcd(fi, qi, T

i
<n)

5.2.4 (T i1n , . . . , T
iei
n) := split(qi, {T i<n}, {T i1<n, . . . , T iei

<n}) [O(dn)]
5.2.5 for j = 1 . . . ei do

5.2.5.1 C := C, (uij , T
ij
<n ∪ T ijn); T := T, T ij<n ∪ T ijn

6 T′
<n := removeCriticalPairs(T<n) [O(1)]

7 for (u, S) ∈ C do

7.1 (R1, . . . , Rl) := decomp(S<n,T
′
<n)

7.2 (S1
n, . . . , S

l
n) := split(Sn, {S<n}, {R1, . . . , Rl}) [O(dn)]

7.3 (u1, . . . , ul) := split(u, {S<n}, {R1, . . . , Rl}) [O(dn)]
7.4 result := result, ((uk, R

k ∪ Skn), 1 ≤ k ≤ l)
8 return result

We first calculate an extended greatest common divisor of f and Tn modulo the triangu-
lar set T<n = (T1, . . . , Tn−1). This induces a non-critical decomposition {T 1

<n, . . . , T
e
<n} of

T<n. For further operations, we compute the images of Tn and f over this decomposition.
Let 1 ≤ i ≤ e. If the value of gi is 1, then ui is the inverse of f modulo {T i<n ∪ T in}.

Otherwise, deg gi > 0, and the computation needs to be split into two branches.
In one branch, at line 5.2.1, we build the triangular set {T i<n ∪ gi}, modulo which f

reduces to zero. In the other branch, starting from line 5.2.2, we build the triangular set as
{T i<n∪qi}, modulo which f is invertible. Indeed since the triangular set {T i<n∪qi} generates
a radical ideal, T in is squarefree modulo {T i<n}, and gcd(f, qi) must be 1 modulo {T i<n∪ qi}.
Therefore we can simply use the xgcd (step 5.2.3) once to compute the quasi-inverse of f
modulo {T i<n ∪ qi}.

After collecting all the quasi-inverses, we remove the critical pairs in the new family of

On the complexity of the D5 principle 161

triangular sets. Since no critical pairs are created at level n in the previous computation,
the removal of critical pairs needs only to perform below level n. At the end, we split the
inverses and the top polynomials w.r.t the last non-critical decomposition.

We also need quasi-inverse computations in two other different situations. One is when
f may not have the same main variable as the triangular set T . We need also to compute
the quasi-inverses in the sense of quasiInverse(f ,T) introduced in Section 4 where T =
T 1, . . . , T e is a triangular decomposition of T , and f = f1, . . . , fe is a sequence of polynomials
in k[X1, . . . ,Xn]. They are simply built on top of the quasiInversen(f, T), with additional
splits and removal of critical pairs. The dominant cost is the two xgcd calls. Therefore, in
each situation, the total cost is bounded by O

(
M(dn) log(dn)

)
An−1(T<n).

6 Coprime factorization

We present in this section a quasi-linear time algorithm for coprime factorization of univari-
ate polynomials over a field. Other fast algorithms for this problem are given by (Gautier
and Roch, 1997), with a concern for parallel efficiency, and in (Bernstein, 2005), in a wider
setting, but with a slightly worse computation time. Remark that the research announce-
ment (Bernstein, 2004) has a time complexity that essentially matches ours.

Due to space consideration, we present our algorithm only for polynomials over a field k;
however, it adapts over a direct product of fields, following the ideas presented in Section 4.
We will use this tool in Section 7 for computing non-critical refinements of a triangular
decomposition (see the example in the introduction for a motivation of this idea).

Definition 6.1. Let A = a1, . . . , as be squarefree polynomials in k[x]. Some polynomials
b1, . . . , bt in k[x] are a gcd-free basis of the set A if gcd(bi, bj) = 1 for i 6= j, each ai can
be written (necessarily uniquely) as a product of some of the bj , and each bj divides one
of the ai. The associated coprime factorization of A consists in the factorization of all
polynomials ai in terms of the polynomials b1, . . . , bt.

Proposition 6.2. Let d be the sum of the degrees of A = a1, . . . , as. Then a coprime
factorization of A can be computed in O(M(d) logp(d)3) operations in k.

For brevity’s sake, we will only prove how to compute a gcd-free basis of A, assuming without
loss of generality that all ai have positive degree. Deducing the coprime factorization of A
involves some additional bookkeeping operations, keeping track of divisibility relations; it
induces no new arithmetic operations, and thus has no consequence on complexity.

The subproduct tree. The subproduct tree is a useful construction to devise fast algo-
rithms with univariate polynomials, in particular the coprime factorization. We review this
notion briefly and refer to (von zur Gathen and Gerhard, 1999) for more details.

Let m1, . . . ,mr be monic, non-constant, polynomials in k[x]. The subproduct tree Sub
associated to m1, . . . ,mr is defined as follows. If r = 1, then Sub is a single node, labeled
by the polynomial m1. Else, let r′ = ⌈r/2⌉, and let Sub1 and Sub2 be the trees associated

162 Dahan et al. Transgressive Computing

to m1, . . . ,mr′ and mr′+1, . . . ,mr respectively. Let p1 and p2 be the polynomials at the
roots of Sub1 and Sub2. Then Sub is the tree whose root is labeled by the product p1p2

and has children Sub1 and Sub2. A row of the tree consists in all nodes lying at some given
distance from the root. The depth of the tree is the number of its non-empty rows. Let
d =

∑r
i=1 deg(mi); then the sum of the degrees of the polynomials on any row of the tree

is at most d, and its depth is at most logp(d).

We now define some subroutines required for our gcd-free basis algorithm, starting by the
computation of multiple gcd’s. Recall that the cost at given any line in our pseudo-code
denotes the total time spent at this line; for simplicity, in what follows, we omit the O()
in the complexity estimates attached to the pseudo-code.

Multiple gcd’s. The first algorithm takes as input p and (a1, . . . , ae) in k[x], and outputs
the sequence of all gcd(p, ai). The idea of this algorithm is to first reduce p modulo all
ai using fast simultaneous reduction, and then take the gcd’s of all remainders with the
polynomials ai (see also Exercise 11.4 in (von zur Gathen and Gerhard, 1999)).

We make the assumption that all ai are non-constant in the pseudo-code below, so as
to apply the results of Proposition 2.2. To cover the general case, it suffices to introduce
a wrapper function, that strips the input sequence (a1, . . . , ae) from its constant entries,
and produces 1 as corresponding gcd’s; this function induces no additional arithmetic cost.
Finally, we write d =

∑e
i=1 deg ai.

multiGcd(p, (a1, . . . , ae)) ==
1 if deg p ≥ d then p := p mod (a1 · · · ae) [M(deg p) + M(d) logp(d)]
2 (q1, . . . , qe) := (p mod a1, . . . , p mod ae) [M(d) logp(d)]
3 return (gcd(q1, a1), . . . , gcd(qe, ae))

[∑
iM(deg ai) logp(deg ai)

]

The cost of lines 1 and 2 follows from Proposition 2.2. The function d 7→ M(d) logp(d) is
super-additive, so the complexity at line 3 fits in O(M(d) logp(d)). Hence, the total cost of
this algorithm is in O(M(deg p) + M(d) logp(d)).

Pairs of gcd’s. The next step is to compute several pairs of gcd’s. On input, we take
two families of polynomials (a1, . . . , ae) and (b1, . . . , bs), where all ai (resp. all bi) are
squarefree and pairwise coprime. The following algorithm computes all gcd(ai, bj). As
above, we suppose that all ai are non-constant; to cover the general case, it suffices to
introduce a wrapper function, with arithmetic cost 0, that removes each constant ai from
the input, and adds the appropriate sequence (1, . . . , 1) in the output. Here, we write
d = max(

∑
i deg ai,

∑
j deg bj).

pairsOfGcd((a1, . . . , ae), (b1, . . . , bs)) ==
1 Build a subproduct tree Sub(a1, . . . , ae) and let f = RootOf(Sub) [M(d) logp(d)]
2 Label the root of Sub by multiGcd(f, {b1, . . . , bs}) [M(d) logp(d)]
3 for every node N ∈ Sub, going top-down do

3.1 if N is not a leaf and has label g then

On the complexity of the D5 principle 163

3.1.1 f1 := leftChild(N); f2 := rightChild(N);
3.1.2 Label f1 by multiGcd(f1,g) [M(d) logp(d)2]
3.1.3 Label f2 by multiGcd(f2,g) [M(d) logp(d)2]

This algorithm computes the gcd’s of (b1, . . . , bs) with all polynomials in the subproduct
tree associated with (a1, . . . , ae); the requested output can be found at the leaves of the tree.
To give the complexity of this algorithm, one proves that the total number of operations
along each row is in O(M(d) logp(d)), whence a total cost in O(M(d) logp(d)2).

A special case of gcd-free basis. The input of our third subroutine are sequences of
polynomials (a1, . . . , ae) and (b1, . . . , bs), where all ai (resp. all bi) are squarefree and pair-
wise coprime. We compute a gcd-free basis of (a1, . . . , ae, b1, . . . , bs); this is done by comput-
ing all gcd(ai, bj), as well as the quotients δi = ai/

∏
j gcd(ai, bj) and γj = bj/

∏
i gcd(ai, bj).

We denote by removeConstants(L) a subroutine that removes all constant polynomials
from a sequence L (such a function requires no arithmetic operation, so its cost is zero in
our model). In the complexity analysis, we still write d = max(

∑
i deg ai,

∑
j deg bj).

gcdFreeBasisSpecialCase((a1, . . . , ae), (b1, . . . , bs)) ==
1 (gi,j)1≤i≤e,1≤j≤s := pairsOfGcd((a1, . . . , ae), (b1, . . . , bs)) [M(d) logp(d)2]
2 for j in 1 . . . s do

2.1 Lj := removeConstants(g1,j , . . . , ge,j)
2.2 βj :=

∏
ℓ∈Lj

ℓ [M(d) logp(d)]

2.3 γj := bj quo βj [M(d)]
3 for i in 1 . . . e do

3.1 Li := removeConstants(gi,1, . . . , gi,s)
3.2 αi :=

∏
ℓ∈Li

ℓ [M(d) logp(d)]

3.3 δi := ai quo αi [M(d)]
4 return removeConstants(g1,1, . . . , gi,j , . . . , ge,s, γ1, . . . , γs, δ1, . . . , δe)

The validity of this algorithm is easily checked. The estimates for the cost of lines 2.2, 2.3,
3.2 and 3.3 come for the cost necessary to build a subproduct tree and perform Euclidean
division, together with the fact that βj (resp. αi) divides bj (resp. ai). The total cost is
thus in O(M(d) logp(d)2).

Gcd-free basis. We finally give an algorithm for gcd-free basis. As input, we take square-
free, non-constant polynomials a1, . . . , ae, with d =

∑
i≤e deg ai. We need a construction

close to the subproduct tree: we form a binary tree Sub′ whose nodes will be labeled by se-
quences of polynomials. Initially the leaves contain the sequences of length 1 (a1), . . . , (ae),
and all other nodes are empty. Then, we go up the tree; at a node N , we use the subroutine
above to compute a gcd-free basis of the sequences labeling the children of N .

gcdFreeBasis({a1, . . . , ae}) ==
1 Build the tree Sub′(a1, . . . , ae)
2 for every node N ∈ Sub′ and from bottom-up repeat

164 Dahan et al. Transgressive Computing

2.1 if N is not a leaf then

2.1.1 f1 := leftChild(N) ; f2 := rightChild(N)
2.1.2 Label N by gcdFreeBasisSpecialCase(f1, f2) [M(d) logp(d)3]
3 return the label of RootOf(Sub′)

The total number of operations at a node N of the subset tree is O(M(dN) logp(dN)2),
where dN is sum of the degrees of the polynomials lying at the two children of N . Summing
over all nodes, using the tree structure, the total cost is seen to be in O(M(d) logp(d)3)
operations, as claimed.

7 Removing critical pairs

We next show how to remove critical pairs. This is an inductive process, whose complexity
is estimated in the following proposition and its corollary. We need to extend the notion of
“refining” introduced previously. Extending Definition 1.3, we say that a family of triangular
sets T′ refines another family T if for every T ∈ T, there exists a subset of T′ that forms a
triangular decomposition of 〈T 〉. Note the difference with the initial definition: we do not
impose that the family T forms a triangular decomposition of some ideal I. In particular,
the triangular sets in T do not have to generate coprime ideals.

Proposition 7.1. There exists a constant K such that the following holds. Let A1, . . . ,An−1

be arithmetic times for triangular sets in 1, . . . , n − 1 variables.
Let T be a triangular set in n variables, and let U be a triangular decomposition of 〈T 〉.

Then for all j = 1, . . . , n, the following holds: given U≤j, one can compute a non-critical
triangular decomposition W of T≤j that refines U≤j using aj operations in k, where aj
satisfies the recurrence inequalities a0 = 0 and for j = 0, . . . , n− 1,

aj+1 ≤ 2aj +KM(dj+1 · · · dn) logp(dj+1 · · · dn)3Aj(T≤j),

and where dj = degj T for j = 1, . . . , n.

Before discussing the proof of this assertion, let us give an immediate corollary, which
follows by a direct induction.

Corollary 7.2. Given a triangular decomposition U of 〈T 〉, one can compute a non-critical
triangular decomposition W of 〈T 〉 that refines U in time

K
(
2n−1M(d1 · · · dn) logp(d1 · · · dn)3 + · · ·+ M(dn) logp(dn)

3An−1(T≤n−1)
)
.

Proof. We only sketch the proof of the proposition. Let thus j be in 0, . . . , n− 1 and
let U = U1, . . . , Ue be a triangular decomposition of 〈T 〉; we aim at removing the critical
pairs in U≤j+1. Let V be obtained by removing the critical pairs in U≤j. Thus, V consists
in triangular sets in k[X1, . . . ,Xj], and has no critical pair.

On the complexity of the D5 principle 165

Let us fix i ≤ e, and write U i = (U i1, . . . , U
i
n). By definition, there exists a subset

Vi = V i,1, . . . , V i,ei of V which forms a non-critical decomposition of (U i1, . . . , U
i
j). Our

next step is to compute

U i,1j+1, . . . , U
i,ei
j+1 = split(U ij+1, (U

i
1, . . . , U

i
j),Vi).

Consider now a triangular set V in V. There may be several subsets Vi such that V ∈ Vi.
Let SV ⊂ {1, . . . , e} be the set of corresponding indices; thus, for any i ∈ SV , there exists
ℓ(i) in 1, . . . , ei such that V = V i,eℓ(i) . We will then compute a coprime factorization of all

polynomials U
i,eℓ(i)

j+1 in K(V)[Xj+1], for i ∈ SV , and for all V .
This process will refine the family V, creating possibly new critical pairs: we get rid of

these critical pairs, obtaining a decomposition W. It finally suffices to split all polynomials
in the coprime factorization obtained before from V to W to conclude. The cost estimates
then takes into account the cost for the two calls to the same process in j variables, hence
the term 2aj , and the cost for coprime factorization and splitting. Studying the degrees of
the polynomials involved, this cost can be bounded by

KM(dj+1 · · · dn) logp(dj+1 · · · dn)3Aj(T≤j)

for some constant K, according to the results in the last section.

8 Concluding the proof

All ingredients are now present to give the proof of the following result, which readily implies
the main theorems stated in the introduction.

Theorem 8.1. There exists a constant L such that, writing

An(d1, . . . , dn) = Ln
∏

i≤n
M(di) logp(di)

3,

the function T 7→ An(deg1 T, . . . ,degn T) is an arithmetic time for triangular sets in n
variables, for all n.

Proof. The proof requires to check that taking L big enough, all conditions defining
arithmetic times are satisfied. We do it by induction on n; the case n = 1 is settled by
Proposition 2.4, taking L larger than the constant C in that proposition, and using the fact
that logp(x) ≥ 1 for all x.

Let us now consider index n; we can thus assume that the function Aj is an arithmetic
time for triangular sets in j variables, for j = 1, . . . , n−1. Then, at index n, condition (E0)
makes no difficulty, using the super-additivity of the function M. Addition and multiplica-
tion (condition (E1)) and splitting (condition (E4)) follow from Proposition 3.1, again as
soon as the condition L ≥ C holds. The computation of quasi-inverses (condition (E2)) is
taken care of by Proposition 5.1, using our induction assumption on A, as soon as L is large
enough to compensate the constant factor hidden in the O() estimate of that proposition.

166 Dahan et al. Transgressive Computing

The cost for removing critical pairs is given in the previous section. In view of Corol-
lary 7.2, and using the condition M(dd′) ≤ M(d)M(d′), after a few simplifications, to satisfy
condition (E3), L must satisfy the inequality

K(2n−1 + 2n−2L+ · · ·+ Ln−1) ≤ Ln,

where K is the constant introduced in Corollary 7.2. This is the case for L ≥ K + 2.

References

Aubry, P., Valibouze, A., 2000. Using Galois ideals for computing relative resolvents. Journal
of Symbolic Computation 30 (6), 635–651.

Bernstein, D. J., 2005. Factoring into coprimes in essentially linear time. Journal of Algo-
rithms 54 (1), 1–30.

Bernstein, D. J., 2004. D. J. Bernstein. Faster factorization into coprimes.
http://cr.yp.to/papers.html#dcba2

Boulier, F., Lemaire, F., Moreno Maza, M., 2006. Well known theorems on triangular
systems and the D5 Principle. In: TC’2006. University of Granada, Spain, pp. 73–86.

Brent, R., Gustavson, F., Yun, D., 1980. Fast solution of Toeplitz systems of equations and
computations of Padé approximants. Journal of Algorithms 1, 259–295.

Cantor, D., Kaltofen, E., 1991. On fast multiplication of polynomials over arbitrary algebras.
Acta Informatica 28, 693–701.

Dahan, X., Moreno Maza, M., Schost, É., Wu, W., Xie, Y., 2005. Lifting techniques for
triangular decomposition. In: ISSAC’05. ACM press, pp. 108–115.

Dahan, X., Schost, É., 2004. Sharp estimates for triangular sets. In: ISSAC’04. ACM Press,
pp. 103–110.

Della Dora, J., Dicrescenzo, C., Duval, D., 1985. About a new method method for computing
in algebraic number fields. In EUROCAL 85 Vol. 2. Vol. 204 of LNCS. Springer-Verlag.

Dellière, S., 1999. Triangularisation de systèmes constructibles. Application à l’évaluation
dynamique. Ph.D. Thesis, Université de Limoges.

Duval, D., 1994. Algebraic numbers: an example of dynamic evaluation. Journal of Symbolic
Computation 18 (5), 429–446.

von zur Gathen, J., Gerhard, J., 1999. Modern Computer Algebra. Cambridge University
Press.

Gautier, T., Roch, J.-L., 1997. NC2 computation of gcd-free basis and application to parallel
algebraic numbers computation. In: PASCO ’97. ACM Press, pp. 31–37.

On the complexity of the D5 principle 167

Gómez D́ıaz, T., 1994. Quelques applications de l’évaluation dynamique. Ph.D. Thesis,
Université de Limoges.

González-López, M., Recio, T., 1993. The ROMIN inverse geometric model and the dynamic
evaluation method. In: Cohen, A. M. (Ed.), Proc. of the 1991 SCAFI Seminar, Computer
Algebra in Industry. Wiley.

Kalkbrener, M., 1993. A generalized Euclidean algorithm for computing triangular repre-
sentations of algebraic varieties. Journal of Symbolic Computation 15 (2), 143–167.

Langemyr, L., 1991. Algorithms for a multiple algebraic extension. In: Effective methods
in algebraic geometry (Castiglioncello, 1990). Birkhäuser Boston, pp. 235–248.

Lazard, D., 1992. Solving zero-dimensional algebraic systems. Journal of Symbolic Compu-
tation 13 (2), 117–132.

Lombardi, H., 2006. Structures algébriques dynamiques, espaces topologiques sans points
et programme de Hilbert, Annals of Pure and Applied Logic 137, 256–290.

Mora, T., 2003. Solving Polynomial Equation Systems I. The Kronecker-Duval Philosophy.
No. 88 in Encyclopedia of Mathematics and its Applications. Cambridge University Press.

Moreno Maza, M., 2000. On triangular decompositions of algebraic varieties. Tech.
Rep. 4/99, NAG, UK, Presented at the MEGA-2000 Conference, Bath, UK,
http://www.csd.uwo.ca/∼moreno.

Moreno Maza, M., Rioboo, R., 1995. Polynomial gcd computations over towers of algebraic
extensions. In: AAECC-11. Vol. 948 of LNCS, Springer-Verlag, pp. 365–382.

Yap, C., 1993. Fundamental Problems in Algorithmic Algebra. Princeton University Press.

Xavier Dahan
LIX, École polytechnique 91128 Palaiseau, France

dahan@lix.polytechnique.fr

Marc Moreno Maza
ORCCA, University of Western Ontario (UWO) London, Ontario, Canada

moreno@orcca.on.ca

Éric Schost
LIX, École polytechnique 91128 Palaiseau, France

schost@lix.polytechnique.fr

Yuzhen Xie
ORCCA, University of Western Ontario (UWO) London, Ontario, Canada

yxie@orcca.on.ca

168 Dahan et al. Transgressive Computing

L’algèbre de décomposition universelle (Universal Decomposition ... 169

L’algèbre de décomposition universelle

(Universal Decomposition Algebra)

Gema M. Diaz-Toca Henri Lombardi Claude Quitté

Abstract

In this paper we present important properties of the Universal Decomposition Alge-
bra of a polynomial over a commutative ring. Moreover, when the base ring is a field,
we introduce new algorithms which make it possible to approach both splitting field of
f and Galois group in a dynamic way without applying factorization algorithms.

Résumé

On donne les principales propriétés de l’algèbre de décomposition universelle d’un
polynôme sur un anneau commutatif. Dans le cas d’un corps on applique ces résultats
pour un traitement constructif et dynamique du corps des racines et du groupe de Galois
d’un polynôme.

Introduction

Toutes les algèbres qu’on considère sont associatives, commutatives et avec élément neutre.
Il revient donc au même de se donner une A-algèbre C ou un homomorphisme A

ρ−→ C.

Dans tout cet article, A est un anneau commutatif, f = T n+
∑n

k=1(−1)kakT
n−k ∈ A[T]

et B = AduA,f est l’algèbre de décomposition universelle de f sur A.

Dans la section 1 nous introduisons les modules de Cauchy et la base classique corres-
pondante de l’algèbre de décomposition universelle. Nous montrons que les deux définitions
naturelles de la norme cöıncident.

Dans la section 2 nous introduisons les notions d’idempotent galoisien, d’algèbre pré-
galoisienne, de quotient de Galois d’une algèbre prégaloisienne. Une algèbre prégaloisienne
est une algèbre qui vérifie un bon nombre de propriétés des algèbres galoisiennes, sans la
condition de séparabilité. Le prototype d’une algèbre prégaloisienne est une algèbre de
décomposition universelle, ou un quotient de Galois d’une algèbre de décomposition univer-
selle.

Dans la section 3 nous montrons comment calculer des éléments galoisiens dans une
algèbre de Boole munie d’un groupe d’automorphismes. Ceci s’applique en particulier à
l’algèbre de Boole des idempotents d’une algèbre de décomposition universelle ou plus gé-
néralement d’une algèbre prégaloisienne.

170 Diaz-Toca et al. Transgressive Computing

Dans la section 4 nous améliorons les résultats connus concernant les points fixes d’une
algèbre de décomposition universelle (sous l’action de Sn).

Dans la section 5 nous montrons constructivement quelques propriétés importantes qui
apparaissent sous l’hypothèse de séparabilité du polynôme servant à construire l’algèbre de
décomposition universelle. Nous montrons que l’algèbre de décomposition universelle est
alors réduite si l’anneau de base est réduit, et plus généralement que le nilradical de B
est engendré par celui de A. Nous donnons une généralisation du résultat qui affirme que
((l’algèbre de décomposition universelle se diagonalise elle-même lorsque le polynôme est
séparable)) au cas d’un quotient de Galois.

Dans la section 6 nous généralisons un résultat donné séparément par P. Aubry et A.
Valibouze ([1]) et par L. Ducos ([8]) sur la structure ((triangulaire)) des idéaux galoisiens.

Dans la section 7, pour étudier constructivement le ((corps des racines)) d’un polynôme
f ∈ K[T] (où K est un corps discret), nous proposons d’utiliser des ((approximations))

de ce corps qui sont des quotients convenables de l’algèbre de décomposition universelle
associée à f . Dans l’article [6] le premier auteur a donné dans le même esprit un traitement
de la théorie de Galois d’un polynôme séparable sur un corps discret en calcul formel. Cette
étude du corps des racines ((par approximations successives)) peut être considérée comme
une variante du système D5 [4] de traitement de la cloture algébrique en Calcul formel, ou
encore comme la version constructive de l’approche de Bourbaki dans [3].

Puisque l’article est écrit dans le style des mathématiques constructives à la Bishop
([2, 10]) tous les théorèmes ont un contenu algorithmique. La terminologie constructive
spécifique non précisée se trouve dans [10]. Rappelons qu’en mathématiques constructives
un ensemble est dit discret lorsqu’on dispose d’un test d’égalité pour ses éléments.

Remerciements. Nous remercions Thierry Coquand pour ses conseils judicieux.

1 Modules de Cauchy et base canonique

On note B = AduA,f l’algèbre de décomposition universelle de f sur A définie comme suit:

B = AduA,f = A[X1, . . . ,Xn]/J (f) = A[x1, . . . , xn]

où J (f) est l’idéal donné par les fonctions symétriques élémentaires des Xi:

α1 =
∑n

i=1
Xi, α2 =

∑
1≤i<j≤n

XiXj, . . . , αn =
∏n

i=1
Xi ,

J (f) = 〈a1 − α1, a2 − α2, . . . , an − αn〉 .
L’algèbre de décomposition universelle peut être caractérisée par la propriété suivante.

Note 1.1. (propriété caractéristique)
Soit C une A-algèbre pour laquelle f(T) se décompose en produit de facteurs (T − zi).
Alors il existe un unique homomorphisme de A-algèbres B→ C qui envoie les xi sur les zi.
Ceci caractérise l’algèbre de décomposition universelle B = AduA,f , à isomorphisme unique
près.

L’algèbre de décomposition universelle (Universal Decomposition ... 171

Le groupe Sn des permutations de {X1, . . . ,Xn} agit sur A[X1, . . . ,Xn] et fixe l’idéal
J (f), donc l’action passe au quotient et ceci définit Sn comme groupe d’automorphismes
de l’algèbre de décomposition universelle.

Note 1.2. (changement d’anneau de base)
Soit ρ : A → A1 une A-algèbre. Notons ρ(f) l’image de f dans A1[T]. Alors l’algèbre
AduA,f ⊗A A1, est naturellement isomorphe à AduA1,ρ(f).

Pour étudier l’algèbre de décomposition universelle on introduit les ((modules de Cauchy))

qui sont les polynômes suivants:

f1(X1) = f(X1)

fk+1(X1, . . . ,Xk+1) =
fk(X1,...,Xk−1,Xk)−fk(X1,...,Xk−1,Xk+1)

Xk−Xk+1
(1 ≤ k ≤ n− 1)

Le polynôme fi est symétrique en les variables X1, . . . ,Xi, unitaire de degré n − i + 1
en Xi. Le fait 1.1 implique que l’idéal J (f) est égal à l’idéal engendré par les modules de
Cauchy. Donc l’algèbre de décomposition universelle est un A-module libre de rang n!.

Lemme 1.3. Le A-module B est libre et une base est formée par les ((monomes)) xd11 · · · x
dn−1

n−1

tels que pour k = 1, . . . , n− 1 on ait dk ≤ n− k. Nous noterons cette base B(f).

Lemme 1.4. Pour tout élément z ∈ B on a CB/A(z)(T) = CSn(z)(T). En particulier
TrB/A(z) = TrSn(z) et NB/A(z) = NSn(z).

Démonstration. Puisque le polynôme caractéristique est la norme de T − z il suffit de
montrer l’égalité des deux ((normes)): NB/A(z) =

∏
σ∈Sn

σ(z). Écrivons NSn(z) sur la base
canonique B(f), c’est clairement un élément de A. Si on prend pour coefficients de f des
indéterminées ai, pour coordonnées de z sur la base B(f) d’autres indéterminées et pour
A l’anneau librement engendré par ces indéterminées on voit qu’il s’agit de démontrer une
identité algébrique, c’est-à-dire une égalité entre deux éléments d’un anneau de polynômes
à coefficients dans Z. Notons N pour NB/A. Comme N(z) = N(σ(z)) pour tout σ ∈ Sn, on

obtient N(
∏
σ∈Sn

σ(z)) = N(z)n!. Puisque NSn(z) ∈ A, N(NSn(z)) = (NSn(z))n!. Ainsi N(z)
et NSn(z) sont deux polynômes en les indéterminées qui sont égaux après avoir été élevés
à la puissance n!. Puisqu’on est dans un anneau factoriel, on doit avoir NSn(z) = cN(z)
avec c ∈ Z et cn! = 1. Enfin, puisque toute situation particulière est obtenue comme
spécialisation de la situation générale (avec des coefficients indéterminés), pour connâıtre c
on peut spécialiser z en 1: c = 1.

2 Idempotents galoisiens dans une algèbre prégaloisienne

Dans la suite nous notons B(C) l’algèbre de Boole des idempotents d’un anneau C. Les
opérations sont u ∧ v := u v, u ∨ v := u + v − u v, u ⊕ v := u + v − 2u v = (u − v)2,
¬u := 1− u = 1⊕ u. Et la relation d’ordre partiel est u ≤ v ⇐⇒ u ∧ v = u⇐⇒ u ∨ v = v.

Dans une algèbre de Boole un élément non nul minimal est appelé un atome. Dans le
cas d’un anneau on parle d’idempotent indécomposable.

172 Diaz-Toca et al. Transgressive Computing

Rappelons qu’un automorphisme σ d’un anneau C est dit séparant s’il existe x1,. . .xk,
a1, . . ., ak ∈ C tels que 1 =

∑k
i=1 ai(xi − σ(xi)) et qu’un groupe G d’automorphismes de

C est dit séparant si les éléments 6= IdC de G sont séparants. Une algèbre galoisienne est
par définition un triplet (A,C, G) où G est un groupe séparant d’automorphismes de C et
A = Fix(G) est le sous-anneau des points fixes de G (cf. [5]).

Nous utiliserons les notations suivantes lorsqu’un groupe G opère sur un ensemble E.
Pour x ∈ E, St(x) désigne le stabilisateur de x; pour F ⊂ E, Stp(F) désigne le stabilisateur
point par point de F et Stab(F) le stabilisateur de F . Et si H ⊂ G, Fix(H) = EH désigne
la partie de E formée par les éléments fixés par tous les σ ∈ H.

Nous donnons maintenant une définition qui permet d’insérer l’algèbre de décomposition
universelle dans un cadre un peu plus général et utile.

Définition 2.1. (algèbre prégaloisienne)
Une algèbre prégaloisienne est donnée par un triplet (A,C, G) où

1. C est une A-algèbre avec A ⊂ C, A facteur direct dans C,

2. G est un groupe fini de A-automorphismes de C,

3. C est un A-module projectif de rang constant |G|,

4. pour tout z ∈ C, CC/A(z) = CG(z).

Par exemple (A,B,Sn) est une algèbre prégaloisienne.

NB: La notion d’algèbre prégaloisienne est un peu moins contraignante que la notion plus
usuelle d’algèbre galoisienne.

Définition 2.2. Dans une algèbre prégaloisienne (A,C, G) un idempotent e de C est dit
galoisien si son orbite sous G est un système fondamental d’idempotents orthogonaux (sfio).
Un idéal de C est dit galoisien lorsqu’il est engendré par l’idempotent complémentaire d’un
idempotent galoisien.

Théorème 2.3 (théorème de Structure 1). Soit une algèbre prégaloisienne (A,C, G),
e un idempotent galoisien de C, et {e1, . . . , em} son orbite sous G. Soit H le stabilisateur
de e = e1 et r = |H|, de sorte que rm = |G|. Posons Ci = C/〈1− ei〉 ≃ eiC (1 ≤ i ≤ m).
Soit enfin π : C→ C1 la projection canonique.

1. Les Ci sont des A-algèbres deux à deux isomorphes, et C ≃ Cm
1 (comme A-algèbres).

2. L’algèbre C1 est un A-module projectif de rang constant r = |H|. La restriction de π
à A, et même à CG, est injective. Et A (identifié à son image dans C1) est facteur
direct dans C1.

3. Le groupe H opère sur C1 et CH
1 est canoniquement isomorphe à CG: plus précisément

CH
1 = π(CH) = π(CG).

4. Pour tout z ∈ C1, CC1/A(z)(T) = CH(z)(T).

L’algèbre de décomposition universelle (Universal Decomposition ... 173

5. (A,C1,H) est une algèbre prégaloisienne, on dira que c’est un quotient de Galois de
(A,C, G).

6. Soit g1 un idempotent galoisien de (A,C1,H), K son stabilisateur dans H, g′ ∈ e1C
tel que π(g′) = g1. Alors g′ est un idempotent galoisien de (A,C, G), son stabilisateur
est K, et on a un isomorphisme canonique C1/〈1− g1〉 ≃ C/〈1− g′〉 .

Démonstration. Le point 1 est évident. La première affirmation du point 2 en est une
conséquence immédiate. Soit τ1 = Id, τ2, . . . , τm un système de représentants pour G/H,
avec τi(e1) = ei. Montrons que la restriction de π à CG est injective: si a ∈ CG et e1a = 0
alors en transformant par les τj, tous les eja sont nuls, et donc aussi leur somme, égale
à a. Montrons que π(A) est facteur direct dans C1. Soit λ : C1 → e1C l’isomorphisme
réciproque de la restriction de π à e1C. Il s’agit d’un isomorphisme de A-algèbres, e1 étant
l’élément neutre pour la multiplication dans e1C. Soit ϕ : C → A une forme A-linéaire
vérifiant ϕ(1) = 1. On définit ψ : C1 → π(A) par ψ(y) = π(ϕ(x+ τ2(x) + · · ·+ τm(x))) où
x = λ(y). On a bien que ψ est une forme linéaire vérifiant ψ(1) = 1 donc C1 = π(A)⊕Kerψ.
Voyons le point 3. Montrons d’abord CH

1 = π(CH). Soit u ∈ C tel que π(u) = z ∈ CH
1 .

Puisque z ∈ CH
1 , pour tout σ ∈ H, σ(u) ≡ u mod 〈1− e1〉, ce qui signifie, e1σ(u) = e1u.

Comme σ(e1) = e1 et π(e1) = 1C1 on obtient avec y = e1u: π(y) = z et pour tout σ ∈ H,
σ(y) = y c’est-à-dire z ∈ π(CH).
Montrons maintenant que z ∈ π(CG). On pose v =

∑
i τi(y) =

∑
i τi(e1y) =

∑
i eiτi(y).

On a π(ei) = δ1i et donc π(v) = π(y). Montrons que v est fixe par G. Si σ ∈ G, σ(v) =∑
i σ(eiτi(y)). Fixons i et posons σ(ei) = ej . Notre but est de montrer que σ(τi(y)) =

τj(y), c’est-à-dire que τ−1
j στi fixe y. Or cela résulte de y ∈ CH et τ−1

j στi ∈ H puisque

τ−1
j στi(e1) = e1.

Voyons le point 4. Soit u tel que π(u) = z et y = e1u. On a πi(y) = 0 pour i 6= 1 et
π(y) = z. Dans la décomposition C = e1C⊕ · · · ⊕ emC, y s’ecrit donc (y, 0, . . . , 0) et T − y
s’écrit (T − y, T, . . . , T). Cela donne CC/A(y)(T) = T p CC1/A(z) avec p = |G| − |H|. En
considérant σ(y) pour un σ ∈ G arbitraire on peut écrire σ = τiλ pour un certain i et un
élément λ de H. Ceci permet de voir que la composante dans e1C de CG(y)(T) n’est autre
que T p CH(z)(T) (qu’on remonte de C1[T] dans e1C[T]). Par raison de symétrie il en sera
de même pour les autres composantes, c’est-à-dire qu’on a CG(y)(T) = T p CH(z)(T).
Le point 5 est une synthèse des points précédents.
Voyons le point 6. En tenant compte du fait que la restriction de π à e1C est un isomor-
phisme on a g′2 = g′ = g′e1. De même pour σ ∈ H on a: σ(g′) = g′ si σ ∈ K, ou g′σ(g′) = 0
si σ /∈ K. Enfin pour σ ∈ G \ H, e1σ(e1) = 0 et donc g′σ(g′) = 0. Ceci montre que g′

est un idempotent galoisien de B avec pour stabilisateur K. L’isomorphisme canonique est
immédiat.

3 Éléments galoisiens dans une algèbre de Boole

Le lemme suivant constitue un raffinement constructif de la théorie des algèbres de Boole
finies.

174 Diaz-Toca et al. Transgressive Computing

Lemme 3.1. Soit C une algèbre de Boole. Les propriétés suivantes sont équivalentes :

1. C est finie.

2. C est discrète et de type fini.

3. 1C est une somme finie d’atomes.

Dans un tel cas C est isomorphe à l’algèbre de Boole P(S) des parties finies de l’ensemble
S des atomes.

En particulier dans le contexte des anneaux commutatifs B(C) est finie si et seulement
si 1C est une somme d’idempotents indécomposables orthogonaux.

Définition 3.2. Si G est un groupe fini qui opère sur une algèbre de Boole C, un élément
e de C est dit galoisien (pour G) si son orbite sous G est un sfio: les éléments de l’orbite
sont deux à deux orthogonaux et leur somme est égale à 1.

Note 3.3. Soit G un groupe fini opérant sur une algèbre de Boole C discrète, e 6= 0 dans C,
et {e1, . . . , ek} l’orbite de e sous G. On suppose que 1 et 0 sont les seuls éléments fixés par
G. Les propriétés suivantes sont équivalentes :

1. L’élément e est galoisien.

2. Pour tout i > 1, e1ei = 0.

3. Pour tout σ ∈ G, eσ(e) = e ou 0.

4. Pour tous i 6= j ∈ {1, . . . , k}, eiej = 0.

Les hypothèses sont vérifiées par exemple si C = B(B), G = Sn et A est connexe.

Théorème 3.4 (théorème de structure 2). Soit G un groupe fini opérant sur une algè-
bre de Boole C discrète et non triviale. On suppose que 1 et 0 sont les seuls éléments fixés
par G.

1. Pour toute famille finie d’éléments de C il existe un élément galoisien e1 (notons
(e1, . . . , ek) son orbite) et tel que chaque élément e de la famille initiale vérifie e =∑ {ei | 1 ≤ i ≤ k, eie 6= 0}.

2. L’algèbre de Boole C ne peut avoir plus que 2|G| éléments.

3. Si e et h sont des éléments galoisiens avec e < h (cad he = e et h 6= e) si E est le
stabilisateur de e et H le stabilisateur de h alors h =

∑
σ∈H/E σ(e).

4. C est finie si et seulement si il existe un atome e. Dans ce cas e est galoisien, l’orbite
de e est l’ensemble des atomes, G opère sur cette orbite comme sur G/E, et sur C
comme sur P(G/E)(1).

1 Ici, pour que l’affirmation soit valide d’un point de vue constructif, P(G/E) dénote l’ensemble des
parties finies de G/E.

L’algèbre de décomposition universelle (Universal Decomposition ... 175

Démonstration. Nous montrons seulement le point 1. On considère la sous-algèbre de Boole
C ′ ⊆ C engendrée par les orbites des éléments de la famille finie donnée. C ′ est de type
fini et discrète donc finie. En conséquence ses éléments minimaux non nuls forment un
ensemble fini S = {e1, . . . , ek} et C ′ est isomorphe à l’algèbre de Boole des parties finies de
S: C ′ = {∑i∈F ei|F ∈ P({1, . . . , k})}. Clairement G opère sur C ′. Pour σ ∈ Sn, σ(e1) est
une somme de certains ei, mais il ne peut y avoir deux termes dans la somme, car alors en
transformant l’un de ces termes par σ−1 on aurait un élément non nul < e1 dans C ′. Donc
(e1, . . . , ek) est un sfio et e1 est galoisien.

Algorithme 3.5. Calcul d’un élément galoisien et de son stabilisateur.

Entrée : e: élément non nul d’une algèbre de Boole C; G: groupe fini d’automorphismes de
C; S = St(e) (sous groupe stabilisateur de e).
On suppose que 0 et 1 sont les seuls points fixes pour l’action de G sur C.
Sortie : e1: élément galoisien correspondant; H: le sous groupe stabilisateur de e1.
Variables locales : h: dans C; σ: dans G; L: liste d’éléments de G.

Début

e1 ← e; L← [];
pour σ dans G/S faire

G/S désigne un système de représentants des classes à gauche modulo S
h← e1σ(e);
si h 6= 0 alors e1 ← h; L← L • [σ] fin si ;

fin pour

H ← le sous-groupe de G formé par les α tels que: ∀σ ∈ L, ασ ∈ ⋃τ∈L τS.
Fin.

Sous les hypothèses du théorème 3.4 on peut calculer un élément galoisien e1 qui engen-
dre la même algèbre de Boole que l’orbite de e au moyen de l’algorithme 3.5. En outre on
peut également calculer le stabilisateur de e1 (la nouvelle approximation du groupe de Ga-
lois) ((sans sortir du groupe)). On pourra penser au cas C = B(B), G = Sn et A connexe,
ou plus généralement C = B(C), (A,C, G) est une algèbre prégaloisienne et A est connexe.

On notera que l’élément e1 obtenu comme résultat du calcul dépend de l’ordre dans
lequel est énuméré l’ensemble fini G/S et qu’il n’y a pas d’ordre naturel (intrinsèque) sur
cet ensemble.

4 Points fixes de AduA,f

Lemme 4.1. Soit C une A-algèbre qui est un module projectif de rang constant k ≥ 1 (par
exemple une algèbre prégaloisienne ou C = B).

• Un x ∈ C est inversible (resp. régulier) si et seulement si NC/A(x) est inversible
(resp. régulier) dans A.

176 Diaz-Toca et al. Transgressive Computing

• Un x ∈ A est inversible (resp. régulier) dans C si et seulement si il est inversible
(resp. régulier) dans A.

Lemme 4.2. Soit J le jacobien du système de n équations à n inconnues définissant l’algè-
bre de décomposition universelle B = AduA,f .

1. On a J =
∏

1≤i<j≤n(xi − xj) dans B.

2. On a J2 = disc f ∈ A.

3. En particulier les propriétés suivantes sont équivalentes :

(a) disc f est inversible (resp. régulier) dans A.

(b) J est inversible (resp. régulier) dans B.

(c) Les xi − xj sont inversibles (resp. réguliers) dans B.

(d) x1 − x2 est inversible (resp. régulier) dans B.

(e) ΩB/A = 0 (resp. ΩB/A est un B-module ((de torsion)), i.e. annulé par un
élément régulier).

Démonstration. Le point 1 est facile par récurrence sur n.
Le point 2 est une conséquence immédiate du point 1, et on en déduit l’équivalence des
points (a) à (d) dans 3, en tenant compte du lemme 4.1.
Pour le point (e) rappelons que ΩB/A est un B-module isomorphe au conoyau de la matrice
jacobienne, ce qui implique que Ann(ΩB/A) et JB ont même nilradical. Enfin J est régulier

(resp. inversible) si et seulement si
√
〈J〉 contient un élément régulier (resp. contient 1).

Nous notons di(f) =
∏

1≤i<j≤n(xi + xj) ∈ A. Il est clair que di(f) est congru modulo

2 à
∏

1≤i<j≤n(xi − xj) et donc
〈
2,di(f)2

〉
= 〈2,disc(f)〉.

Théorème 4.3. Si AnnA(〈2,di(f)〉) = 0 et a fortiori si AnnA(〈2,disc(f)〉) = 0 on a
Fix(Sn) = A.

Démonstration. Puisque
〈
2,di(f)2

〉
= 〈2,disc(f)〉 un élément qui annule 〈2,di(f)〉 annule

a fortiori 〈2,disc(f)〉. Il suffit donc de démontrer la deuxième affirmation.
Voyons le cas où n = 2. Un élément z = c + dx1 ∈ B (c, d ∈ A) est invariant par S2 si et
seulement si d(x1 − x2) = d(a1 − 2x1) = 0 si et seulement si da1 = 2d = 0.
On procède ensuite par récurrence sur n. On écrit B = A⊕E où E est le A-module engendré
par les éléments 6= 1 de la base B(f). On note E′ le sous module de E formé par les éléments
fixes sous Sn. Pour n > 2 on considère l’anneau A1 = A[X1]/〈f(X1)〉 = A[x1], le poly-
nôme F (T) = f2(T, x1) ∈ A1(T) et l’algèbre de décomposition universelle B1 = AduA1,F ,
dans laquelle nous notons x2, . . . , xn les variables (X2, . . . ,Xn avant de passer au quotient).
On vérifie que B ≃ B1: une simple constatation si on utilise la définition des algèbres
de décomposition universelle via les modules de Cauchy. On identifie B et B1 et on écrit
B1 = A1 ⊕ E′

1 correspondant à la base B(F) formée par les monomes xd22 · · · x
dn−1

n−1 avec
di < n− i pour chaque i. Pour passer de l’écriure d’un élément g ∈ B sur la base B(F) (B

L’algèbre de décomposition universelle (Universal Decomposition ... 177

vu comme A1-module) à son écriture sur la base B(f) (B vu comme A-module), il suffit
d’écrire chaque coordonnée, qui est un élément de A1 sur la A-base de A1 formée par les
monomes 1, x1, . . . , x

n−1
1 .

Notons aussi que di(f) = (−1)n−1F (−x1)di(F) par un calcul direct et passons à la récur-
rence proprement dite.
Nous supposons que AnnA(〈2,di(f)〉) = 0. On en déduit que AnnA1(〈2,di(F)〉) = 0, car si
b = β0 +β1x1 + · · ·+βn−1x

n−1
1 ∈ A1 annule di(F), il annule di(f) = (−1)n−1F (−x1)di(F),

donc chacun des βi annule di(f). De même chacun des βi annule 2. Donc b = 0.
Soit alors y ∈ E′, écrivons y = g(x2, . . . xn) avec g ∈ A[X2, . . . ,Xn−1] et degXi

g ≤ n − i
pour i = 2, . . . , n − 1. Autrement dit nous voyons y comme un élément de AduA1,F .
Puisque y est invariant par Sn−1, on en déduit par hypothèse de récurrence que g ∈ A1,
c’est une ((constante)) qu’on écrit h(x1) avec deg(h) < n. Il reste à voir que g ∈ A. Si
h(X) = c0 + c1X + · · ·+ cn−1X

n−1 on écrit h(x1) = h(x2). On note que h(x1) est l’écriture
réduite de g sur la base canonique B(f). Concernant h(x2), pour obtenir l’écriture réduite,
nous devons remplacer dans le terme cn−1x

n−1
2 , xn−1

2 par son écriture sur la base canonique,
qui résulte de f2(x1, x2) = 0. Cette réécriture fait apparâıtre le terme −cn−1x

n−2
1 x2, et ceci

implique (par l’égalité des écritures h(x1) et h(x2) sur la base B(f)) que cn−1 = 0. Mais
alors h(x2) est une écriture réduite et donc tous les ci pour i > 0 sont nuls.

Note 4.4. Le cas disc f régulier est bien connu. On le trouve avec une preuve voisine
de celle ci-dessus dans la thèse de Lionel Ducos [7]. Par ailleurs Ekedahl et Laskov ont
traité le cas où 2 est régulier dans [9]. Dans le cas n = 2 l’étude faite ci-dessus montre
que dès que AnnA(〈2,di f〉) 6= 0, Fix(S2) = A ⊕ AnnA(〈2,di f〉)x1 contient strictement
A. Un calcul dans le cas n = 3 donne la même réciproque: on trouve un élément v =
x2

1x2 + a1x
2
1 + (a2

1 + a2)x1 + a2x2 6= 0 tel que Fix(S3) = A ⊕AnnA(〈2,di f〉) v. Par contre
pour n ≥ 4, la situation se complique.

5 Séparabilité de AduA,f

Dans cette section on suppose que disc f est un élément inversible de A.
Le lemme suivant comme moyen de prouver constructivement le théorème 5.2 a été

suggéré par Thierry Coquand.

Lemme 5.1. Soit φ : A → C une algèbre dans laquelle ((f se factorise complètement)),
c’est-à-dire φ(f) =

∏n
i=1(T − ui). Pour tout σ ∈ Sn notons φσ : B → C l’unique homo-

morphisme de A-algèbres qui envoie chaque xi sur uσi. Soit y ∈ B tel que φσ(y) = 0 pour
tout σ ∈ Sn, alors les coordonnées de y sur la base naturelle B(f) décrite dans le lemme 1.3
sont dans Kerφ.

Démonstration. Nous donnons la preuve pour n = 4 et laissons le soin au lecteur de rédiger
une preuve formelle par récurrence .
On commence par remarquer que les xi − xj sont inversibles pour i 6= j et par suite les
ui−uj sont inversibles pour i 6= j. La base naturelle est formée par 24 éléments xm1

1 xm2
2 xm3

3

avec 0 ≤ mi ≤ 4− i. Notons y = a(x1, x2) + x3c(x1, x2) avec a et c des polynômes formels

178 Diaz-Toca et al. Transgressive Computing

de degré ≤ 3 en X1 et ≤ 2 en X2. Notons a et c les images des polynômes formels a et c
dans C par φ. Notre but est de montrer que a et c sont des polynômes identiquement nuls.
En considérant pour σ d’une part l’identité et d’autre part la transposition qui échange 3
et 4, on obtient dans C:

a(u1, u2) + u3c(u1, u2) = 0 = a(u1, u2) + u4c(u1, u2)

Puisque u3 − u4 est inversible, on en déduit a(u1, u2) = 0 = c(u1, u2).
La preuve qu’on vient de faire fonctionne aussi si on permute arbitrairement les xi (on
change alors de base naturelle), de sorte que a(ui, uj) = 0 = c(ui, uj) chaque fois que i 6= j.
On va montrer que a est identiquement nul, la même preuve s’appliquant à c. On considère
a(u1,X2): ce polynôme de degré ≤ 2 admet les trois racines u2, u3, u4 et puisque les ui−uj
sont inversibles la formule d’interpolation de Lagrange montre que a(u1,X2) est nul comme
polynôme en X2. Chacun de ses trois coefficients est un polynôme de degré ≤ 3 en X1

qu’on évalue en u1 (on obtient ainsi 12 coordonnées de y sur la base naturelle, les 12 autres
correspondant au polynôme c). Notons e(X1) l’un de ces trois polynômes, lu dans A[X1].
La preuve que nous avons faite, montrant que e(u1) = 0 fonctionne aussi si on permute
arbitrairement les xi. Donc e(ui) = 0 pour tous les i. Encore une fois nous appliquons la
formule d’interpolation de Lagrange et nous voyons que e(X1) est identiquement nul.

Théorème 5.2. 1. Le nilradical de B est l’idéal engendré par le nilradical de A. En
particulier, si A est réduite, B est réduite.

2. Pour toute algèbre réduite A
ρ−→ D, B⊗A D ≃ AduD,ρ(f) est réduite.

Démonstration. Il suffit de montrer le point 1. Soit N le nilradical de B. Appliquons le
lemme précédent avec C = B/N et y ∈ B qui est nilpotent. L’élément y reste nilpotent si
on le transforme par un élément de Sn. Le lemme s’applique: les coordonnées de y sur la
base naturelle sont toutes dans N ∩A.

Le théorème suivant s’applique en particulier pour l’algèbre de décomposition uni-
verselle B.

Théorème 5.3. (diagonalisation d’un quotient de Galois d’une algèbre de décomposition
universelle)
Soit e un idempotent galoisien de B, G son stabilisateur et B1 = B/〈1− e〉 . On note
yi = π(xi) la classe de xi dans B1. Soit φ : B1 → C un homomorphisme d’anneaux. On
note ui = φ(yi). On considère C1 = B1⊗AC. Pour tout σ ∈ G notons φσ : C1 → C l’unique
homomorphisme de C-algèbres qui envoie chaque yi ⊗ 1C sur uσi. Soit Φ : C1 → C|G|

l’homomorphisme de C-algèbres défini par z 7→ (φσ(z))σ∈G.

1. Φ est un isomorphisme: C diagonalise B1.

2. En particulier B1 ⊗A B1 est isomorphe canoniquement à B
|G|
1 : B1 se diagonalise

elle-même.

L’algèbre de décomposition universelle (Universal Decomposition ... 179

Démonstration. Les deux algèbres sont des C-modules projectifs de rang constant |G| et
Φ est une application C-linéaire dont il suffit de démontrer la surjectivité. Dans C1 nous
notons yi à la place de yi ⊗ 1C et ui à la place de 1B1 ⊗ ui. La surjectivité résulte par
le théorème chinois de ce que les Kerφσ sont deux à deux comaximaux: Kerφσ contient
yi − uσi, Kerφτ contient yi − uτi, donc Kerφσ + Kerφτ contient les uσi − uτi, et il y a au
moins un indice i pour lequel σi 6= τi ce qui donne uσi − uτi inversible.

6 Structure triangulaire des idéaux galoisiens

Nous démontrons dans cette section un résultat donné dans [1] et [8] en le généralisant un
peu: notre théorème 6.1. Notre méthode de preuve est différente car elle ne s’appuie pas
sur l’existence d’une cloture algébrique, et le cadre est plus général puisque nous avons à la
base un anneau commutatif presque arbitraire à la place d’un corps.

Ce résultat affirme que la structure de l’idéal J (f), qui est une structure ((triangulaire))

(au sens de Lazard) lorsqu’on considère les modules de Cauchy comme générateurs, se
retrouve pour tous les idéaux galoisiens de l’algèbre de décomposition universelle dans le
cas d’un polynôme séparable.

Les anneaux que nous considérons sont les anneaux A qui vérifient la propriété suivante:
l’anneau total des fractions de A, Frac A, est zéro-dimensionnel. C’est notamment le cas
des anneaux intègres, des anneaux zéro-dimensionnels et des anneaux nœthériens.

Nous aurons besoin des résultats suivants que nous utilisons librement dans la preuve
du théorème.

• Si (A,C, G) une algèbre galoisienne, C est un A-module projectif de rang |G|, et A
est facteur direct dans C.

• Si A est zéro-dimensionnel, tout module projectif de rang constant est libre.

• Si A est zéro-dimensionnel, et si N ⊂ An est libre, il existe M ⊂ An libre tel que
An = M ⊕N (théorème de la base incomplète).

Théorème 6.1. Soit (A,C, G) une algèbre galoisienne avec

• C = A[y1, . . . , yn],

• G opère sur {y1, . . . , yn} et

• les yi − yj inversibles pour i 6= j.

On suppose que l’anneau total des fractions de A, Frac A, est zéro-dimensionnel. On note
G = G0, Gi = {σ ∈ G ; σ(yk) = yk, ∀k ≤ i}, (i = 1 . . . , n), et

ri(T) =
∏

σ∈Gi−1/Gi

(T − σ(yi))

où Gi−1/Gi désigne un système de représentants des classes à gauche. Alors:

180 Diaz-Toca et al. Transgressive Computing

• A[y1, . . . , yi] = Fix(Gi) et Gi = Stp(A[y1, . . . , yi]).

• ri(T) est un polynôme unitaire de degré (Gi−1 : Gi) à coefficients dans A[(yk)k<i], on
note Ri(X1, . . . ,Xi) un polynôme unitaire de degré (Gi−1 : Gi) de A[X1, . . . ,Xi] tel
que Ri(y1, . . . , yi−1,Xi) = ri(Xi).

• L’idéal ai = a ∩A[X1, . . . ,Xi] est engendré par R1(X1), . . . , Ri(X1, . . . ,Xi).

En conséquence chacune des algèbres A[y1, . . . , yi] est à la fois un A[y1, . . . , yi−1]-module
libre de rang (Gi−1 : Gi) et un A-module libre de rang (G : Gi), et chacun des idéaux ai est
un idéal triangulaire (au sens de Lazard) de A[X1, . . . ,Xi].

Démonstration. Le groupe G1 est un groupe séparant d’automorphismes de l’anneau C.
On note A1 l’anneau des points fixes de G1. On sait que C est un A1-module projectif de
rang constant |G1| et que A[y1] ⊂ A1. En outre A1 est facteur direct dans C, donc est un
A-module projectif de rang constant |G|/|G1|. Les coefficients de r1(T) sont fixes par G,
donc dans A, parce que les σ(y1) pour σ ∈ G/G1 parcourent l’orbite de y1 sous G. En outre
deg r1 = (G : G1), de sorte que A[X1]/〈r1(X1)〉 est libre de rang (G : G1). L’idéal a1 est
formé par tous les R ∈ A[X1] qui annulent y1. Un tel polynôme R vérifie R(σ(y1)) = 0 pour
tout σ ∈ G/G1 parce que ses coefficients sont dans A et que σ fixe tous les éléments de A.
Donc R est multiple des (T − σ(y1)). Or les idéaux 〈T − yi〉 sont deux à deux comaximaux
(parce que les yi − yj sont inversibles), et l’intersection d’idéaux deux à deux comaximaux
est égale à leur produit, donc R est multiple de r1. Ainsi a1 = 〈r1(X1)〉 et A[y1] est libre
de rang (G : G1).
On a donc la situation suivante:

• A1 est un A-module projectif de rang constant |G|/|G1|,

• A[y1] est libre de rang |G|/|G1|,

• A[y1] ⊂ A1.

Supposons maintenant l’anneau A zéro-dimensionnel. Alors A1 est libre sur A, et A[y1] =
A1 par le théorème de la base incomplète. Donc A[y1] = A1 = Fix(G1) et (A[y1],C, G1) est
une algèbre galoisienne. Alors C = A1[y2, . . . , yn] avec G1 qui opère sur {y2, . . . , yn} et les
yi − yj inversibles. Tout le raisonnement précédent fonctionne à l’identique en remplaçant
A par A1, G par G1, y1 par y2 et G1 par G2. On termine donc par récurrence.

Passons au cas général. Nous avons de nouveau A[y1] ≃ A[X1]/〈r1(X1)〉 et A[y1] ⊂
A1 = Fix(G1). Notons S l’ensemble des éléments réguliers de A et F = Frac A = S−1A.
Remarquons que puisqu’un élément régulier de A est régulier dans C on a C ⊂ S−1C =
C ⊗A F. Le cas zéro-dimensionnel implique que S−1A1 = S−1A[y1], et notre objectif
est de montrer l’égalité A1 = A[y1]. Soit donc z ∈ A1 et s ∈ S tel que sz ∈ A[y1]:
sz = c0 + c1y1 + · · · + cd1−1y

d1−1
1 . Posons sk =

∑
σ∈G/G1

σ(y1)k. Ce sont les sommes de
Newton pour le polynôme r1 = R1, donc des éléments de A. On a

szyk1 = c0y
k
1 + c1y

k+1
1 + · · · + cd1−1y

k+d1−1
1 .

L’algèbre de décomposition universelle (Universal Decomposition ... 181

donc pour un σ ∈ G/G1, si σ(y1) = yℓ:

sσ(zyk1) = c0y
k
ℓ + c1y

k+1
ℓ + · · ·+ cd1−1y

k+d1−1
ℓ .

Comme zyk1 ∈ A1 on a
∑

σ∈G/G1
σ(zyk1) fixe par G donc dans A et s

∑
σ∈G/G1

σ(zy1)k =
c0sk + · · · + cd1−1sk+d1−1 ∈ sA. Sous forme matricielle:

s0 s1 s2 · · · sd1−1

s1 s2 · · · sd1
...

...
sd1−1 · · · · · · · · · s2d1−2

c0
c1
...

cd1−1

 ∈ sA

d1×1

or le déterminant de la matrice carrée au premier membre est égal au discriminant de r1
donc est inversible. Ainsi les cj sont tous multiples de s.

Nous terminons en vérifiant que A[y1] vérifie bien l’hypothèse du théorème, ce qui
permet de faire fonctionner la récurrence. En effet, puisque A[y1] est libre sur A les élé-
ments réguliers de A sont réguliers dans A[y1] et l’anneau total des fractions de A[y1]
contient F[y1] ≃ F[X1]/〈r1(X1)〉 , lequel est zéro-dimensionnel, donc égal à son anneau
total des fractions.

Le théorème 6.1 s’applique pour l’algèbre de décomposition universelle dans la situation
suivante:
On suppose le polynôme f séparable. On considère un idempotent galoisien e = 1 − s et
l’idéal galoisien correspondant b = 〈s〉. On pose

C = B/b = A[X1, . . . ,Xn]/a = A[y1, . . . , yn]

avec:

• yi est la classe de xi modulo b ou de Xi modulo a,

• a = J (f) + 〈S〉 si S ∈ A[X1, . . . ,Xn] et s = S(x1, . . . , xn).

On note G = G0 = St(e) = St(b) ⊂ Sn, on le considère comme un groupe de A-automor-
phismes de C.

On sait alors que (A,C, G) est une algèbre galoisienne. En effet A = Fix(G) et un élé-
ment σ de G distinct de l’identité ne fixe pas tous les yi et donc l’un des yi−σ(yi) engendre
l’idéal 〈1〉 de C car les yi − yj sont inversibles pour i 6= j.

7 Corps des racines

Dans cette section, nous remplaçons l’anneau A par un corps discret K et nous expliquons
comment l’algèbre de décomposition universelle permet d’obtenir le corps des racines d’un
polynôme, ou au moins un substitut constructif de ce dernier.

Une K-algèbre est dite finie si c’est un K-espace vectoriel de type fini (en mathéma-
tiques constructives cela n’implique pas qu’on connaisse une base de l’espace vectoriel),
strictement finie si c’est un K-espace vectoriel de dimension finie.

Rappelons que les quotients de l’algèbre de décomposition universelle B = AduK,f sont
des K-algèbres finies et toute K-algèbre finie est un annneau zéro-dimensionnel.

182 Diaz-Toca et al. Transgressive Computing

7.1 f arbitraire

En mathématiques classiques un corps des racines pour un polynôme unitaire f sur un corps
discret K est obtenu en quotientant l’algèbre de décomposition universelle AduK,f par un
idéal

√
〈1− e〉 où e est un idempotent indécomposable (qui existe d’après le théorème 3.4,

ou bien simplement en considérant un idéal non nul dont la dimension comme K-espace
vectoriel est minimale).

En mathématiques constructives on ne dispose pas toujours d’un tel idempotent. Le
théorème suivant explique comment contourner la difficulté que pose la non existence du
corps des racines en mathématiques constructives.

Théorème 7.1. Soit (zi)i∈I une famille finie d’éléments de B = AduK,f . Il existe un idem-
potent galoisien e1 de B tel que chaque π(zi) est nul ou inversible dans l’algèbre quotient

B1 = B
/√
〈1− e1〉 (π est la projection canonique B→ B1).

Démonstration. Puisque B est zéro-dimensionnel on peut pour chaque i ∈ I calculer un
idempotent gi ∈ B tel que zi est inversible modulo 1− gi et nilpotent modulo gi. Appliqué
à la famille des gi le théorème 3.4 donne un idempotent galoisien e1, tel que pour chaque i,
1 − e1 divise gi ou 1 − gi. Donc dans l’algèbre quotient B1 = B/〈1− e1〉 chaque π(zi) est
nilpotent ou inversible.

Le théorème d’unicité du corps des racines admet la version constructive suivante, qui
découle du théorème 3.4:

Théorème 7.2. Soient deux K-algèbres strictement finies A1 et A2 non nulles pour lesquelles
f se décompose en produit de facteurs linéaires dans C1 = A1

/√
0 et C2 = A2

/√
0 . On

suppose en outre que C1 et C2 sont engendrées par les zéros correspondants de f . Alors il

existe une K-algèbre C = B
/√
〈1− e〉 (e idempotent galoisien) avec les mêmes propriétés,

et deux entiers ri tels que C1 ≃ Cr1 et C2 ≃ Cr2 .

7.2 f séparable

Ici nous donnons une preuve constructive d’un résultat classique.
Notez que le rsultat fondamental suivant est obtenu sans utiliser le corps des racines

(une approximation convenable de ce corps suffit).

Théorème 7.3. Soit K un corps discret et f ∈ K[X] un polynôme séparable. Alors l’algè-
bre de décomposition universelle B = AduK,f est séparable (i.e., tout élément annule un
polynôme séparable de K[T]).

Démonstration. Si K est de caractéristique nulle, un polynôme est séparable si et seulement
si il est sans facteur carré. Le fait que B est réduite implique alors que le polynôme minimal
de tout élément de B est séparable.
Dans le cas général, la preuve est un peu plus compliquée. Soit z ∈ B. Appliqué à la famille
des σ(z) − τ(z) (σ 6= τ dans Sn) le théorème 7.1 donne un idempotent galoisien e1 tel que
dans l’algèbre quotient B1 = B/〈1− e1〉 chaque π1(σ(z) − τ(z)) est nul ou inversible (π1

L’algèbre de décomposition universelle (Universal Decomposition ... 183

est la projection canonique B → B1). On rappelle que d’après les théorèmes 2.3 et 4.3, le
stabilisateur G de e1 opère sur B1 et les points fixes pour cette action sont exactement les
éléments de K (identifié à π1(K)). Soit alors {z1, . . . , zt} un ensemble de Sn-conjugués de z
tels que {π1(z1), . . . , π1(zt)} soit l’orbite de π1(z) pour l’action de G. On considère le poly-
nôme P1(T) =

∏t
i=1(T − π1(zi)). Ses coefficients sont fixés par G donc P1 ∈ K[T]. Et c’est

un polynôme séparable par construction (comme polynôme dans B1[T] son discriminant
est inversible). Ainsi π1(z) annule le polynôme séparable P1(T) ∈ K[T], c’est-à-dire encore
P1(z) ∈ 〈1− e1〉. Si {e1, . . . , ek} est l’orbite de e1 sous Sn, on aura pour i = 1, . . . , k un
polynôme séparable Pi ∈ K[T] avec Pi(z) ∈ 〈1− ei〉. Finalement le ppcm P des Pi est
lui-même un polynôme séparable de K[T] et P (z) ∈ ⋂i 〈1− ei〉 = 〈0〉.

Algorithme 7.4. Calcul d’un idéal galoisien et de son stabilisateur.

Entrée : (C, G): quotient de Galois de (B,Sn), y: élément ni nul ni inversible de C; S = St(y).
Sortie : c: idéal galoisien contenant y, et tel que tout conjugué de y sous G est nul ou inversible
dans C/c; H: le sous groupe stabilisateur de c.
Variables locales : a: idéal de C; σ: dans G; L: liste d’éléments de G.

Début

c←< y >; L← [];
pour σ dans G/S faire

G/S désigne un système de représentants des classes à gauche modulo S
a← c+ < σ(y) >;
si a 6= 1 alors c← a; L← L • [σ] fin si ;

fin pour

H ← le sous-groupe de G formé par les α tels que: ∀σ ∈ L, ασ ∈ ⋃τ∈L τS.
Fin.

L’algèbre B = AduK,f est réduite quand le polynôme f est séparable, donc tout idéal de
type fini est engendré par un idempotent. Ce résultat implique qu’à partir d’un élément ni
nul ni inversible y de B on peut calculer un idéal galoisien c tel que y ∈ c et tout conjugué
de y sous Sn est nul ou inversible dans B/c: c est un idéal strict engendré par y et le plus
grand nombre possible de conjugués de y.

En outre, le résultat reste le même si nous considérons une algèbre galoisienne (K,C, G)
qui est un quotient de Galois de (K,B,Sn).

Notons que l’algorithme 7.4 calcule un idéal galoisien c engendré par un idempotent
galoisien e1 qui serait construit par l’algorithme 3.5 à partir d’un idempotent e tel que
(1− e)C = yC. Ainsi (C/c,H) est une nouvelle approximation du corps de racines de f et
de son groupe de Galois, meilleure que la précédente approximation (C, G).

Bibliographie

[1] Aubry P., Valibouze A. Using Galois Ideals for Computing Relative Resolvents. J.

184 Diaz-Toca et al. Transgressive Computing

Symbolic Computation, 30, 635–651, (2000).

[2] Bishop E., Bridges D. Constructive Analysis. Springer-Verlag (1985).

[3] Bourbaki Algèbre. Chap 4 à 7. Masson. Paris (1981).

[4] Della Dora J., Dicrescenzo C., Duval D. About a new method for computing
in algebraic number fields. In Caviness B.F. (Ed.) EUROCAL ’85. Lecture Notes in
Computer Science 204, 289–290. Springer (1985).

[5] Demeyer F., Ingraham E. Separable algebras over commutative rings. Springer Lec-
ture Notes in Mathematics 181 (1971).

[6] D́ıaz Toca G. Galois Theory, Splitting fields and Computer Algebra. à parâıtre Jour-
nal of Symbolic Computation (2005).

[7] Ducos L. Thèse doctorale. Poitiers (2000).

[8] Ducos L. Construction de corps de décomposition grâce aux facteurs de résolvantes.
(French) [Construction of splitting fields in favour of resolvent factors]. Communica-
tions in Algebra 28 no. 2, 903–924 (2000).

[9] Ekedahl E., Laskov D. Splitting algebras, symmetric functions ans Galois Theory.
Journal of Algebra and its Applications, 4 (1), 59–76, (2005).

[10] Mines R., Richman F., Ruitenburg W. A Course in Constructive Algebra. Uni-
versitext. Springer-Verlag, (1988).

Gema M D́ıaz-Toca
Dpto. de Matemática Aplicada, Universidad de Murcia, Espagne

gemadiaz@um.es

Henri Lombardi
Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, France

henri.lombardi@univ-fcomte.fr

Claude Quitté
Laboratoire de Mathématiques SP2MI, Université de Poitiers, France

claude.quitte@math.univ-poitiers.fr

An introspective algorithm for the integer determinant 185

An introspective algorithm for the integer determinant

Jean-Guillaume Dumas Anna Urbańska

Abstract

We present an algorithm computing the determinant of an integer matrix A. The
algorithm is introspective in the sense that it uses several distinct algorithms that run
in a concurrent manner. During the course of the algorithm partial results coming from
distinct methods can be combined. Then, depending on the current running time of each
method, the algorithm can emphasize a particular variant. With the use of very fast
modular routines for linear algebra, our implementation is an order of magnitude faster
than other existing implementations. Moreover, we prove that the expected complexity
of our algorithm is only O

(
n3(log(n) + log(‖A‖))2 log(n)

)
bit operations, where ‖A‖ is

the largest entry in absolute value of the matrix.

1 Introduction

One has many alternatives to compute the determinant of an integer matrix. Over a field,
the computation of the determinant is tied to that of matrix multiplication via block recur-
sive matrix factorizations [12]. On the one hand, over the integers, a näıve approach would
induce a coefficient growth that would render the algorithm not even polynomial. On the
other hand, over finite fields, one can nowadays reach the speed of numerical routines [9].
The classical approach is thus to reduce the computation modulo some primes of constant
size and to recover the integer determinant from the modular computations. For this, at
least two variants are possible: Chinese remaindering and p-adic lifting. The first variant
requires either a good a priori bound on the size of the determinant or an early termination
probabilistic argument [10, §4.2]. It thus achieves an output dependant bit complexity of
O (nω log(|det(A)|)) where ω is the exponent of matrix multiplication (3 for the classical
algorithm, and 2.375477 for the Coppersmith-Winograd method). Of course, with the co-
efficient growth, the determinant size can be as large as Ω(n log(n)) (Hadamard’s bound)
thus giving a large worst case complexity.
Now the second variant uses system solving and p-adic lifting [4] to get an approximation
of this determinant with a O

(
n3(log(n) + log(‖A‖))2

)
bit complexity [16]. Indeed, every

integer matrix is unimodularly equivalent to a diagonal matrix S = diag{s1, . . . , sn} with
si|si+1. This means that there exist integer matrices U, V with detU,detV = ±1, such
that A = USV . The si are called the invariant factors of A. Then, solving a system with
a random right hand side will reveal sn as the common denominator of the solution vector
entries with high probability.

186 Dumas et al. Transgressive Computing

The idea of [1] is thus to combine both approaches, i.e. to approximate the determinant by
p-adic lifting and recover only the remaining part (det(A)/sn) via Chinese remaindering.
Then G. Villard remarked that at most O(

√
n) invariant factors can be distinct and that,

in general, only the last O(log(n)) of those are nontrivial [11]. This remark, together
with a preconditioned p-adic solving computing the i-th invariant factor enable them to
produce a O∼(n2+ω/2) worst case algorithm, where O∼ hides some logarithmic factors,
and an algorithm with an expected O(n3(log(n) + log(‖A‖))2 log2(n)) complexity. Note
that the actual best worst case complexity algorithm is O∼(n2.697263 log(‖A‖)), which is
O∼(n3.2 log(‖A‖)) without fast matrix multiplication, by [14]. Unfortunately, these last
two worst case complexity algorithms, though asymptotically better, are not the fastest for
the generic case or for the actual matrix sizes. The best expected complexity algorithm is a
Las Vegas algorithm of Storjohann [18] which uses an expected number of O∼(nω log ‖A‖)
bit operations. In section 5 we compare the performance of this algorithm to ours, based
on experimental results of [19].
In this paper, we propose a new way to extend the idea of [17, 20] to get the last consecutive
invariant factors with high probability in section 3.2. Then we combine this with the scheme
of [1]. This combination, is made in an adaptive way. This means that the algorithm will
choose the adequate variant at run-time, depending on discovered properties of its input.
More precisely, in section 4, we propose an algorithm which uses timings of its first part to
choose the best termination. This particular kind of adaptation was somewhat introduced in
[15] as introspective ; we use here the more specific definition of [3]. This enables us to prove
in section 4.1 an expected complexity of O

(
n3(log(n) + log(‖A‖))2 log(n)

)
bit operations,

gaining a log(n) factor and improving the constants from [11]. Moreover, we are able to
detect the worst cases during the course of the algorithm thus enabling us to switch to the
asymptotically fastest method. In general this last switch is not required and we show in
section 5 that when used with the very fast modular routines of [7, 9] and the LinBox library
[8], our algorithm can be an order of magnitude faster than other existing implementations.

2 Base Algorithms and Procedures

In this section we present the procedures in more detail and describe their probabilistic
behavior. We start by a brief description of the properties of the Chinese Remaindering loop
(CRA) with early termination (ET) (see [5]), then proceed with the LargestInvariantFactor
algorithm to compute sn (see [1, 11, 17]). We end the section with a summary of ideas of
Abbott et al. [1], Eberly et al. and Saunders et al. [17].

2.1 Output dependant Chinese Remaindering Loop (CRA)

CRA is a procedure based on the Chinese remainder theorem. Determinants are computed
modulo several primes pi. Then the determinant is reconstructed modulo p0 · · · pn−1 in
the symmetric range via the Chinese reconstruction. The integer value of the determinant
is thus computed as soon as the product of the pi exceeds 2|det(A)|. We know that the
product is big enough if it exceeds some upper bound on this value or, probabilistically,

An introspective algorithm for the integer determinant 187

if the reconstructed value remains identical for several successive additions of modular
determinants. The principle of early termination (ET) is thus to stop the reconstruction
before reaching the upper bound, as soon as the determinant remains the same for several
steps [5].
Algorithm 2.1 is an outline of a procedure to compute the determinant using CRA loops
with early termination, correctly with probability 1− ǫ. We start with a lemma.

Lemma 2.1. Suppose that primes pi greater than l > 4 are randomly sampled form a set
P , and let rn be the value of the determinant modulo p0 · · · pn computed in the symmetric
range. Then

(i) rn = det(A), if n > N =

{
⌈logl(|det(A)|)⌉ if det(A) 6= 0

0 whenever det(A) = 0
;

(ii) if rn 6= det(A) then there are at most R =⌈logl(
| det(A)−rn|

p0···pn
)⌉ primes pn+1 such that

rn = det(A) mod p0 · · · pnpn+1;

(iii) if rn = rn+1 = · · · = rn+k then Prob(rn 6= det(A)) < ǫ if only k > ⌈log(1/ǫ)/ log(P ′
logl(H))⌉,

where P ′ = |P | − ⌈log(H)/ log(l)⌉ and H is an upper bound for the determinant (e.g.
H can be the Hadamard’s bound: |det(A)| 6 (

√
n‖A‖)n).

Proof. For (i), notice that −⌊p0···pn

2 ⌋ 6 rn < ⌈p0···pn

2 ⌉. Then rn = det(A) as soon as
⌊p0···pn

2 ⌋ > |det(A)|. With l being the lower bound for pi this reduces to n > ⌈logl |det(A)|⌉
in the case when det(A) 6= 0.
For (ii), we observe that det(A) = rn +Kp0 . . . pn and it suffices to estimate the number of
primes greater or equal l that divide K.

For (iii) we notice that k primes dividingK can be chosen with probability
(R
k

)
/
(|P | − n+ 1

k

)
,

which can be bounded by (R
P ′)

k Since R 6 ⌈logl(
2H
2)⌉ we get the result.

To compute the modular determinant in algorithm 2.1 we use the LU factorization and we
refer to it as LU iteration. Early termination is particularly useful in the case when the
computed determinant is much smaller than the a priori bound. The running time of this
procedure is output dependant.

2.2 Largest Invariant Factor

A method to compute sn for integer matrices was first stated by V. Pan [16] and later in
the form of the LargestInvariantFactor procedure (LIF) in [1, 11, 5, 17]. The idea is to
obtain a divisor of sn by computing a rational solution of the linear systems Ax = b. If b
is chosen at random from a sufficiently large set, then the computed divisor can be as close
as possible to sn with high probability. Indeed, with A = USV , we can equivalently solve
SV x = U−1b for y = V x, and then solve for x. As U and V are unimodular, the least
common multiple of the denominators of x and y, d(x) and d(y) satisfies d(x) = d(y)|sn.
Thus, solving Ax = b via p-adic lifting [4], enables us to get sn with high probability at the
cost of O(n3(log(n) + log(‖A‖))2) independently of the size of sn.

188 Dumas et al. Transgressive Computing

Algorithm 2.1 Early Terminated CRA

Require: An integer matrix A.
Require: 0 < ǫ < 1.
Require: A set P of random primes greater than l.
Ensure: The integer determinant of A, correct with probability at least 1− ǫ.

1: H = (
√
n‖A‖)n; P ′ = |P | − ⌈log(H)/ log(l)⌉; i = 0; // Hadamard’s bound

2: repeat

3: Get a prime pi from the set P ; P = P − {pi}
4: Compute det(A) mod pi; //via LU factorization of A modulo pi.
5: Reconstruct ri, the determinant modulo p0 · · · pi; // by Chinese remaindering

6: k = max{t : ri−t = · · · = ri}; R = ⌈logl
H+|ri|

p0p1...pi−k
⌉

7: i++;
8: until

R(R−1)...(R−k+1)
(|P |−n)(|P |−n−1)...(|P |−n−k+1) < ǫ or

∏
pi > 2H + 1

The algorithm takes as input parameters β and r which are used to control the probability
of correctness. r is the number of successive solvings and β is the size of the set from which
the values of a random vector b are chosen. With each system solving, the output s̃n of the
algorithm is updated as the lcm of the current solution denominator d(x) and the result
obtained so far.
The following theorem characterizes the probabilistic behavior of the LIF procedure.

Theorem 2.2. Let A be a n × n matrix, H its Hadamard’s bound, r and β be defined as
above. Then the output s̃n of Algorithm LargestInvariantFactor of [1] is characterized by
the following properties.

i) Let r = 1, p be a prime, l > 1, then P(pl|sn(A)
s̃n

) 6 1
β ⌈

β
pl ⌉;

ii) if r = 2, β = ⌈(n+ 1)H⌉ then E
(
log(sn(A)

s̃n
)
)

= O(1);

iii) if r = 2, β = 6 + ⌈2 log(log(H))⌉ then sn = s̃n with probability at least 1/3;

iv) if r = ⌈2 log(log(H))⌉, β > 2 then E
(
log(sn(A)

s̃n
)
)

= O(1);

v) if r = log(log(H)) + log(1
ǫ), 2 | β and β > 2 then sn(A) = s̃n with probability at least

1− ǫ;

Proof. The proofs of (i), (ii) and (iv) are in [1]. The proof of (iii) is in [11]. To prove (v) we
slightly modify the proof of (iv) in the following manner. From (i) we notice that for every
prime p dividing sn, the probability that it divides the missed part of sn(A) satisfies:

P(p | sn

s̃n
) 6 (

1

2
)r.

An introspective algorithm for the integer determinant 189

As there are at most log(H) such primes, we get

P(sn = s̃n) > 1− log(H)(1/2)r > 1− log(H)2− log(log(H))−log(1
ǫ
) = 1− log(H)

1

log(H)
ǫ.

2.3 Abbott-Bronstein-Mulders, Saunders-Wan and Eberly-Giesbrecht-
Villard ideas

Now, the idea of [1] is to combine both the Chinese remainder and the LIF approach. Indeed,
one can first compute sn and then reconstruct only the remaining factors of the determinant
by reconstructing det(A)/sn. The complexity of this algorithm is O

(
n3 log(| det(A)/sn(A) |)

)

which is unfortunately O∼(n4) in the worst case. However, nothing is known about the al-
gorithm expected complexity.
Now Saunders and Wan [17, 20] proposed a way to compute not only sn but also sn−1

(which they call a bonus) in order to reduce the size of the remaining factors d/(snsn−1).
The complexity doesn’t change.
Then, Eberly, Giesbrecht and Villard have shown that the expected number of non trivial
invariant factors is small, namely less than ⌈3logλ(n)⌉ + 29 in general if the entries of
the matrix are chosen in a set of λ consecutive integers [11]. As they also give a way to
compute any si(A) which leads to an algorithm with expected complexity O(n3(log(n) +
log(‖A‖))2 log(n)) logλ(n)).
Our idea is to extend the method of Saunders and Wan to get the last O(logλ n) invariant
factors of A slightly faster than by [11]. Then, we are able to remove one of the log(n)
factors of the expected complexity. Moreover, we will show in the following sections that
this enables us to build an adaptive algorithm solving a minimal number of systems.
We should also mention, that it should be possible to change a log(n) factor in the expected
complexity of [11] to a log log(n) employing the bound for the expected number of invariant
factors twice. Indeed their extra log(n) factor comes from the algorithm where n non trivial
invariant factors are to be computed. But in the expected case, as they have only log(n) of
those, this extra factor could be consequently reduced.

3 Computing the product of O(log(n)) last invariant factors

3.1 On the number of invariant factors

The result in [11] says that a n×n matrix with entries chosen randomly and uniformly from
a set of size λ has the expected number of invariant factors bounded by ⌈3 log(n)⌉+ 29. In
search for a sharpening of this result we prove the following theorems.

Theorem 3.1. Let p be a prime. The expected number of non-trivial invariant factors
divisible by p is at most 6.

190 Dumas et al. Transgressive Computing

Theorem 3.2. The expected number of nontrivial invariant factors is at most logλ(n) +
logλ(logλ(n) + 1) + 9.

Both proofs can be found in the appendix A.

3.2 Extended Bonus Idea

In his thesis [20], Z. Wan introduces an idea of computing the penultimate invariant factor
(i.e. sn−1) of A while computing sn using 2 system solvings. The additional cost is com-
paratively small, therefore sn−1 is referred to as a bonus. Here, we extend this idea to the
computation of the (n− k)th factor with (k + 1) solvings.
Let x(j) be the rational solution to the equation Ax(j) = b(j), where b(j) is a random vector.
Then x(j) coordinates have a common denominator s̃n and we let n(j) denote the vector of
numerators of x(j). Then x(j) = 1

s̃n
n(j) and gcd(n(j), s̃n) = 1.

Let B denote the n×(k+1) matrix [b(j)]j=1,...,k+1. Following Wan, we notice that sn(A)A−1

is an integer matrix, the Smith form of which is equal to

diag(
sn(A)

sn(A)
,
sn(A)

sn−1(A)
, . . . ,

sn(A)

s1(A)
).

Therefore, we may compute sn−k(A) when knowing sk+1

(
sn(A)A−1

)
. The trick is that

the computation of A−1 is not required: we can perturb A−1 by right multiplying it by B.
Then, sk+1(sn(A)A−1B) is a multiple of sk+1(sn(A)A−1). Instead of sn(A)A−1B we would
prefer to use s̃nA

−1B which is already computed and equal to N , where N = [n(j)]j=1,...,k+1

is the matrix of numerators. The relation between A and N is as follows.

Lemma 3.3. Let s̃−1
n N , gcd(s̃n, N) = 1 be a solution to the equation AX = B, where B is

n× k and the entries of B are uniformly and randomly chosen from the set {0, 1, . . . β− 1}.
Then

s̃n

gcd(si+1(N), s̃n)
|sn−i(A), i = 1, 2 . . . , k.

Proof. The Smith forms of sn(A)A−1B and N are connected by the relation sn(A)
s̃n

si(N) =

si(sn(A)A−1B), i = 1, . . . , (k + 1). Therefore the quotient sn(A)
sk+1(sn(A)A−1B)

equals s̃n
sk+1(N) ,

and by taking s̃n
gcd(sk+1(N),s̃n) one obtain an (integer) factor of sn−k(A). Moreover, the

under-approximation is solely due to the choice of B.

Remark 3.4. Taking gcd(sk+1(N), s̃n) is necessary as s̃n
sk+1(N) may be a rational number.

Particularly, it happens when s1(N) = gcd(Nij) > 1, and in this case, since gcd(s̃n, N) = 1,
the impact of s1(N) on sn−k is neglected. Moreover, this allows us to consider p|s̃n in all
probability consideration throughout the paper.

In fact we are interested in computing the product πk = snsn−1 · · · sn−k(A) of the invariant
factors of A. Then, following the idea of Abbott [1], we would like to reduce the computation

of the determinant to the computation of det(A)
π̃k

, where π̃k is a factor of πk we have obtained.

An introspective algorithm for the integer determinant 191

We can compute π̃k as s̃k+1
n / gcd(s1s2 · · · sk+1(N), s̃k+1

n). The product of the (k + 1) first
invariant factors of a matrix is equal to the gcd of all its (k + 1) × (k + 1) minors. In our
approach, it suffices to compute ⌊n/(k+1)⌋ of those. In the following lemmas we show that
by repeating the choice of matrix B twice, we will omit only a finite number of bits in πk.
We start with a technical lemma, the proof of which is in Appendix B.

Lemma 3.5. For n×n matrix A with entries chosen randomly and uniformly from the set
{0, 1 . . . S − 1}, the probability that pl < S divides the determinant det(A) is at most 3

pl for

p 6= 2, 3, 5 and 4
pl for p = 2, 3, 5 and S > 81.

In the next lemma we discuss the impact of choosing only a few minors in s1 . . . sk+1(N)
calculation. Here, ordp(x) denotes the higher power of p dividing x.

Lemma 3.6. Let N and B be as defined in lemma 3.3. Suppose that B is a random
matrix with entries chosen uniformly form the set {0, 1, . . . S − 1}, S > max(H, 81) and
k = O(log(n)). Let N = [N1| . . . Nµ|N ′]T where Ni are (k + 1) × (k + 1) matrices, µ =
⌊n/(k + 1)⌋. Then

∞∑

l=1

∑

pl|s̃n

Prob
(

ordp(
gcdi=1...µ(det(Ni))

gcd(minors(N))
) = l

)
l log(p) ∈ O(1). (1)

Proof. The bound S on ‖B‖ is chosen in the way that following remark 3.4 we can only
consider p 6 S. Therefore from Lemma 3.5 we get that for l > 1

Prob(pl|det(Ni)) 6
α

pl
,

where α = 3 for p > 5 and α = 4 for p = 2, 3, 5.
Now the sum (1), which represents the size of the over-approximation due to partial gcd
computation can be bounded by

∞∑

l=1

∑

pl|s̃n

Prob
(

ordp(
gcdi=1...µ(det(Ni))

gcd(minors(N))
) = l

)
l log(p) 6

∞∑

l=1

∑

pl|s̃n

Prob
(
pl| gcd

i=1...µ
(det(Ni))

)
log(p)

6 log 2(2 +

∞∑

l=3

(
4

2l
)µ) + log 3(1 +

∞∑

l=2

(
4

3l
)µ) + log 5(1 +

∞∑

l=2

(
4

5l
)µ) +

∑

p>5

∞∑

l=1

log(p)(
3

pl
)µ

6 3 + 4 + 6 + 1 = 14

With µ being about n
O(log(n)) , the expected size of overestimation due to partial gcd calcu-

lation is O(1).
To consider the impact of the choice of B on our method we start with a remark, which is
a small modification of [20, Lem. 5.17].

Remark 3.7. For every matrix M there exist a full rank k × n, k 6 n, matrix V , such that
ordp(

s1···sk(MB)
s1···sk(M)) is less or equal ordp(det(V B)).

192 Dumas et al. Transgressive Computing

Lemma 3.8. Let A be an n× n integer matrix, S > max(H, 81) and Bi, i = 1, 2 be n× k
matrices with the entries uniformly and randomly chosen from the set {0, 1, . . . S}. Then
for M = sn(A)A−1

log
(πk(A)

sk
n

gcd(s2 · · · sk+1(MB1), s2 · · · sk+1(MB2))
)
∈ O(1).

Proof. From Remark 3.7 and Lemma 3.5, we have Prob(Bi : ordp(
s1···sk(MBi)
s1···sk(M)) 6 l) 6 α

pl ,
with α = 3 for p > 5 and α = 4 for p = 2, 3, 5. Now the expected size of the under-estimation
is less than or equal to

log(2)(1 +
∞∑

l=2

(
4

2l
)2) + log(3)(1 +

∞∑

l=2

(
4

3l
)2) + log(5)(1 +

∞∑

l=2

(
4

5l
)2) +

∑

5<p6H

∞∑

l=1

log(p)(
3

pl
)2

6 3 + 4 + 6 +

∫ ∞

6
log(x)

9

x2 − 1
dx,

which is O(1).
It is worth noting that the above mentioned schemes could lead to an algorithm to com-
pute several last (or first) invariant factors with possibly better probabilistic behavior and
expected complexity than that of [11].

4 Introspective Algorithm

Now we should incorporate algorithm 2.1 and the ideas presented in sections 2.2 and 3.2
in the form of an introspective algorithm. Indeed, we give a recipe for an auto-adaptive
program that implements several algorithms of diverse space and time complexities for
solving a particular problem. The best path is chosen at run time, from a self-evaluation of
the dynamic behavior (e.g. timings) while processing a given instance of the problem. This
kind of auto-adaptation is called introspective in [3].
In the following, CRA loop refers here to algorithm 2.1, slightly modified to compute
det(A)/K. If we re-run the CRA loop, we use modular determinant results already com-
puted to recover det(A)/K mod p.

Theorem 4.1. Algorithm 4.1 correctly computes the determinant with probability 1− ǫ.

Proof. Termination is possible only by the early terminated CRA loop or by the determinant
algorithm used in the last step. The choice of k from theorem 2.1(iii) and the choice of the
determinant algorithm from [13, 19] ensures that 1− ǫ probability is obtained.

4.1 Complexity

The following theorem gives the complexity of the algorithm.

An introspective algorithm for the integer determinant 193

Algorithm 4.1 Extended Bonus Determinant Algorithm

Require: An integer n× n matrix A.
Require: 0 < ǫ < 1, an error tolerance.
Require: A stream S of random integers uniformly chosen from the set {0, 1 . . . ,max(⌈(n+

1)H⌉, 81)}, H - Hadamard’s bound for A.
Require: A set P of random primes greater than l.
Ensure: The integer determinant of A, correct with probability at least 1− ǫ.

1: k = log(1/ǫ)/⌈log(P ′
logl(H))⌉; see Lem. 2.1(iii)

2: for i = 1 to k do

3: run the CRA loop for det(A) ; //see Alg. 2.1
4: if early terminated then Return determinant end if

5: end for

6: imax = logλ(n) + logλ(logλ(n) + 1) + 9); //see Theorem 3.2
7: for j = 1, 2 do

8: i = 0; π̃−1 = 1;K = 1;
9: while i < imax do

10: Generate bi a random vector of dimension n from the stream S;
11: Compute s̃n by solving Axi = bi; //see Section 2.2
12: if i = 0 then i = 1;π̃0 = s̃n;
13: else

14: N := s̃nX, where X = [xl]l=0,...i; //see Section 3.2;
15: π̃i = 0;
16: for l = 1, . . . ⌊n/i⌋ do

17: π̃i = gcd(π̃i,det(Nl)), where Nl is the lth minor of N ;
18: end for

19: i=i+1;
20: end if

21: K = lcm(π̃i−1,K); π̃i−1 = K;
22: Resume CRA looping on d = det(A)/K; for at most the time of one system solving;
23: if early terminated then Return d ·K; end if

24: if π̃i−1 = π̃i−2 then

25: Resume CRA looping on d = det(A)/K; for at most the time of (imax−i) system
solvings;

26: if early terminated then Return d ·K;
27: else i = imax; end if

28: end if

29: end while

30: end for

31: run an asymptotically better integer determinant algorithm;

194 Dumas et al. Transgressive Computing

Theorem 4.2. The expected complexity of Algorithm 4.1 is

O≈ (nω log(1/ǫ) + n3(log n+ log(‖A‖))2 log(n)
)

where O≈ hides some log(log(n)) factors. The pessimistic complexity depends on the algo-
rithm used in the last step.

Proof. To analyze the complexity of the algorithm we would consider the complexity of
each step. With k defined as in the algorithm, the complexity of initial CRA iteration is
O (nω log(1/ǫ)). The system solving in the LIF algorithm is performed 2imax times with
log(‖B‖) = O(n log(n)), which results with a complexity of O(imaxn

3(log(n) + log(‖A‖)2).
Considering the time limit, this is also the time of all CRA loop iterations. To compute

π̃i by means of the CRA determinant algorithm, we need O
(
⌊n/i⌋i4(log(i) + n(log(n) +

log(‖A‖) + log(‖B‖))
)

bit operations, which for i = 2, . . . , imax with imax being O(log(n))

is O∼(n2) and thus negligible.
With the expected number of invariant factors bounded by imax (see Thm.3.2), it is expected
that the algorithm will return the result before the end of the while loop, provided that
the under-estimation of π̃imax is not too big. But by updating s̃n O(log(n)) times and
updating the product π̃imax twice, it is expected that the overall under-estimation will be
O(1) (see Theorem 2.2(ii) and Lemma 3.8), thus it is possible to recover it by several CRA
loop iterations.

5 Experiments and Further Adaptivity

The described algorithm is implemented in the LinBox exact linear algebra library [8]. In a
preliminary version imax is set to 2 or 1 and the switch in the last step is not implemented.
This is however enough to evaluate the performance of the algorithm and to introduce
further adaptive innovations.
Comparing the data from table 5 we notice that the algorithm with imax = 1 (which is in fact
a slightly modified version of Abbott’s algorithm [1]) runs better for small n. Those timings
have been evaluated on a set of matrices which have the same Smith form as diag{1, 2, .., n}
and the number of invariant factors of about n

2 . For every matrix, with each step, the
size of sn−i decreases whilst the cost of its computation increases. This accounts for better
performance of Abbott’s algorithm, which computes only sn, in the case of small n. For
bigger n calculating sn−1 starts to pay out. The same situation repeats at each step.
The switch between winners can be explained by the fact that in some situations, obtaining
sn−i by LU -factorization (which costs log(sn−i)

log(l) the time of LU) outperforms system solving.
Then, this also holds for all consecutive factors and the algorithm basing on CRA wins. The
condition can be checked a posteriori by approximating the time of LUs needed to compute
the actual factor. We can therefore construct a condition that would allow us to turn to
the CRA loop in the appropriate moment. This can be done by changing the condition in

An introspective algorithm for the integer determinant 195

n imax = 1 imax = 2 n imax = 1 imax = 2

100 0.17 0.22 300 5.65 5.53
120 0.29 0.33 350 9.76 9.64
140 0.48 0.55 400 14.99 14.50
160 0.73 0.78 600 57.21 54.96
180 1.07 1.16 800 154.74 147.53
200 1.49 1.51 1000 328.93 309.61
250 2.92 3.00 2000 3711.26 3442.29

Table 1: Comparison of the performance of Algorithm 4.1 with imax set to 1 and 2 on
engineered matrices.

line 24 (π̃i−1 = π̃i−2) to

log(
π̃i−1

π̃i−2
) 6

time(solving)

time(LU)
log(l),

if the primes used in the CRA loop are greater than l. This would result with a perfor-
mance close to the best and yet flexible. If, to some extend, sn−i could be approximated a
priori, this condition could be checked before its calculation. This would require a partial
factorization of sn−i+1 and probability considerations as in the appendix A and [11].
For a generic case of random dense matrices our observation is that the bound for the
number of invariant factors is quite crude. Therefore the algorithm 4.1 is constructed in
the way that minimizes the number of system solving to at most twice the actual number
of invariant factors for a given matrix. Under the assumption that the approximations s̃n

and π̃i are sufficient, this leads to a quick solution.
Indeed for random matrices, the algorithm nearly always stopped with early termination
after one system solving. This together with fast underlying arithmetics of FFLAS [7]
accounted for the superiority of our algorithm as seen in figure 5 where comparison of
timings for different algorithms is presented.

6 Conclusions

In this paper we presented an algorithm computing the determinant of an integer matrix
which expected time complexity is O

(
n3(log(n) + log(||A||))2 log(n)

)
. Our algorithm uses

an introspective approach so that its actual running time is only O
(
n3(log(n) + log(||A||))2k

)

if the number k of invariant factors is smaller than a priori expected. Moreover, the adap-
tive approach allows us to switch to the algorithm with best worst case complexity if it
happens that the number of nontrivial invariant factors is unexpectedly large. This adap-
tivity, together with very fast modular routines, allows us to produce an algorithm, to our
knowledge, faster by at least an order of magnitude than other implementations.
Ways to further improve the running time are to reduce the number of iterations in the
solvings or to group them in order to get some block iterations as is done e.g. in [2]. A

196 Dumas et al. Transgressive Computing

 1

 32

 1024

 32768

 512 1024 2048 4096 8192

T
im

e
(s

)

n

NTL (Monte Carlo)
LU−CRT

[Storjohann−Giorgi−Olesh] (Certified)
Magma (Monte Carlo)

Hybrid algorithm

Figure 1: Comparison of our algorithm with other existing implementation. Tested on ran-
dom dense matrices of the order 400 to 10000, with entries {-8,-7,. . . ,7,8} Using fast modular
routines puts our algorithm several times ahead of the others. Scaling is logarithmic.

modification to be tested, is to try to reconstruct sn with only some entries of the solution
vector x = n/d. Parallelization can also be considered to further modify the algorithm.
Of course, all the LU iterations in one CRA step can be done in parallel. An equivalently
efficient way is to perform several p-adic liftings in parallel, but with less iterations [6].
There the issue is to perform an optimally distributed early termination.

References

[1] J. Abbott, M. Bronstein, T. Mulders. Fast deterministic computation of determinants
of dense matrices. In Proc. of ACM International Symposium on Symbolic and Algebraic
Computation (ISAAC’1999), 197-204, ACM Press, 1999.

[2] Z. Chen and A. Storjohann. A BLAS based C library for exact linear algebra on
integer matrices. In Proc. of ACM International Symposium on Symbolic and Algebraic
Computation (ISAAC’2005), 92–99, ACM Press, 2005.

[3] V.-D. Cung, V. Danjean, J.-G. Dumas, T. Gautier, G. Huard, B. Raffin, C. Rapine,
J.-L. Roch, D. Trystram, Adaptive and hybrid algorithms: classification and illustra-
tion on triangular system solving, in: Proceedings of Transgressive Computing 2006,
Granada, España.

An introspective algorithm for the integer determinant 197

[4] J. Dixon. Exact Solution of Linear Equations Using P -Adic Expansions. In Nu-
mer.Math. 40(1), 137-141, 1982.

[5] J.G. Dumas, D. Saunders, G. Villard. On Efficient Sparse Integer Matrix Smith Normal
Form Computations. In Journal of Symbolic Computations. 32 (1/2), 71-99, 2001.

[6] J.G. Dumas, W. Turner, Z. Wan. Exact Solution to Large Sparse Integer Linear Sys-
tems. ECCAD’2002 : The 9th Annual East Coast Computer Algebra Day, 2002.

[7] J.G. Dumas, T. Gautier, C. Pernet. FFLAS: Finite field linear algebra subroutines.
ISSAC’2002. 2002.

[8] J.G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi, B. Hovinen, E. Kaltofen, D. Saun-
ders, W. Turner, G. Villard. LinBox: A Generic Library for Exact Linear Algebra.
ICMS’2002 : International Congress of Mathematical Software 2002.

[9] J.G. Dumas, P. Giorgi, C. Pernet. FFPACK: finite field linear algebra package. IS-
SAC’2004. 2004.

[10] J.G. Dumas, C. Pernet, Zhendong Wan. Efficient Computation of the Characteristic
Polynomial. ISSAC’2005. 2005.

[11] W. Eberly, M. Giesbrecht, G. Villard. On computing the determinant and smith form
of an integer matrix. In Proc. 41st FOCS, 675-687, 2000.

[12] O.H. Ibarra, S. Moran, R.Hui. A generalization of the fast LUP matrix decomposition
algorithm and applications. Journal of Algorithms, 3(1):452̆01356, Mar.1982.

[13] E. Kaltofen, G. Villard. Computing the sign or the value of the determinant of an inte-
ger matrix, a complexity survey. In Journal of Computational and Applied Mathematics
164(2004), 133-146 2004.

[14] E. Kaltofen, G. Villard. On the complexity of computing determinants. Computational
Complexity, 31(3-4), pp 91–130, 2005.

[15] D. Musser. Introspective Sorting and Selection Algorithms. Software—Practice and
Experience, 8(27), pp 983–993, 1997.

[16] V. Pan. Computing the determinant and the characteristic polynomial of a matrix via
solving linear systems of equations. Inform. Process. Lett. 28(1988) 71-75. 1988.

[17] D. Saunders, Z. Wan. Smith Normal Form of Dense Integer Matrices, Fast Algorithms
into Practice. ISSAC 2004 2004.

[18] A.Storjohann. The shifted number system for fast linear algebra on integer matrices.
Journal of Complexity, 21(4), pp 609–650, 2005.

[19] A. Storjohann, P. Giorgi, Z. Olesh. Implementation of a Las Vegas integer Matrix
Determinant Algorithm. ECCAD’05: East Coast Computer Algebra Day, 2005.

198 Dumas et al. Transgressive Computing

[20] Z. Wan. Computing the Smith Forms of Integer Matrices and Solving Related Problems.
Ph.D. Thesis, U. of Delaware, USA, 2005.

A Proofs of theorems 3.1 and 3.2

In order to prove theorems stated in section 3.1, we will start with the following lemma.

Lemma A.1. For λ > 11 the sum over primes p:
∑

8<p<λ

(
1

λ
⌈λ
p
⌉)j can be bounded by (1

2)j .

Proof. We will consider primes from the interval λ
2k+1 6 p < λ

2k , k = 0, 1, . . .max{⌈log(λ)⌉−
3, 2} separately. For the kth interval ⌈λp ⌉ equals 2k+1. In each interval there are at most

⌈λ4 ⌉ odd numbers and at most λ
4 primes. The reasoning goes as follows: if in the interval

there are more than 3 odd numbers, at least one of them is divided by 3 and so does not
count. For this to happen it is enough that λ > 12. We may therefore calculate:

∑

8<p<λ

(
1

λ
⌈λ
p
⌉)j 6

⌈log(λ)⌉−3∑

k=0

λ

2k+2
(
2k+1

λ
)j 6

1

2λj−1
(2⌈log(λ)⌉−2)j−1

6 (
1

2
)j .

Remark A.2. For λ = 2l we may consider primes p > 4.

Remark A.3. If we exclude {2,3,5,7,8,16}, we get the same bound for
∑

k∈N

∑

8<pk<λ

(
1

λ
⌈ λ
pk
⌉)j .

Proof.[Theorem 3.1] The idea of the proof is similar to that of [11]. Let A be a random
matrix with entries chosen uniformly and randomly from the set {0, 1, 2 . . . λ − 1}. Let
MDepi(p) denote an event that the submatrix Ai, including the first i columns of A mod
p has rank at most i− 2 over Zp.
We are now going to find P(MDepi(p) | ¬MDepi−1(p)). Since the event MDepi−1(p) did
not occur, Ai−1 has p-rank (i − 2) or (i − 1). For MDepi it must be (i − 2), thus, there
exists a set of (i− 2) rows Ri−2 which has the full rank. Consider any row vj that is left. If
vj is a combination of Ri−2 the last (ith) entry of vj is determined mod p. For λ > p this
means that the probability that vj is a combination of Ri−2 is at most λ−1. For p < λ this
probability is 1

λ⌈λp ⌉ which is always less than or equal to 2
p+1 . As there are n− i+2 vectors

outside Ri−2, the probability that none of them is linearly independent with Ri−2 over Zp

is at most (2
p+1)n−i+2 for p < λ and (1

λ)n−i+2 for p > λ.
Since P(MDepi(p) | ¬MDepi−1(p)) > P(MDepi(p)∧¬MDepi−1(p)), we have P(MDepi(p)) 6

P(
⋃i

j=1(MDepj(p) ∧ ¬MDepj−1(p))) which can be bounded by (2
p+1)n−i+2 p+1

p−1 for p < λ

and (1
λ)n−i+2 λ

λ−1 for p > λ.
Let the number of invariant factors divided by p be greater than j. The rank of A mod p is
then at most n−j over Zp. This in consequence means that for j > 1 the submatrix An−j+2

An introspective algorithm for the integer determinant 199

has the rank at most n− j, so the event MDepn−j+2(p) is fulfilled. Therefore matrix A has
at least j invariant factors divided by p with probability at most

(
2

p+ 1
)j
p+ 1

p− 1
, p < λ

(
1

λ
)j

λ

λ− 1
, p > λ. (2)

Now the expected number of invariant factor divided by p is not greater than

3 + 3

j=n∑

j=3

(
2

3
)j = 3 + 9(

2

3
)3 6 6, p = 2,

1 +

j=n∑

j=1

(
2

p+ 1
)j
p+ 1

p− 1
= 1 +

2(p + 1)

(p − 1)2
6 3, 2 < p < λ,

1 +
λ

(λ− 1)2
< 2, p > λ > 2. (3)

Proof.[Theorem 3.2] In addition
to MDepi(p) introduced earlier, let Depi denote an event that the first i columns of A are
linearly independent and MDepi, an event that either of MDepi(p) occurred. Recall that
P(Dep1 ∨MDep1(p)) 6 λ−n, and P(Depi | ¬(Depi−1 ∨MDepi−1(p))) 6 λ−n+i−1.
To bound P(MDepi | ¬(Depi−1 ∨MDepi−1(p))) we sum the results for all primes. For
p < λ, i 6 n− 1 the sum can be bounded by

(
2

3
)n−i+2 +

∑

λ>p>8

(
1

λ
⌈λ
p
⌉)n−i+2

6 (
2

3
)n−i+2 + (

1

2
)n−i+2,

thanks to the lemma A.1.
For primes p > λ we should estimate the number of primes dividing the (i − 1)th minor.
By the Hadamard’s bound (notice that Depi−1 does not hold), the minors are bounded in

absolute value by ((i− 1)λ2)
i−1
2 . Therefore the number of primes p > λ dividing the minor

is at most i−1
2 (logλ(i− 1) + 2)). Summarizing,

P((MDepi ∧Depi) |¬(Depi−1 ∨MDepi−1(p)))

6 (
1

λ
)n−i+1 + (

2

3
)n−i+2 + (

1

2
)n−i+2 +

i− 1

2
(logλ(i− 1) + 2) (

1

λ
)n−i+2

for 2 6 i 6 n− 1.
By the same argument as in the previous proof

P(MDepn−j+2) 6 λ−n + (
1

λ
)j−1 λ

λ− 1
+ 3(

2

3
)j + 2(

1

2
)j +

n− j + 1

2
(logλ(n− i+ 1) + 2) (

1

λ
)j

λ

λ− 1
.

(4)

200 Dumas et al. Transgressive Computing

Similarly, the probability that the number of invariant factors at least j is greater than
P(MDepn−j+2).
To calculate the expected number of invariant factors we first consider the case

n− j + 1

2

(
logλ(n− j + 1) + 2

)
(
1

λ
)j

λ

λ− 1
< 1.

It suffices that n(logλ(n) + 1) 6 λj, and therefore logλ(n) + logλ(logλ(n) + 1) 6 j. Conse-
quently, the expected number of invariant factors is

⌈logλ(n)+logλ(logλ(n)+1)⌉∑

j=1

1 +

n∑

j=⌈logλ(n)+logλ(logλ(n)+1)⌉+1

(
λ−n + (

1

λ
)j−1 λ

λ− 1
+ 3(

2

3
)j+

+ 2(
1

2
)j +

n− j + 1

2
(logλ(n− j + 1) + 2))(

1

λ
)j

λ

λ− 1

)
= ⌈logλ(n) + logλ(logλ(n) + 1)⌉+

+ 1 +
λ+ 1

(λ− 1)2
+ 4 + 1 6 logλ(n) + logλ(logλ(n) + 1) + 9.

B Modular determinant

Lemma B.1. For n × n matrix A with entries chosen randomly and uniformly from the
set {0, 1 . . . S − 1}, the probability that pl < S divides the determinant det(A) is at most 3

pl

for p 6= 2, 3, 5 and 4
pl for p = 2, 3, 5 and S > 81.

Proof. To check whether ordp(det(A)) > l we will consider a process of diagonalization for
A mod pl as described in Algorithm LRE of [5]. It consists of diagonalization and reduction
steps. At ith diagonalization step, if an invertible entry is found, it is placed in the (i, i)
pivot position and the ith row and column are zeroed. If no invertible entry is found, we
proceed with a reduction step i.e. we consider the remaining (n − i + 1, n − i + 1) minor
divided by p. The problem now reduces to determining whether ordp of an (n−i+1, n−i+1)
matrix is greater than l − n+ i− 1.
In the probabilistic consideration we need to determine the distribution of entries mod pi

after each reduction step. First, for A with entries chosen uniformly and randomly from
the set {0, 1 . . . S}, the probability that an entry is determined mod pi, i 6 l, is less than
or equal to βi(0) = 1

S ⌈ S
pi ⌉. After k reductions and m diagonalization steps we consider

i 6 l − 2k (each reduction is performed on a matrix of order at least 2 and reduces the
determinant by at least p2) and a conditional probability of choosing the entries of a matrix

Am
k determined mod pi with a probability at most βi(k) = 1

Nk
⌈Nk

pi ⌉, where Nk =
⌈
⌈ ⌈ S

p ⌉

...

⌉

p

⌉

(the division is repeated k times). Since k is less than or equal to ⌈l/2⌉− 1 and l 6 logp(S),
we have Nk > S

pk >
√
S and βi 6 2

pi throughout the diagonalization process.

An introspective algorithm for the integer determinant 201

We will estimate the probability inductively. The estimations are performed for p > 5.
First, for l = 1, we recall the result of [20, p.62] that

P (p | det(A)) 6

n∑

i=1

β1 6
3

p
.

Then for n = 2, l = 2,

P (p2 | det(A)) 6 (1 − P (p | aij∀i,j))β2 + P (p | aij∀i,j) 6 β2 + (β1)
22

6
3

p2
.

Again for n = 2, 1 < l < n this becomes

P (pl | det(A)) 6 (1− P (p | aij∀i,j))βl + P (p | aij∀i,j)P (pl−2 | det(A1)).

Notice, that we sum over all possible diagonalization/reduction steps combinations. βi

bounds the probability of choosing the last diagonal entry determined mod pi. A1 is equal
to A/p. By induction for p > 5, P (pl | det(A)) can be bounded by 2

pl + (2
p)4 3

pl−2 6 3
pl .

Now we will consider n > 2. Again we can sum over all possible diagonalization/reduction
steps combinations and the resulting bound for the probability is

P (pl | det(A)) 6

l∑

i=n

(1− P (p | aij∀i,j6n)) . . . (1− P (p | an−i+1
ij ∀i,j6i+1))β

i2

1

+
2∑

i=l−1

(1− P (p | aij∀i,j6n)) . . . (1− P (p | an−i+1
ij ∀i,j6i+1))β

i2

1 P (pl−i | det(Ai
1))

+ (1− P (p | aij∀i,j6n)) . . . (1− P (p | an−1
ij ∀i,j62))βl

for l 6 n and similarly for l > n

P (pl, A) 6

2∑

i=n

(1− P (p | aij∀i,j6n)) . . . (1− P (p | an−i+1
ij ∀i,j6i+1))β

i2
1 P (pl−i | det(Ai

1))

+ (1− P (p | an−i+1
ij ∀i,j6n)) . . . (1 − P (p | an−1

ij ∀i,j62))βl.

Again, we can use the induction to get

P (pl | det(A)) 6
(l∑

i=2

(
2

p
)i

2 3

pl−i

)
+

2

pl
6

∞∑

i=0

(
3 · 24

pl+2
(
25

p4
)i) +

2

pl
6

3 · 24p4

pl+2(p4 − 25)
+

2

pl
6

3

pl

for p > 5. For p = 2, 3, 5 by similar calculations we can prove that, provided that Nk > 9,
P (pl, A) 6 4

pl . The condition on Nk is satisfied as soon as
√
S > 9 i.e. S > 81.

Laboratoire de Modélisation et Calcul
Université Joseph Fourier, Grenoble I
BP 53X, 38041 Grenoble, FRANCE

{Jean-Guillaume.Dumas;Anna.Urbanska}@imag.fr
www-lmc.imag.fr/lmc-mosaic/{Jean-Guillaume.Dumas;Anna.Urbanska}

202 Dumas et al. Transgressive Computing

Newton’s method for the common eigenvector problem 203

Newton’s method for the common eigenvector problem

Abdellatif El Ghazi Said El Hajji Luc Giraud Serge Gratton

Abstract

In [1] we have proved the sensitivity of computing the common eigenvector of two
matrices, and we’ve designed a new approach to solve this problem based on the notion
of the backward error.

In this paper we will use Newton’s method to compute a common eigenvector for
two matrices, taking the backward error as a stopping criteria, note that a recent
optimization-based approach has been proposed for eigenvalue and generalized eigen-
value computations [3].

We mention that no assumptions are made on the matrices A and B.

Introduction

Let A and B be complex n×n matrices, a nonzero complex vector x is a common eigenvector
of A and B if there exist complex numbers α and β such that:

{
Ax = αx
Bx = βx

(P)

It’s known that whenever the matrices A and B commute, they has at least one common
eigenvector. Also if the matrices A and B can be simultaneously brought to an upper
triangular form i.e : if there exists a nonsingular matrix P and triangular matrices R and
S such that: {

P−1AP = R
P−1BP = S

Then the first column of P is a common eigenvector of A and B.
In 1984 D. Shemesh [2] gave a computable criterion for two square matrices to possess

a common eigenvector:

Theorem 0.1 (Dan Shemesh). Two square matrices A and B have a common eigenvector
if and only if

L =

n−1⋂

k,l=1

Ker[Ak, Bl] 6= {0}

The Shemesh theoretical condition is not easy to bring into use in practice for two
reasons:

204 El Ghazi et al. Transgressive Computing

First, it relies on an algorithm to compute the powers of matrices A and B, (the sen-
sitivity of computing the matrix powers is detailed by N.Higham in [4]), then compute the
intersection of the null-space of the matrices [Ak, Bl]. These algorithms are closely related
to the problem of the rank determination, that involves a lot of thresholds, whose deter-
mination is delicate and crucial to ensure the backward stability of the algorithm,(more
about stability can be found in [6, 7]).

Second, the condition enables to decide when a common eigenvector exists, but does
not provide an algorithm for computing it.

So rise the necessity to build a numerical algorithm to compute the common eigenvector
when it exist.

1 Ill-poseness of the problem

In [1] we’ve shown that it is not easy to find a common eigenvector of a pair of matrices in
the presence of round-off errors since the related perturbations are likely to transform a pair
of matrices having a common eigenvector into a pair which does not enjoy this property.

We’ve proved the topological reason beyond this in the theorem :

Theorem 1.1. [1]:
The set of matrices which does not have any eigenvector in common is dense in the set of
all pairs of matrices i.e.

S̄ = Mn(IC)2

where

S = {(A,B) ∈Mn(IC)2/A and B does not have a common eigenvector}
Then we’ve defined a new concept of approximate common eigenvector based on the

notion of the backward error defined by :

Definition 1.2. Let x̃ be an approximation of the solution of the problem (P), the backward
error η associated with x̃, noted η(x̃), is given by:

η(x̃) = min
α̃,β̃

min{ǫ :

[
(A+ ∆A)x̃ = α̃x̃

(B + ∆B)x̃ = β̃x̃
}

where

ǫ =

√
‖∆A‖2
‖A‖2 +

‖∆B‖2
‖B‖2 .

Furthermore, we have proved an explicit expression of the backward error η(x̃).

Theorem 1.3. [1] The backward error is given by:

η(x̃) =

√√√√‖Ax̃−
(x̃TAx̃)
‖x̃‖2 x̃‖2

‖A‖2‖x̃‖2 +
‖Bx̃− (x̃TBx̃)

‖x̃‖2 x̃‖2
‖B‖2‖x̃‖2 .

In the next section, we will use Newton’s method to find an approximation to the
common eigenvector , we’ll use the backward error as a stopping criteria.

Newton’s method for the common eigenvector problem 205

2 Gauss-Newton’s method.

x̄ is a common eigenvector of A and B if

{
Ax̄ = αx̄
Bx̄ = βx̄

Since an eigenvector is not unique, we can suppose that x̄ verify for a given y :

yT x̄ = 1

then α = yTAx̄ and β = yTBx̄
Set

F : ICn −→ IC2n+1

x 7−→

Ax− (yTAx)x
Bx− (yTBx)x

yTx− 1

We have F (x̄) = 0.
In the neighborhood of the current iterate xc, F can be expanded in Taylor series

F (xc + p) = F (xc) + J(xc).p +O(p2)

J is the gradient of F .

J(x) =

(I − xyT)A− (yTAx)I
(I − xyT)B − (yTBx)I

yT

By neglecting terms of order p2 and higher and choosing a step p such that

F (xc + p) = 0

we obtain J(xc).p = −F (xc), the correction p are then added to the solution, we get the
algorithm:

step 0 : choose x0

step 1 : repeat until convergence
step 1.1 : solve J(xk)pk = −F (xk).
step 1.2 : update xk+1 = xk + pk

Newton’s method is attractive because under appropriate conditions it converges rapidly
from any sufficiently good initial guess. In particular, if the Jacobian is nonsingular at the
solution, local quadratic convergence can be proved [5,Theorem 5.2.1 page 90]. The Kan-
torovich Theorem yields a weaker bound on the convergence rate but makes no assumption
on the nonsingularity of Jacobian at the solution [5,Theorem 5.3.1 page 92].

206 El Ghazi et al. Transgressive Computing

2.1 The damped Gauss-Newton.(DGN)

To accept the Newton step p we require that it decrease ‖F‖, this is the same requirement
we would impose if we were trying to minimize

f =
1

2
F T .F =

1

2
‖F‖2

To get a more useful method we take instead

xk+1 = xk + λkpk

Where λk is a parameter to be fixed so f(xk + λkpk) decrease sufficiently.
The Newton step p is a descent direction for f since:

∇fT .p = F T .J.p = −F T .F < 0

The resulting method, is called the damped Gauss-Newton method.

2.1.1 Backtracking:

The common procedure of choosing λk is to try the full Newton step i.e choose λk =
1 because once we are close enough to the solution we will get quadratic convergence.
However, we check at each iteration that the proposed step reduces f . If not, we backtrack
along the Newton direction until we have an acceptable step. Because the Newton step is
a descent direction for f, we are guaranteed to find an acceptable step by backtracking.

The criterion f(xk+1) < f(xk) can fail to converge in one of two ways:

• f is decreasing too slowly relative to the step lengths

• The steps are too small, relative to the initial rate of decrease of f

To fix the first problem we require that the average rate of decrease of f to be at lest some
fraction a ∈]0, 1[of the initial rate of decrease in that direction:

f(xk+1) ≤ f(xk) + a∇fT .(xk+1 − xk) (1)

The second problem can be fixed by requiring the rate of decrease of f at xk+1 be larger
than some fraction b ∈]a, 1[of the rate of decrease of f at xk:

∇f(xk)
T .(xk+1 − xk) ≥ b∇f(xk+1)T .(xk+1 − xk) (2)

Then we choose for λk the largest number in the sequence 1, 1
2 , 1

4 , 1
8 such that (1) and (2)

hold. In practice we haven’t to check condition (2) because backtracking avoid excessively
small steps. We get the algorithm:

step 0 : choose x0 and set x0 = x0

yT .x0
, choose a ∈]0, 1[

Newton’s method for the common eigenvector problem 207

step 1 : λk = 1 and repeat until convergence
step 1.1 : solve J(xc)pc = −F (xc)
step 1.2 : update xk+1 = xk + λkpk.
step 1.3 : If (1) holds set xk = xk+1, and go to step 1 else λk = 1

2λk, and go
to step 1.1

2.1.2 Exact Line searches

We can choose λk so that xk+1 exactly minimizes f in the direction pk:

λk = min
λ
f(xk + λpk)

or

f(x+ λp) =
1

2
‖F (x+ λp)‖2

with

F (x+ λp) =

A(x+ λp)− (yTA(x+ λp))(x+ λp)
B(x+ λp)− (yTB(x+ λp))(x+ λp)

yT (x+ λp)− 1

Let
u1 = −(yTAp)p
u2 = −(yTBp)p
v1 = Ap− (yTAx)p− (yTAp)x
v2 = Bp− (yTBx)p− (yTBp)x
v3 = yT p
w1 = Ax− (yTAx)x
w2 = Bx− (yTBx)x
w3 = yTx− 1

then

F (x+ λp) =

u1λ

2 + v1λ+ w1

u2λ
2 + v2λ+ w2

v3λ+ w3

Let
a4 = 1

2(‖u1‖2 + ‖u2‖2)
a3 = Re(uT1 v1) +Re(uT2 v2)
a2 = 1

2(‖v1‖2 + ‖v2‖2 + 2Re(uT1 w1) + 2Re(uT2 w2) + v2
3)

a1 = Re(vT1 w1) +Re(vT2 w2) + w3v3
a0 = 1

2(‖w1‖2 + ‖w2‖2 + w2
3)

then
f(x+ λp) = a4λ

4 + a3λ
3 + a2λ

2 + a1λ+ a0

and
df

dλ
(x+ λp) = 4a4λ

3 + 3a3λ
2 + 2a2λ+ a1

208 El Ghazi et al. Transgressive Computing

It’s root are the eigenvalues of the companion matrix:

C =

0 0 −1
4
a1
a4

1 0 −1
2
a2
a4

0 1 3
4
a3
a4

Then λk is the eigenvalue of C that minimize f . We get the algorithm:

step 0 : choose x0 and set x0 = x0

yT .x0
,

step 1 : repeat until convergence
step 1.1 : solve J(xk)pk = −F (xk)
step 1.2 : compute a1, a2, a3, a4, and the matrix C.
step 1.3 : compute the eigenvalues of C, and λk
step 1.4 : update xk+1 = xk + λkpk.

3 Newton’s method.

As the function f is special and easy to have it’s second derivative, we can use (directly)
the Newton’s method, and take

f(xc + p) ≃ f(xc) +∇f(xc)
T p+

1

2
pT∇2f(xc)p

Since f = 1
2F

T (x)F (x)

∇f = J(x)TF (x)

and

∇2f(x) = J(x)TJ(x) +

2n+1∑

i=1

Fi(x)∇2Fi(x)

where
Fi(x) = eTi F (x), ei = (0, ..., 0, 1, 0, ..., 0)T

and the minimizer of f is given by

xk+1 = xk − [J(xk)
TJ(xk) +

2n+1∑

i=1

Fi(x)∇2Fi(xk)]
−1J(x)TF (xk)

with
2n+1∑

i=1

Fi(x)∇2Fi(x) =

2n+1∑

i=1

(eTi F (x))(eTi ∇2F (x)) =

n∑

i=1

eTi (Ax−(yTAx)x).eTi ∇2(Ax−(yTAx)x)+

n∑

j=1

eTj (Bx−(yTBx)x)eTi ∇2(Bx−(yTBx)x)+

(yTx− 1)∇2(yTx− 1)

Newton’s method for the common eigenvector problem 209

Or

eTi ∇2(Ax− (yTAx)x) = eTi ∇(A− (yTAx)I − xyTA) = eTi ∇(−(yTAx)I − xyTA) =

∇(−(yTAx)eTi − eTi xyTA) = ∇(−xTAT yeTi − xT eiyTA) = −ATyeTi − eiyTA
Then
n∑

i=1

eTi (Ax− (yTAx)x).eTi ∇2(Ax− (yTAx)x) =

n∑

i=1

eTi (Ax− (yTAx)x)(−AT yeTi − eiyTA) =

−
n∑

i=1

[AT yeTi (Ax− (yTAx)x)eTi + eTi ei(Ax− (yTAx)x)yTA] =

−AT y(Ax− (yTAx)x)T − (Ax− (yTAx)x)yTA

And
(yTx− 1)∇2(yTx− 1) = 0

We get
2n+1∑

i=1

Fi(x)∇2Fi(x)

= −(AT y(Ax−(yTAx)x)T+(Ax−(yTAx)x)yTA+BT y(Bx−(yTBx)x)T+(Bx−(yTBx)x)yTB)

and we get the algorithm :

step 0 : choose x0 and set x0 = x0

yT .x0
,

step 1 : repeat until convergence
step 1.1 : compute J(xk), αk = yTAxk and βk = yTBx
step 1.2 : compute eA = Axk − αkxk,eB = Bxk − βkxk, and set

Df(xk) = [JTJ −AT yeTA + eAy
TA+BT yeTB + eBy

TB]

step 1.3 : compute p = DF−1JTF , and update xk+1 = xk + p.

3.1 Test examples

For a given vector u, we build a couple of matrices A and B having u as a common
eigenvector. To avoid to have a common eigenvector with multiplicity 1, we’ll associate the
common eigenvector u with a Jordan block.

• JA =

Jordan block︷ ︸︸ ︷

α 1 0 · · · 0
0 α 1 0
...

. . .
. . .

0 α 1
0 0 α

0

0 [Random matrix]

210 El Ghazi et al. Transgressive Computing

• With the same technique with different parameter we build JB

• Complete u to build a basis of IRn and set QA the corresponding matrix.

• Set v = (1, 2,n)T or any vector linearly independent with u, and complete < u, v >
to get a basis for IRn and set QB the corresponding matrix.

• Set A = QA.JA.Q
T
A.

• SetB = QB .JB .Q
T
B .

Then A and B have u as a common eigenvector.

3.1.1 Numerical experiments

We note by ei the ith element of the canonical basis of IRn and x = rand(n, 1)′ is a Matlab
notation to design a randomize vector of size n.
The example below summarize what we’ve got for many test with different matrices and
different sizes. we generate two square 20 × 20 matrices with a common eigenvector u =
(1, 1..., 1)T each component of u is equal to one. with an inial guess x = rand(n, 1)′ we
found:

DGN with backtraking DGN with exact line search Newton

iteration 7 6 6

the approximation u u u

Newton’s method for the common eigenvector problem 211

1 2 3 4 5 6 7
10

−20

10
−15

10
−10

10
−5

10
0

10
5

DUMPED GAUSS NEWTON WITH BACKTRACKING

Backward error
norm(F)

DGN with backtraking

1 2 3 4 5 6 7
10

−20

10
−15

10
−10

10
−5

10
0

10
5

DUMPED GAUSS−NEWTON WITH EXACT LINE SEARCHES

Backward error
norm(F)

DGN with exact line search

1 2 3 4 5 6 7
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Iteration

NEWTON’S METHOD

Backward error
norm(F)

Newton

References

[1] A. El Ghazi, S. El Hajji, S. Graton, L. Giraud, Backward error for the common eigen-
vector problem, Rapport Interne, soumis.

[2] D. Shemesh, Commun eigen vectors of two matrices, Linear Algebra and its Applica-
tions 62, (1984), pp. 11-18.

[3] K. Wu, Y. Saad, and A. Stathopoulos, Inexact Newton preconditioning techniques for
eigenvalue problems, Electronic Transactions on Numerical Analysis, 7 (1998), pp. 202.

[4] N. J.Higham, Accuracy and Stability of Numerical Algorithms, SIAM, 2002, pp.339–
353.

[5] J.E.Dennis, Jr. and R.B. Scnabel., Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. , Prentice-Hall, Englewood Cliffs, NJ, USA, (1983).

212 El Ghazi et al. Transgressive Computing

[6] F. Chaitin-Chatelin and V. Fraysse,Lectures on Finite Precision Computations,
SIAM,(1996),pp.53–73.

[7] G. Stewart, Determining rank in the presence of error, NATO ASI Series, Series E:
Applied Sciences, Vol. 232, ed. M. S. Moonen, G. H. Golub and B. L. R. De Moor,
Kluwer, (1993), pp. 275–291.

Abdellatif EL GHAZI
Faculté des sciences

Université Med V Agdal Rabat Maroc. aelghazi@msn.com
http://www.fsr.ac.ma/ANO/elghazi.htm

Said EL HAJJI
Faculté des sciences

Université Med V Agdal Rabat Maroc
elhajji@fsr.ac.ma

http://www.fsr.ac.ma/ANO/elhajji.htm

Luc Giraud
CERFACS

42 av. Gaspard Coriolis, 31057 Toulouse Cedex, France.
giraud@cerfacs.fr

http://www.enseeiht.fr/ giraud/

Serge Gratton
CERFACS

42 av. Gaspard Coriolis, 31057 Toulouse Cedex, France.
gratton@cerfacs.fr

http://www.cerfacs.fr/ gratton/gratton.html

Latin squares associated to principal autotopisms of long cycles. ... 213

Latin squares associated to principal autotopisms of long

cycles. Application in Cryptography

Raúl M. Falcón Ganfornina

Abstract

Fixed a principal isotopism Θ = (α, β, ǫ) ∈ S3
n, where Sn is the symmetric group of

the setN = {0, 1, ..., n−1}, we are going to study in this paper the number ∆(Θ) of Latin
squares which have Θ as a principal autotopism. As an application in Cryptography,
we use it in the construction of secret sharing schemes based in F-critical sets of Latin
squares.

Keyword: Latin square, Autotopism group, Critical set, Secret sharing scheme.

1 Introduction

A quasigroup [1] is a nonempty set G endowed with a product ·, such that if any two of
the three symbols a, b, c in the equation a · b = c are given as elements of G, the third is
uniquely determined as an element of G. It is equivalent to say that G is endowed with left
/ and right \ division. Two quasigroups (G, ·) and (H, ◦) are isotopic [4] if there are three
bijections α, β, γ from H to G, such that:

γ(a ◦ b) = α(a) · β(b), for all a, b ∈ H.

The triple Θ = (α, β, γ) is called an isotopism from (G, ·) to (H, ◦). IfG = H and α = β = γ,
the isotopism is indeed an isomorphism. If γ = ǫ, the identity map on G, Θ is called a
principal isotopism. If G = H and · ≡ ◦, Θ is called an autotopism. Finally, Θ = (ǫ, ǫ, ǫ) is
called the trivial autotopism.

If we consider the multiplication table of a quasigroup, we obtain a Latin square. A
Latin square, L, of order n, is a n× n array with elements chosen from a set of n symbols
N = {x1, ..., xn}, such that each symbol occurs precisely once in each row and each column.
A Latin subrectangle of L is a rectangular subarray R of L such that exactly the same
symbols occur in each row of R. The set of Latin squares of order n is denoted by LS(n).
A partial Latin square, P , of order n, is a n × n array with elements chosen from a set of
n symbols, such that each symbol occurs at most once in each row and in each column.
The set of partial Latin squares of order n is denoted as PLS(n). It is said that a fixed
P ∈ PLS(n) can be uniquely completed to a Latin square L ∈ LS(n) if L is the unique
Latin square such that P ⊆ L and it is denoted P ∈ UC(L). If besides any proper subset

214 Falcón Ganfornina Transgressive Computing

of P can be completed to two distinct Latin squares it is said that P is a critical set of
L and it is denoted P ∈ CS(L). A critical set of L is said minimal if it has the smallest
size of all possible critical sets of L. Critical sets were introduced in the last 70’s of the
past century [15], [6]. Applications of them in Cryptography were obtained by Seberry [18]
in 1990. Later on, it has been proved that critical sets allow to construct secret sharing
schemes [5]. In [10] it can be observed some of these applications to Cryptography.

The cardinality of LS(n) for all n ∈ N, N(n, n), is still an open problem, although it
is known that this cardinality grows exponentially. Studies of N(n, n) with n ≤ 11 can be
found in [20], [2] or [14]. We will consider from now on N = {0, 1, ..., n−1}. So, if L = (lij),
the orthogonal array representation of L is the set of n2 triples {(i, j, lij) : 0 ≤ i, j ≤ n− 1}.
An isotopism of a Latin square L is a triple Θ = (α, β, γ) ∈ In = Sn × Sn × Sn, where
Sn is the symmetric group on N and so, α, β and γ are respectively, permutations of rows,
columns and symbols of L. The resulting square LΘ is also a Latin square and it is said to be
isotopic to L. In particular, if L = (lij), then LΘ = {(i, j, γ−1

(
lα(i)β(j)

)
: 0 ≤ i, j ≤ n− 1}.

The set of all Latin squares isotopic to L is called its isotopy class. An isotopism which
maps L to itself is an autotopism. The stabilizer subgroup of L in In is its autotopism
group, U(L) = {Θ ∈ In : LΘ = L}. Given P ∈ PLS(n), contained in L, and F ⊆ U(L), it
is defined the extended autotopy PF =

⋃
Θ∈FP

Θ ∈ PLS(n).
Cardinalities of isotopy classes and autotopism groups have been already studied, for

example in [17], [7] or, more recently, in [13] and [14]. In these two last papers, authors
have used autotopism group sizes (computed by B.D. McKay’s nauty [11]) to give counts of
Latin squares of order up to 11. Indeed, as a first step to obtain it, they have studied the
possible autotopisms of a given Latin square. To do it, they have defined the cycle structure
of a permutation γ as the sequence (n1, n2, ...), where ni is the number of cycles of length i
in γ. So, they have proved the following:

Theorem 1.1. (McKay, Meynert and Myrvold [13]) Let L ∈ LS(n). Every non-
trivial Θ = (α, β, γ) ∈ U(L) verifies one of the following assertions:

a) α, β, γ have the same cycle structure with at least one and at most ⌊n/2⌋ fixed points,

b) One of α, β, γ has at least one fixed point and the other two have the same cycle
structure without fixed points,

c) None of α, β, γ has fixed points. �

Also in these papers, they have studied the reciprocal question. That is, given an
isotopism Θ = (α, β, γ) ∈ In, how many Latin squares there exist such that Θ is an
autotopism of all of them. However, they are not interested in the number of Latin squares
but in the number of isotopy classes. Besides, they only study [13] some concrete cases of
autotopisms:

a) For some prime p, α, β and γ have order p with the same number m of fixed points,
where 1 ≤ m ≤ ⌊n/2⌋.

Latin squares associated to principal autotopisms of long cycles. ... 215

b) For some prime p dividing n, α and β have order p and no fixed points, and γ has
order 1 or p. If p = 2 and n ≡ 2 (mod 4), γ has at least two fixed points.

To obtain the previous number, they use computer programs which incorporate two
methods of approach to generation: the orderly approach method [9], [16] and the canonical
construction path method [12]. In particular, this last one allows to construct a Latin square
one row block at a time, where a row block consists of the rows which correspond to a cycle
of α.

Nevertheless, a study of the number of Latin squares associated to any autotopism is even
necessary. Indeed, this question will allow to study better the problem of the smallest size of
F-critical sets [8]: Fixed L ∈ LS(n), P ∈ PLS(n) contained in L and F ⊆ U(L), it is defined
F(P) = P<F>, where < F > is the subgroup of U(L) generated by F. Then, P is uniquely
F-completable to L, which is denoted as P ∈ UCF(L), if F(P) ∈ UC(L). Furthermore, P is
a F-critical set if P ∈ UCF(L) and Q 6∈ UCF(L) for all Q ⊂ P . Analogous to critical sets,
it is expected that F-critical sets will have applications in Cryptography, specially as secret
sharing schemes.

In this paper we will start this study with a particular case of autotopisms, the principal
ones, which have been partially studied in [13], although only to get the number of isotopy
class. The paper is structured as follows. In the next section, fixed a principal isotopism
Θ = (α, β, ǫ) ∈ In, we will study the number ∆(Θ) of Latin squares which have Θ as a
principal autotopism. First, we will prove that α and β must have the same cycle structure
with all their cycles of the same length and without fixed points. Then, we will study the
cases in which this length is n

k , with k ∈ {1, 2, 3, 4}. We will use the canonical construction
path to generate the associated Latin squares. So, in the general case, we will see that:

∆(Θ) = n! ·
(n
k

!
)k(k−1)

· Ω(Θ),

where Ω(Θ) is the number of different ways in which we can choose a determined set of row
blocks. Finally, the paper finishes in the third section with a study in Cryptography about
the possible use of a set F of autotopisms of a Latin square L as shares of a secret sharing
scheme. To get it, we will keep in mind the concept of F-critical set of L.

2 Principal autotopisms of Latin squares

Fixed n ∈ N and Θ ∈ In, we will denote by ∆(Θ) the number of Latin squares of order n
such that Θ is an autotopism of all of them, and by LS(Θ) the set of such Latin squares.
That is, ∆(Θ) = |LS(Θ)| and L ∈ LS(Θ) if and only if Θ ∈ U(L). In this paper, we are
interested in the value of ∆(Θ) if Θ is a principal isotopism, that is, if Θ = (α, β, ǫ), where ǫ
is the identity map in N = {0, 1, ..., n−1}. It is clear that (ǫ, ǫ, ǫ) ∈ U(L) for all L ∈ LS(n).
So, ∆((ǫ, ǫ, ǫ)) = N(n, n), the number of Latin squares of orden n. Therefore, we must
study when Θ is a non-trivial principal autotopism of a Latin square.

Let us see a result which allows to fix the structure of Θ in the more general case in
which ǫ is one of the permutations of Θ:

216 Falcón Ganfornina Transgressive Computing

Proposition 2.1. Let Θ = (α, β, γ) ∈ In be a non-trivial isotopism. If one of the permu-
tations α, β or γ is equal to ǫ, then ∆(Θ) > 0 only if the other two permutations have the
same cycle structure with all their cycles of the same length and without fixed points.

Proof.
We are in the case (b) of Theorem 1.1. So, if the other two permutations have not

the same cycle structure or have fixed points, then ∆(Θ) = 0. Let us study the different
possibilities:

a) If α = ǫ, let us consider that β and γ have the same cycle structure without fixed
points. Let us take b, c ∈ N = {0, 1, ..., n− 1} such that b appears in a cycle of length
λβ of β, (bx2x3...xλβ

), and c appears in a cycle of length λγ of γ, (cy2y3...yλγ). We
can suppose that λβ > λγ . If L = (lij) ∈ LS(n) is such that Θ ∈ U(L), there must
exist a ∈ N such that lab = c. So, lab = c = laxλγ+1

, which is a contradiction with
being L ∈ LS(n).

b) If β = ǫ, we reason analogously to (a).

c) If γ = ǫ, let us consider that α and β have the same cycle structure without fixed
points. Let us take a, b ∈ N such that a appears in a cycle of length λα of α,
(ax2x3...xλα), and b appears in a cycle of length λβ of β, (by2y3...yλβ

). We can
suppose that λα < λβ. If L = (lij) ∈ LS(n) is such that Θ ∈ U(L), then lab = layλα+1

,
which is a contradiction with being L ∈ LS(n).

Keeping in mind the previous proposition, we will be interested from now on in principal
autotopisms Θ = (α, β, ǫ), such that α and β have the same cycle structure with all their
cycles of the same length and without fixed points. Given such a Θ, we are interested in
the exact value of ∆(Θ). To see it, we start with cycles of length n and later on, we will
decrease this length.

2.1 Cycles of length n

If α and β are both cycles of length n, we obtain the following result:

Proposition 2.2. Let Θ = (α, β, ǫ) ∈ In be such that α and β are both cycles of length n.
Then, ∆(Θ) = n!.

Proof.
Let α = (a0a1...an−1) and β = (b0b1...bn−1) be two cycles of length n of N . We can

obtain a Latin square L = (lij) such that Θ ∈ U(L). To do it, for all i ∈ N , let us take
l0i ∈ N , such that l0j 6= l0k for all j 6= k. We can supppose that a0 = 0. Now, fixed i ∈ N ,
we take ti ∈ N such that bti = i. So, lajbti+j (mod n)

= l0i, for all j ∈ N . In this way, we can
define the Latin square L. Furthermore, by swapping the elements l0i in N , we can obtain
n! distinct Latin squares and it cannot exist other one such that has Θ as an autotopism.

Let us see an example:

Latin squares associated to principal autotopisms of long cycles. ... 217

Example 2.3. Let us consider n = 3 and N = {0, 1, 2}. There are 36 elements of I3 with
the form (α, β, ǫ). However, from Proposition 2.1, only five of them are autotopisms of some
Latin square of order 3. They are:

Θ1 = (ǫ, ǫ, ǫ), Θ2 = ((012), (012), ǫ), Θ3 = ((012), (021), ǫ)
Θ4 = ((021), (012), ǫ), Θ5 = ((021), (021), ǫ)

Besides, it can be seen that:

LS(Θ1) = LS(3)

LS(Θ2) = LS(Θ5) =

a b c
c a b
b c a

 ∈ LS(3) : a, b, c ∈ N

LS(Θ3) = LS(Θ4) =

a b c
b c a
c a b

 ∈ LS(3) : a, b, c ∈ N

So, ∆(Θ1) = 12 and ∆(Θi) = 6, if i ∈ {2, 3, 4, 5}. Let us observe that LS(Θ2)∩LS(Θ3) =
∅ and that LS(Θ2) ∪ LS(Θ3) = LS(3). ⊳

2.2 Cycles of length n
2

Now, if n > 2 is even and if α and β are both cycles of length n
2 , we obtain the following

result:

Proposition 2.4. Let Θ = (α, β, ǫ) ∈ In, where n > 2 is even, be such that α and β are

both the composition of two cycles of length n
2 . Then, ∆(Θ) = n! ·

(
n
2 !
)2

.

Proof.
Let us suppose that:

α = (a0a1...an
2
−1)(an

2
an

2
+1...an−1), β = (b0b1...bn

2
−1)(bn

2
bn

2
+1...bn−1).

By using the canonical construction path [12], we can obtain a Latin square L = (lij) such
that Θ ∈ U(L). To do it, similarly to Proposition 2.2, we take la0i ∈ N for all i ∈ N ,
such that la0j 6= la0k for all j 6= k. Now, fixed i ∈ N , we take ti ∈ N such that bti = i.
So, lajbti+j (mod n

2)
= la0i, for all j ∈ {0, 1, ..., n2 − 1}. In this way, we can define a Latin

subrectangle R of L of n
2 rows and n columns. Indeed, R is a row block, because its rows

correspond to the cycle (a0a1...an
2
−1). Besides, by swapping the elements l0i in N , we can

obtain n! different Latin subrectangles of L, all of them associated by construction to the
same rows.

Now, we do the same process with an
2

in the place of a0, although when we choose the
elements lan

2
i ∈ N , we must keep in mindR, as L must be a Latin square. That is, it must be

lan
2
i ∈ {la0 n

2
, la0(n

2
+1), ..., la0n} for all i ∈ {0, 1, ..., n2 − 1} and lan

2
i ∈ {la01, la02, ..., la0(n

2
−1)}

218 Falcón Ganfornina Transgressive Computing

for all i ∈ {n2 , n2 + 1, ..., n}. Therefore, in this way we can obtain finally n! ·
(
n
2 !
)2

different
Latin squares which have Θ as an autotopism.

Let us see an example:

Example 2.5. Let us consider n = 4 and N = {0, 1, 2, 3}. If Θ = (α, β, ǫ) ∈ I4 is a
principal isotopy such that α and β are both products of two cycles of length 2, Θ must be
one of the followings:

Θ1 = ((01)(23), (01)(23), ǫ); Θ2 = ((01)(23), (02)(13), ǫ);
Θ3 = ((01)(23), (03)(12), ǫ); Θ4 = ((02)(13), (01)(23), ǫ);
Θ5 = ((02)(13), (02)(13), ǫ); Θ6 = ((02)(13), (03)(12), ǫ);
Θ7 = ((03)(12), (01)(23), ǫ); Θ8 = ((03)(12), (02)(13), ǫ);

Θ9 = ((03)(12), (03)(12), ǫ).

By swapping the values of a, b, c, d, e, f, g in N , we have that:

LS(Θ1) =

a b c d
b a d c
e f g h
f e h g

 ∈ LS(4)

LS(Θ2) =

a b c d
c d a b
e f g h
g h e f

 ∈ LS(4)

LS(Θ3) =

a b c d
d c b a
e f g h
h g f e

 ∈ LS(4)

LS(Θ4) =

a b c d
e f g h
b a d c
f e h g

 ∈ LS(4)

LS(Θ5) =

a b c d
e f g h
c d a b
g h e f

 ∈ LS(4)

LS(Θ6) =

a b c d
e f g h
d c b a
h g f e

 ∈ LS(4)

LS(Θ7) =

a b c d
e f g h
f e h g
b a d c

 ∈ LS(4)

LS(Θ8) =

a b c d
e f g h
g h e f
c d a b

 ∈ LS(4)

LS(Θ9) =

a b c d
e f g h
h g f e
d c b a

 ∈ LS(4)

So, |LS(Θi)| = ∆(Θi) = 4! · (2!)2 = 96. By the other way, let us observe that LS(Θi) ∩
LS(Θj) = ∅, except for:

Latin squares associated to principal autotopisms of long cycles. ... 219

(i, j) LS(Θi) ∩ LS(Θj) (i, j) LS(Θi) ∩ LS(Θj)

(1, 5)
(1, 9)
(5, 9)

a b c d
b a d c
c d a b
d c b a

 ∈ LS(4)

(1, 6)
(1, 8)
(6, 8)

a b c d
b a d c
d c b a
c d a b

 ∈ LS(4)

(2, 4)
(2, 9)
(4, 9)

a b c d
c d a b
b a d c
d c b a

 ∈ LS(4)

(2, 6)
(2, 7)
(6, 7)

a b c d
c d a b
d c b a
b a d c

 ∈ LS(4)

(3, 4)
(3, 8)
(4, 8)

a b c d
d c b a
b a d c
c d a b

 ∈ LS(4)

(3, 5)
(3, 7)
(5, 7)

a b c d
d c b a
c d a b
b a d c

 ∈ LS(4)

Where a, b, c, d ∈ N . Therefore, as all the previous intersection contains 4! Latin squares

and ∆(Θi) = 4·4! for all i ∈ {0, 1, ..., 9}, it can be seen that
∣∣∣
⋃9
i=1 LS(Θi)

∣∣∣ = 6·4!+9·2·4! =

24 · 4! = 576 = |LS(4)|. ⊳

2.3 Cycles of length n
3

Let us suppose now that α and β are both cycles of length n
3 :

Proposition 2.6. Let Θ = (α, β, ǫ) ∈ In, where n > 3 is a multiple of 3, be such that α
and β are both the composition of three cycles of length n

3 . So:

∆(Θ) = n! ·
(n

3
!
)6
·
n/3∑

k=0

(
n/3
k

)3

.

Proof.
Let us suppose that:

α = (a0a1...an
3
−1)(an

3
an

3
+1...a 2n

3
−1)(a 2n

3
a 2n

3
+1...an−1),

β = (b0b1...bn
3
−1)(bn

3
bn

3
+1...b 2n

3
−1)(b 2n

3
b 2n

3
+1...bn−1).

To obtain a Latin square L = (lij) such that Θ ∈ U(L), it is useful to consider the
sets Si,j = {lai· n

3
bj·n

3
, lai· n

3
bj· n

3 +1
, ..., lai· n

3
b(j+1)·n

3 −1
} and Si =

⋃
j S

i,j, where i, j ∈ {0, 1, 2}.
Let us observe that, analogously to the previous results, if, fixed i ∈ {0, 1, 2}, we know the
n
3 elements of Si, we can define a Latin subrectangle Ri of L of n

3 rows and n columns.
Indeed, each Ri is the conveniently ordered (that is, unless principal isotopism) following

220 Falcón Ganfornina Transgressive Computing

n
3 × n array:

lai·n
3
b0 lai· n

3
b1 . . . lai·n

3
bn−1

lai· n
3 +1b0 lai· n

3 +1b1 . . . lai· n
3 +1bn−1

...
...

. . .
...

la(i+1)·n
3 −1b0 la(i+1)· n

3 −1b1 . . . la(i+1)· n
3 −1bn−1

Therefore, if we exactly know the elements of S0, S1 and S2, we will obtain L. Indeed,
the product of the different ways in which we can fix these three sets is the number of
different Latin squares which have Θ as a principal autotopism.

We can start with S0, which can be fixed of n! different ways. Now, to obtain S1, we fix
in a first step the elements of S1,0. This set will contain k elements of S0,1 and n

3−k elements

of S0,2, where k can vary between 0 and n
3 . That is, we can fix S1,0 of n

3 ! ·∑n/3
k=0

(
n/3
k

)2

ways. Besides, for each of the previous ways, the k elements of S0,2 which have not been
chosen for S1,0 must be in S1,1 and the n

3 − k elements of S0,1 which have not been chosen
for S1,0 must be in S1,2. To complete these sets we must choose k elements of S0,0 which
will correspond to S1,1, corresponding the rest of the elements of S0,0 to S1,2. So, S1 can

be chosen of
(
n
3 !
)3 ·∑n/3

k=0

(
n/3
k

)3

different ways.

Finally, to obtain S2, let us observe that according to the previous process, we know
which elements correspond to each S2,j and we only must assign each of them to the
corresponding la

k· 2n
3
bl . So, we can fix S2 of

(
n
3 !
)3

different ways. Therefore, we finally

obtain that:

∆(Θ) = n! ·
(n

3
!
)3
·
n/3∑

k=0

(
n/3
k

)3

·
(n

3
!
)3

= n! ·
(n

3
!
)6
·
n/3∑

k=0

(
n/3
k

)3

.

Let us see an example:

Example 2.7. Let us consider n = 6 and N = {0, 1, 2, 3, 4, 5}. There are 152 = 225
principal isotopisms (α, β, ǫ) ∈ I6, with α and β being a composition of three cycles of
length 2. We will work, for example, with the following principal isotopisms:

Θ1 = {((01)(23)(45), (02)(35)(14), ǫ)},

Θ2 = {((02)(14)(35), (01)(23)(45), ǫ)}.
So:

LS(Θ1) =

a b c d e f
c e a f b d
g h i j k l
i k g l h j
m o p q r s
p r m s o q

∈ LS(6)

a,b,...,r,s∈N

,

Latin squares associated to principal autotopisms of long cycles. ... 221

LS(Θ2) =

a b c d e f
g h i j k l
b a d c f e
m o p q r s
h g j i l k
o m q p s r

∈ LS(6)

a,b,...,r,s∈N

From Proposition 2.6, ∆(Θ1) = ∆(Θ2) = 6! · (2!)6 ·∑2
k=0

(
2
k

)3

= 460800. Besides:

LS(Θ1) ∩ LS(Θ2) =

a b c d e f
c e a f b d
b a d c f e
d f b e a c
e c f a d b
f d e b c a

∈ LS(6)

a,b,...,k,l∈N

,

being |LS(Θ1) ∩ LS(Θ2)| = 6! = 720. ⊳

2.4 Cycles of length n
4

Let us now suppose that α and β are both the composition of four cycles of length n
4 :

α = (a0a1...an
4
−1)(an

4
an

4
+1...a 2n

4
−1)(a 2n

4
a 2n

4
+1...a 3n

4
−1)(a 3n

4
a 3n

4
+1...an−1),

β = (b0b1...bn
4
−1)(bn

4
bn

4
+1...b 2n

4
−1)(b 2n

4
b 2n

4
+1...b 3n

4
−1)(b 3n

4
b 3n

4
+1...bn−1).

To obtain ∆(Θ), we will now indicate a possible algorithm to follow. So, to get a
Latin square L ∈ LS(n) which has Θ as a principal autotopism, we can define, fixed
i, j ∈ {0, 1, 2, 3} and analogously to the proof of Proposition 2.6, the sets Si,j = {lai· n

4
bj·n

4
,

lai· n
4
bj· n

4 +1
, ..., lai· n

4
b(j+1)· n

4 −1
} and Si =

⋃
j S

i,j. Fixed the elements lst corresponding to each

Si, we can obtain a subrectangle Ri of L, in a similar way as we have just done it in the
mentioned proof. Therefore, to get L, we must fix all the sets Si and to do it, we can follow
the next algorithm: first, we fix S0, which can be obtained of n! different ways. Then, we
are going to fix the sets Si with i from 1 to 3, in this order. To obtain each Si we must fix
the sets Si,j, with j from 0 to 3, also in this order.

Let us observe that, once we have fixed the elements of S0,j for all j ∈ {0, 1, 2, 3},
whenever we want to fix the elements of a set Si,j, with i 6= 0, we must choose xt elements
of S0,t with t ∈ {0, 1, 2, 3} \ {j}, in such a way that

∑
t xt = n

4 . Besides, all these elements
must be adequately chosen to obtain finally a Latin square. So, to simplify the notation,
we are going to define for each i ∈ {1, 2, 3} and j ∈ {0, 1, 2, 3}:

si,j =
(
si,j0 , si,j1 , si,j2 , si,j3

)
∈
{

0, 1, ...,
n

4

}4
,

such that:

222 Falcón Ganfornina Transgressive Computing

i) si,jj = 0, for all i ∈ {1, 2, 3} and j ∈ {0, 1, 2, 3},

ii)
∑3

t=0 s
i,j
t = n

4 , for all i ∈ {1, 2, 3} and j ∈ {0, 1, 2, 3},

iii)
∑3

j=0 s
i,j
t = n

4 , for all i ∈ {1, 2, 3} and t ∈ {0, 1, 2, 3},

iv)
∑3

i=1 s
i,j
t = n

4 , for all j ∈ {0, 1, 2, 3} and t ∈ {0, 1, 2, 3} \ {j}.

Then, fixed a subset A ⊆ S0, we will say that we choose si,j = (si,j0 , si,j1 , si,j2 , si,j3)

elements of S0 \A to fix the elements which belong to Si,j, if we choose si,j0 ones of S0,0 \A,

si,j1 ones of S0,1 \ A, si,j2 ones of S0,2 \ A and si,j3 ones of S0,3 \ A. Let us observe that the
previous conditions (i) to (iv) are therefore necessary to get a Latin square starting from
all the so fixed Si,j .

Therefore, the canonical construction path method in this case follows the next algo-
rithm:

Algorithm 2.8.

i) S0 can be fixed of n! different ways.

ii) To determine S1,0 we must choose (0, s1,01 , s1,02 , n4 − s
1,0
1 − s1,02) elements of S0, where

s1,01 + s1,02 ≤ n
4 .

Fixed s1,01 and s1,02 :

iii) To determine S1,1 we must choose (s1,10 , 0, s1,12 , n4 − s
1,1
0 − s1,12) elements of S0 \ S1,0,

where s1,12 ≤ n
4 − s

1,0
2 and n

4 − s
1,0
1 − s

1,0
2 ≤ s

1,1
0 + s1,12 ≤ n

4 .

iv) To determine S2,0 we must choose (0, s2,01 , s2,02 , n4 − s
2,0
1 − s2,02) elements of S0 \ S1,0,

where s2,01 ≤ n
4 − s

1,0
1 , s2,02 ≤ n

4 − s
1,0
2 and n

4 − s
1,0
1 − s1,02 ≤ s2,01 + s2,02 ≤ n

4 .

Fixed s1,10 and s1,12 :

v) The rest of the s1,01 + s1,02 + s1,10 + s1,12 − n
4 elements of S0,3 which we have not yet

used to fix S1,0 and S1,1 must be in S1,2. Besides, we must choose s1,20 elements

of S0,0 \ S1,1 and n
2 − s1,01 − s1,02 − s1,10 − s1,12 − s1,20 elements of S0,1 \ S1,0, where

n
4 − s

1,0
2 − s1,10 − s1,12 ≤ s1,20 ≤ n

4 − s
1,1
0 and s1,01 + s1,02 + s1,10 + s1,12 − n

4 + s1,20 ≤ n
4 .

Fixed s2,01 and s2,02 :

vi) To determine S2,1 we must choose (s2,10 , 0, s2,12 , n4 − s
2,1
0 − s

2,1
2) elements of S0 \ {S1,1 ∪

S2,0}, where s2,10 ≤ n
4 − s

1,1
0 , s2,12 ≤ n

4 − s
1,1
2 − s2,02 and n

2 − s
2,0
1 − s2,02 − s1,10 − s1,12 ≤

s2,10 + s2,12 ≤ n
4 . Besides:

Latin squares associated to principal autotopisms of long cycles. ... 223

a) As to fix S2,1 and S1,2, we would have used s2,10 + s1,20 elements of S0,0, to exist

S2,2 we must also impose that s2,10 + s1,20 ≤ n
4 .

b) As to fix S2,0 and S1,2, we would have used s2,01 + n
2 −s

1,0
1 −s1,02 −s1,10 −s1,12 −s1,20

elements of S0,1, to exist S2,2 we must also impose that s2,01 + n
2 − s

1,0
1 − s1,02 −

s1,10 − s
1,1
2 − s

1,2
0 ≤ n

4 .

c) As to fix S2,0, S2,1 and S1,2, we would have used n
4 − (s2,01 + s2,02 + s2,10 + s2,12 −

s1,01 − s1,02 − s1,10 − s1,12) elements of S0,3, to exist S2,2 we must impose that

0 ≤ s2,01 + s2,02 + s2,10 + s2,12 − s1,01 − s1,02 − s1,10 − s1,12 ≤ n
4 .

Finally, fixed s2,10 and s2,12 :

vii) The rest of the s2,01 +s2,02 +s2,10 +s2,12 −s
1,0
1 −s

1,0
2 −s

1,1
0 −s

1,1
2 elements of S0,3 which we

have not yet used to fix S2,0, S2,1 and S1,2 must be in S2,2. Besides, we must choose s2,20

elements of S0,0\{S1,2∪S2,1} and n
4−s

2,0
1 −s2,02 −s2,10 −s2,12 +s1,01 +s1,02 +s1,10 +s1,12 −s2,20

elements of S0,1 \{S2,0∪S1,2}, where n
2 −s

2,0
2 −s2,10 −s2,12 −s1,20 ≤ s2,20 ≤ n

4 −s
1,2
0 −s2,10

and s2,01 + s2,02 + s2,10 + s2,12 − s1,01 − s1,02 − s1,10 − s1,12 + s2,20 ≤ n
4 .

After this process, the elements of the sets S1,3, S2,3, S3,0, S3,1, S3,2 and S3,3 are all
determined. So, we can obtain a Latin square L which has Θ as a principal autotopism.
To get it, we must only fix in each Si,j the elements which correspond with each lai·n

4
bj·n

4 +t

with t ∈ {0, 1, ..., n − 1}. It can be done, once we know which elements are in Si,j, of n
4 !

different ways.

So, if we denote by Ω(Θ) the number of different ways in which we can choose the
elements that are included in all the subsets Si,j with i ∈ {1, 2, 3} and j ∈ {0, 1, 2, 3}, by
following the previous algorithm, we obtain finally the following:

Proposition 2.9. Let Θ = (α, β, ǫ) ∈ In, where n > 4 is a multiple of 4, be such that α
and β are both the composition of four cycles of length n

4 . So:

∆(Θ) = n! ·
(n

4
!
)12
· Ω(Θ)

�

In the next table, we can see some values of Ω(Θ), obtained by computing the previous
algorithm with Mapler:

n 8 12 16 20 24 28

Ω(Θ) 535 60582 10144679 1829667628 362014297870 75689842399097

Let us see an example:

224 Falcón Ganfornina Transgressive Computing

Example 2.10. Let us consider n = 8 and N = {0, 1, 2, 3, 4, 5, 6, 7} and let us take the
following principal isotopisms:

Θ1 = {((01)(23)(45)(67), (01)(24)(35)(67), ǫ)},
Θ2 = {((02)(13)(46)(57), (02)(14)(36)(57), ǫ)},
Θ3 = {((04)(15)(26)(37), (03)(15)(26)(47), ǫ)}.

So:

LS(Θ1) =

a b c d e f g h
b a e f c d h g
i j k l m o p q
j i m o k l q p
r s t u v w x y
s r v w t u y x
z A B C D E F G
A z D E B C G F

∈ LS(8)

a,b,...,y,z,A,B,...,F,G∈N

,

LS(Θ2) =

a b c d e f g h
i j k l m o p q
c e a g b h d f
k m i p j q l o
r s t u v w x y
z A B C D E F G
t v r x s y u w
B D z F A G C E

∈ LS(8)

a,b,...,y,z,A,B,...,F,G∈N

,

LS(Θ3) =

a b c d e f g h
i j k l m o p q
r s t u v w x y
z A B C D E F G
d f g a h b c e
l o p i q j k m
u w x r y s t v
C E F z G A B D

∈ LS(8)

a,b,...,y,z,A,B,...,F,G∈N

.

From Proposition 2.9, ∆(Θ1) = ∆(Θ2) = ∆(Θ3) = 8! · (4!)12 · 535 = 88355635200.
Besides:

LS(Θ1) ∩ LS(Θ2) ∩ LS(Θ3) =

a b c d e f g h
b a e f c d h g
c e a g b h d f
e c b h a g f d
d f g a h b c e
f d h b g a e c
g h d c f e a b
h g f e d c b a

∈ LS(8)

a,b,c,d,e,f,g,h∈N

,

being |LS(Θ1) ∩ LS(Θ2) ∩ LS(Θ3)| = 8! = 40320. ⊳

Latin squares associated to principal autotopisms of long cycles. ... 225

2.5 Cycles of length n
k

Let us finally study the general case. So, fixed n ∈ N and N = {0, 1, ..., n − 1}, let us
suppose that α and β are both the composition of k cycles of length n

k :

α = (a0a1...an
k
−1)(an

k
an

k
+1...a 2n

k
−1)...(a (k−1)n

k

a (k−1)n
k

+1
...an−1),

β = (b0b1...bn
k
−1)(bn

k
bn

k
+1...b 2n

k
−1)...(b (k−1)n

k

b (k−1)n
k

+1
...bn−1).

To obtain ∆(Θ), we can follow a similar algorithm to the previously indicated. So, to
get a Latin square L ∈ LS(n) which has Θ as a principal autotopism, we can define:

Si,j = {lai· n
k
bj· n

k
, lai· n

k
bj·n

k
+1
, ..., lai· n

k
b(j+1)· n

k
−1
}; Si =

k−1⋃

j=0

Si,j, for all i, j ∈ {0, 1, ..., k−1}.

Then, it is easy to prove the following:

Theorem 2.11. Fixed k ∈ N, let Θ = (α, β, ǫ) ∈ In, where n > k is a multiple of k, be
such that α and β are both the composition of k cycles of length n

k . Then:

∆(Θ) = n! ·
(n
k

!
)k(k−1)

· Ω(Θ),

where Ω(Θ) is 1, if k = 1, and the number of different ways in which we can choose the
elements that are included in the corresponding subsets Si,j, if k > 1. �

In the next table we can see the values of Ω(Θ) and ∆(Θ), if 2 ≤ n ≤ 9:

n k Ω(Θ) ∆(Θ) N(n, n)

2 1 1 2 2
3 1 6 12 12

4
1
2

1
1

24
96

576

5 1 1 120 161280

6
1
2
3

1
1
10

720
25920
460800

812851200

7 1 1 5040 61479419904000

8
1
2
4

1
1

535

40320
23224320

88355635200
108776032459082956800

9
1
3

1
56

362880
948109639680

5524751496156892842531225600

2.6 Concluding remarks

Although we have studied in this section the case in which Θ is a principal autotopism,
an analogous study can be done with the other two possibilities given in Proposition 2.1,
that is, Θ = (ǫ, β, γ) or Θ = (α, ǫ, γ), although in the first one, the canonical construction
path must be done with columns blocks in place of row blocks. So, this algorithm and as a
consequence, Theorem 2.11, proves indeed that the necessary condition of Proposition 2.1
is also sufficient.

226 Falcón Ganfornina Transgressive Computing

3 Application in Cryptography: F-critical sets

A secret sharing scheme [3], [19] is a method of sharing a secret key K, by giving n pieces
of information called shares to n participants, in such a way that K can be reconstructed
from certain authorized groups of shares and it cannot be done from unauthorized groups
of them. The access structure Γ is the set of all the previous authorized groups. A key
management scheme consists of a number of secret sharing schemes, all of them with a
common participant, which can have more than one share. In a multilevel scheme the
participants are ranked in m ranks, in such a way that li of them are in the rank ri for
i ∈ {1, ...,m}, where

∑m
i=1 li = n and the secret key can be recovered from the shares of the

li participants of rank ri.
There are different mathematical models of secret sharing schemes: geometric configu-

rations, polynomial interpolation, block designs, matroids, vector spaces, graphs, etc. One
of this model uses critical sets in Latin squares: We fix a Latin square L = (lij) ∈ LS(n)
which will be the secret key, although its order n is made public. Each share is then a triple
(i, j, lij) ∈ L and the set of all the used triples is denoted by S. So, if some participants
get a critical set of L by sharing its corresponding triples, they will obtain as consequence
the secret key L. The access structure is then Γ = {P ∈ PLS(n) : P ⊆ ⋃S(i, j, lij) ⊆
L and ∃C ∈ CS(L) such that C ⊆ P}. In this model all the participants have shares of
the same “weight”. By the other way, a multilevel scheme can also be analogously given,
by placing all the participants in different levels, in such a way that it exists only a critical
set in each level. If one participant is in more than one level, then we have an example of
a key management scheme.

There are models in which shares are not of the same weight, that is, models in which
some shares can offer more information than other ones. It is useful for example in hierar-
chical models in which there exists some need to provide different levels of confidentiality
for data. So, in the previous example, we can obtain a hierarchical model if we give to
each participant a different number of triples as share. An other possibility would be to
consider different types of shares. In this sense, we can study the use of autotopisms of a
Latin square as shares of a secret sharing scheme. To do it, let us observe that, as we have
seen in previous sections, each autotopism can be associated to a different number of Latin
squares. So, the information about L which gives each autotopism is not the same. To give
a possible measure of this difference, we give the following:

Definition 3.1. Let Θ ∈ In. We define the weight of Θ in LS(n) as:

ω(Θ) =

{
0 , if ∆(Θ) = 0,

1
∆(Θ) , if ∆(Θ) 6= 0.

.

By the other way, a set of autotopisms can never define an unique Latin square, because
autotopisms are associated to symmetries of Latin squares and so, given a Latin square L
associated to a set F of autotopisms, every Latin square L′ isotopic to L by an isotopism
of type (Id, Id, γ) is also associated to F. So, if we want to define a secret sharing scheme
by using autotopisms as shares, we must also use one or more triples of the corresponding

Latin squares associated to principal autotopisms of long cycles. ... 227

Latin square to finally get the secret key. Indeed, fixed a subgroup F of U(L) it will be
necessary to use the triples of a F-critical set of L. In this sense, it is interesting to extend
in a similar way the previous concept of weight to these triples. To do it, as, fixed a triple
T = (i, j, k) ∈ N3, there are N(n,n)

n Latin squares of order n which contain T , it is enough
to define the weight of T in LS(n) as ω(T) = n

N(n,n) .
It can be interesting to extend these concepts to sets of isotopisms and partial Latin

squares (as sets of triples), because, in this way, it could be studied the possible relations
of interest to cooperate among participants in such a model. Leaving it for a future study,
we have therefore interested in the following protocol:

• We fix a Latin square L of order n. The number n is made public, but L is kept secret
as the key.

• A set S which is the union of a number of triples and autotopisms of L is defined.

• Each element of S is privately distributed to an unique participant.

• When a group of participants whose shares constitute a subset F of U(L) and a F-
critical set come together, they can reconstruct L and hence, the secret key.

To finish this paper, let us see an example of this protocol:

Example 3.2. Let us consider L =

0 1 2 3 4 5
1 2 0 4 5 3
2 0 1 5 3 4
3 4 5 0 1 2
4 5 3 1 2 0
5 3 4 2 0 1

∈ LS(6), and the shares:

Θ1 = ((012)(345), Id, (021)(354)), Θ2 = (Id, (012)(345), (021)(354)),

Θ3 = ((03)(14)(25), (03)(14)(25), Id), Θ4 = (Id, (03)(14)(25), (03)(14)(25)),

T1 = (0, 4, 4), T2 = (1, 1, 2), T3 = (1, 5, 3), T4 = (2, 2, 1),

T5 = (2, 4, 3), T6 = (3, 1, 4), T7 = (3, 2, 5), T8 = (3, 3, 0),

T9 = (4, 0, 4), T10 = (5, 3, 2), T11 = (5, 5, 1).

So, we have that:

ω(Θ1) = ω(Θ2) =
1

25920
, ω(Θ3) = ω(Θ4) =

1

460800
,

ω(Ti) =
6

812851200
=

1

135475200
, for all i ∈ {1, 2, ..., 11}.

We can therefore see that Θ1 and Θ2 are the shares which give more information about
L. By the other way, there are a lot of possible combinations to reconstruct L, by taking
together a subset A of F = {Θ1,Θ2,Θ3,Θ4} and a subset B of T = {T1, T2, ..., T11}. So, for
example, if m is the total number of shared shares, we have the following minimal subsets
of the corresponding access structure Γ of this secret sharing scheme:

228 Falcón Ganfornina Transgressive Computing

m A B m A B

11 − T 6 Θ1 ∪Θ2 {T1, T2, T6, T8}
11 Θ4 T \ {T9} 6 Θ1 ∪Θ4 {T2, T3, T7, T9}
10 Θ3 T \ {T1, T11} 6 Θ2 ∪Θ3 {T3, T6, T8, T10}
10 Θ3 ∪Θ4 T \ {T1, T9, T11} 6 Θ1 ∪Θ3 ∪Θ4 {T2, T4, T8}
9 Θ1 T \ {T5, T7, T10} 5 Θ1 ∪Θ2 ∪Θ3 {T1, T2}
9 Θ2 T \ {T1, T7, T10} 5 Θ2 ∪Θ3 ∪Θ4 {T1, T2}
7 Θ1 ∪Θ3 {T2, T3, T4, T6, T9} 5 Θ1 ∪Θ2 ∪Θ4 {T2, T4}
7 Θ2 ∪Θ4 {T1, T2, T4, T6, T9} 5 F {T1}

⊳

References

[1] Albert, A. A., Quasigroups I, Transactions of the American Mathematical Society 54 (1943)
507 - 519.

[2] S. E. Bammel and J. Rothstein, The number of 9x9 Latin squares, Discrete Math., 11 (1975)
93 - 95.

[3] G. R. Blakley, Safeguarding cryptographic keys. Proc. AFIPS 1979 Natl. Computer Conference,
New York, 48, June 1979, pp. 313 - 317.

[4] R. H. Bruck, Some results in the theory of quasigroups, Transactions of the American Mathe-
matical Society 55 (1944) 19-54.

[5] J. A. Cooper, D. Donovan, J. Seberry, Secret Sharing Schemes arising from Latin squares, Bull.
Inst. Combin. Appl. 12 (1994) 33 - 43.

[6] D. Curran, G.H.J. van Rees, Critical sets in latin squares, Proceedings of the Eighth Manitoba
Conference on Numerical Mathematics and Computing, Winnipeg, Congr. Numer. 22 (1979)
165 - 168.

[7] A. A. Drisko, On the Number of Even and Odd Latin Squares of Order p + 1, Advances in
Mathematics 128 (1997) 20-35.

[8] R. M. Falcón Ganfornina, Study of Critical Sets in Latin Squares by using the Autotopism
Group, submitted (2005).

[9] I. A. Faradzev, Constructive enumeration of combinatorial objects, Problemes Combinatoires
des Graphes Colloque International. CNRS 260. CNRS Paris (1978) 131 - 135.

[10] C. Kościelny, Generating quasigroups for cryptographic applications, International Journal of
Applied Mathematics and Computer Science 12 (4) (2002) 559 - 569

[11] B.D. McKay, Nauty user’s guide (version 1.5), Technical Report TR-CS-90-02, Department of
Computer Science, Australian National University, 1990.

[12] B. D. McKay, Isomorph-free exhaustive generation, J. Algorithms 26 (1998) 306 - 324.

[13] B.D. McKay, A. Meynert, W. Myrvold, Small Latin Squares, Quasigroups and Loops, submitted
(2004).

[14] B. D. McKay, I. M. Wanless, Latin squares of order eleven. Preprint 2004.
http://cs.anu.edu.au/ bdm/papers/ls11.pdf

[15] J. Nelder, Critical sets in Latin squares, CSIRO Division of Math. and Stats, Newsletter 38:4
(1977).

[16] R. C. Read, Every one a winner, Annals Discrete Math. 2 (1978) 107 - 120.
[17] A. Sade, Autotopies des quasigroupes et des systémes associatifs, Arch. Math. 4 No. 1 (1968)

1 - 23.
[18] J. Seberry, Secret sharing and group identification, R & D Studies, Stage 3, Report from the

Centre for Computing and Communication Research to Telecom Australia (1990).

Latin squares associated to principal autotopisms of long cycles. ... 229

[19] A. Shamir, How to share a secret. Comm. ACM 22, No. 11, Nov. 1979, pp. 612 - 613.

[20] M. B. Wells, The number of Latin squares of order 8, J. Combin. Theory 3 (1967) 98 - 99.

Department of Geometry and Topology. University of Seville.
Apdo. 1160. 41080 - Seville, Spain.

230 Falcón Ganfornina Transgressive Computing

Algorithms for the splitting of formal series; applications to alien ... 231

Algorithms for the splitting of formal series; applications to

alien differential calculus

Frédéric Fauvet Françoise Richard-Jung Jean Thomann

Abstract

We present algorithms which involve both the splitting of formal series solutions
to linear ordinary differential equations with polynomial coefficients into a finite sum
of subseries which themselves will be solutions of linear ODEs, and the simplification
of the recurrence relations satisfied by their coefficients.When coping with series that
are solutions of a given differential equation at an irregular – singular point of rank
k ≥ 2, it enables us to reduce the computations to series solutions of an ODE with an
irregularity of rank one. In particular, we are able to conduct effective calculations with
Écalle’s alien derivations for these series. We apply our techniques to some “accelerating
functions” of Écalle.

Introduction

The question of decomposing (“splitting”) a given formal series which is a solution of some
linear differential equation into a finite sum of series which are also solutions of some dif-
ferential equation is a classical one and is encountered e. g. in formal calculations for
dynamical systems or in the quest for obtaining effective estimates for some generating
functions. However, even if the theoretical framework for this simple question is well known
(Ore extensions, holonomic functions, effective D-modules, etc) the explicit calculations that
one might wish to conduct with computer algebra systems are in practice very explosive,
even for simple examples. In this paper we describe a pragmatic approach to this problem:
we introduce algorithms that imply new procedures, which rely and articulate with existing
ones. The calculations have been performed in Maple. These procedures have been first
tested on “academic examples”, for which they improved significantly upon the existing
techniques. Then, we have applied them to series that appear in the complete solution of
some linear differential equations with polynomial coefficients which present a particular
mathematical interest.

In the neighborhood of an irregular singular point, say at z ∼ ∞, a linear differential
equation with analytic coefficients has a basis of solutions of the form:

y(z) = eQ(u)uαf(u) (1)

In that expression:

232 Fauvet et al. Transgressive Computing

• u = z
1
ν (ν is an integer, α ∈ C||)

• Q is a polynomial in u with a vanishing constant coefficient

• f is a formal series in u−1, with possibly logarithms, more precisely:
f(u) ∈ C|| [[u−1]][log u]

The (optimal) ramified variable u, the polynomial Q and the exponent α are formal in-
variants (in the sense that they depend on the class of the equation modulo a transformation
with formal coefficients) of the equation, for which algebraic algorithms have been designed
and implemented during the last two decades ([5], [14]). The formal series f , whose coeffi-
cients are computable through recurrence relations are generically divergent but the growth
of these coefficients is no worse that some Gevrey order ([16]) and resummation techniques
are at hand to get approximate solutions of the given equation, with errors that are ex-
ponentially small. When the Newton polygon ([16, 15]) of such an equation has just one
slope, equal to one, the series can be resummed by applying the Borel–Laplace transforms;
when it has one slope equal to k, we have to apply the Borel transform to a function of the
new variable zk. In the case of a multiplicity of slopes the series will be multisummable
([11, 15, 10]) and they can be treated by applying the same mechanism, but with a –finite –
succession of stages (there are several critical times, in Écalle’s language), using convolution
operators that involve some special functions : Écalle’s “accelerating functions”.

In the present paper, we present calculations for situations of a single slope, equal to
k ≥ 2. We are able to compute effectively the action of alien derivations on these series,
generalizing the ones made in [8] for equation of rank one (and single level). In rank ≥ 2,
such formal–numerical calculations are completely new and in fact, let alone numerical
computations such as ours, almost no examples of calculations on resurgent functions of
“level k” (meaning divergent series, which are resurgent as functions of some zk), or worse
with a multiplicity of levels, can be found in the litterature (see however [10], [2]). Note,
that although we cope with relatively simple examples, results of this sort are not anecdotic:
even in the case of linear ODEs with polynomial coefficients, it is only in the last 25 years,
thanks to Ramis’ works and Écalle’s theory of acceleration of resurgent functions that
the asymptotics of such solutions have completely been elucidated. The great majority of
so called classical functions fall within this class. The paper is organized as follows : in
section 1, we introduce very briefly the context that is relevant for the examples we work on :
irregular–singular points of linear ODEs, Stokes phenomenon, Ramis’ theorem in differential
Galois theory, Écalle’s alien derivations and accelerating functions. The algorithms for the
splitting of series are introduced and described in section 3 and, in section 4, we explicit
the calculations we have performed for the accelerating functions C3 and C4.

Algorithms for the splitting of formal series; applications to alien ... 233

1 Stokes phenomenon, differential Galois groups, accelerat-
ing functions

1.1 Stokes phenomenon; alien derivations

The formal series contained in a basis of formal solutions such as in (1) are generically
divergent, but they are asymptotic, in some sectors, to some analytic solutions. The com-
parision of these analytic “resummations” of the series on various sectors gives rise, for a
finite number of critical directions, to the Stokes phenomenon ([16]).
An important object attached to such an equation is its (local) Galois differential group,
for which we refer to [15]. J. -P. Ramis proved that it is characterized by the “exponen-
tial torus”, the “formal monodromy” (which are formal invariants that we don’t describe
here, referring to [11], [16]), and the Stokes matrices. Now, the “important part” in the
Galois differential group comes from the Stokes matrices, which are difficult to calculate
and involve transcendental constants. These matrices are unipotent, their logarithms are
nilpotent matrices that correspond to operators that are derivations acting on the space of
series we are working on. These derivations, in turn, can be decomposed into elementary
components : the so called alien derivations of Écalle, which can be defined independantly
of Galois considerations. Alien derivations are operators, introduced by Jean Écalle ([6]),
acting on some spaces of holomorphic functions; they are in fact derivations relatively to
a convolution product. A series f solution to an ODE, at an irregular singular point for
which the Newton polygon has a single slope, equal to one, will have a convergent Borel
transform ϕ = B̂(f) and this germ ϕ of analytic function can in fact be continued along
any broken line from the origin, and we define resurgent functions and alien operators in
this context. This property of analytic continuation along any broken line γ starting from
the origin of C|| , going around a finite number of singularities possibly met on γ leads to the
general definition of resurgent functions. Let us introduce them in the most simple setting,
which is already enough to treat many natural but non trivial examples. The whole point
is that our procedures for the splitting of series enable us to decompose a divergent series
into a finite sum of series which, as functions of some new variable zk, are resurgent in the
sense explained below.

Definition 1.1. An analytic germ, continuable as above, is called a simple resurgent func-
tion if the behaviour of its analytic continuation at any singularity ω is of the form

1

2iπ
log(ζ − ω)s(ζ − ω) + r(ζ − ω)

where r, s are regular germs.
We denote by R the space of simple resurgent functions.

Let ω a non zero complex number and dθ the half line through ω. We are going to define
an operator:

∆ω : R −→ R

234 Fauvet et al. Transgressive Computing

For series belonging toR and if ω is the only singularity on dθ, ∆ω amounts to extracting
the singular part s at the singularity ω, up to a factor 2iπ (and thus acts as 0, if there is
no singularity at the point ω):

∆ω f(ζ) = s(ζ)

which is also equal to the variation of 2iπf , namely the difference between the continuation
by the right and by the left of 2iπf at the singular point ω. For the general case, the
definition of ∆ω involves an average of the singular parts obtained at ω relatively to the
way we go around the singularities that are met between , when performing the analytic
continuation the origin and ω.

Alien derivations ∆ω thus constitute a family of linear operators, indexed by points ω
of the complex plane but they are also derivations of the convolutive algebras of resur-
gent functions and moreover they satisfy a simple commutation relation with the ordinary
derivation ∂ = d

dz , namely: [∂,∆ω] = ω∆ω. For all this we refer to [8] and of course to
the original papers of Ecalle. We denote by the same symbol the operators that are the
pullbacks in the space of formal series C|| [[z−1]] or of more general algebras of ramified formal
series, which are indispensable in applications, by (the extended)– inverse Borel transform.

For solutions of linear ODEs, the generic case involves only, for each critical time, one
singularity as in Definition 1.1 on each singular direction and this will be the situation for
the examples described in detail below.

Now, these derivations and also the can be seen as acting on a formal basis of solutions
to an equation such as the one above. It acts in the following way, where we denote by
Y (z) =

∑n
i=1 ui exp (λiz)fi(z) the general solution of the equation, supposed non resonant,

and where the Aλi−λj
are constants (see [8] or [6]) :

∆λi−λj
fi = Aλi−λj

fj or, in a compact form: ∆λi−λj
Y = Aλi−λj

ui
∂

∂uj
Y.

There is only a finite number of ∆ω (for ω = λi − λj) that can act non–trivially on Y
and that action is expressed as the action of an ordinary (meaning non alien!) differential
operator in the variables ui, on the formal integral Y , constituting a simple example of
resurgence equation called by Écalle a bridge equation, as it throws a bridge between alien
and ordinary differential calculus. We thus get a Lie algebra of Galois derivations acting on
the vector space of solutions. In fact, they “belong” to the Lie algebra of the differential
Galois group of the equation (later on we shall call it the Lie–Galois algebra, to be short),
and constitute the most important – and most difficult to determine – part of that algebra.

1.2 Accelerating functions

Écalle’s accelerating functions can be defined by an integral formula:

Cα(t) =

∫

γ
exp (u− tu 1

α)du where γ is a Hankel contour.

Algorithms for the splitting of formal series; applications to alien ... 235

The accelerating functions are used to define convolution operators to sum divergent series
with several critical times; they come together with decelerating functions and it was ob-
served by Anne Duval 15 years ago (see [12], in which the results mentionned in the present
section can be found. See also [7]) that these (decelerating) functions fall within the class
of so-called Faxen integrals and are particular cases of G-functions of Meijer. As such, they
can be written in explicit, though complicated, expansions involving the Gamma function.
Each Cα is an entire function, with an expansion at the origin :

Cα(t) = 2i
∑

n≥0

sin
nπ

β

Γ(1 + n/α)

Γ(1 + n)
tn with 1/α + 1/β = 1.

An accelerating function with a rational α satisfies a simple linear differential equation
with polynomial coefficients, namely Cq/p is a solution of A = 0, where A is the following
operator:

Dq − (−1)q−p
p∏

j=1

(
p

q
tD + j) where D = d

dt .

In fact the operator A admits a simple order one left factor, which entails that Cq/p
belongs to the kernel of the following operator, of order q − 1 :

q

q−1∏

j=1

(δ − j)− (−1)q−pptq
p−1∏

j=1

(
p

q
δ + j) where δ is the Euler operator t ddt .

Such an equation has a single slope at ∞: the formal series solutions at z ∼ ∞ will be
“k –summable”, and resurgent with respect to some variable zk.

The family of accelerating functions (Cq/p) constitutes an interesting object of study per
se, and it was already remarked in [12] that it deserves a thorough study. We show below
how our algorithms for the splitting of series make possible calculations that pave the way
for the determination of the differential Galois groups of the equations above, of low degree.

2 Simplification tools for recurrence equations

2.1 Ore polynomials and series equality

Let R be a ring and σ : R→ R be an injective endomorphism of R.
Let δ be a pseudo-derivation w.r.t. σ, that is a map from R to R satisfying:

δ(a + b) = δa+ δb, δ(ab) = σ(a)δb + δab for any a, b ∈ R.

Definition 2.1. The left skew polynomial ring given by σ and δ is the ring (R[x],+, .) of
polynomials in x over R with the usual polynomial addition, and multiplication given by:

xa = σ(a)x+ δa for any a ∈ R.

This ring is denoted R[x;σ, δ] and its elements are called skew polynomials or Ore polyno-
mials.

236 Fauvet et al. Transgressive Computing

We refer to [4] for this definition and the first properties of this ring, and to [3] for the
arithmetic and algorithmic point of view, when R is a field (in particular, greatest common
right divisor, extended right Euclidean algorithm).

In the following, we will deal with R = C|| [n], τ the automorphism of R over C|| that takes
n to n+ 1, and R[x; τ, 0] the ring of linear ordinary recurrence operators (with polynomial
coefficients). In this ring, the multiplication is given by:

xa = τ(a)x, for any a ∈ R.

We are interested in formal series
∑

n≥0

anx
n, such that the coefficients (an)n≥0 are defined

by a finite difference equation with polynomial coefficients. That means that the coefficients
of the series are defined by:

• a0, a1, . . . , am−1, the first m terms (also called initial conditions), ai ∈ C|| ;

• and a recurrence equation

P0(n)an + · · ·+ Pr(n)an+r = 0,∀n ≥ m− r,

with P0, . . . , Pr ∈ C|| [n] and Pr(λ) 6= 0,∀λ ≥ m− r (1).

An equivalent manner of writing the condition (1) is to define

λ = max{λ ∈ IN, Pr(λ) = 0}
= −1 if Pr(λ) 6= 0,∀λ ∈ IN,

and to suppose that m > λ+ r.
In the following, this series will be represented by the initial conditions a0, . . . , aλ+r and the
skew polynomial:

xλ+1(P0 + P1x+ · · · + Prx
r) = (τλ+1(P0) + · · ·+ τλ+1(Pr)x

r)xλ+1.

Our objective is to simplify the skew polynomial defining the previous series: reduce its
degree, simplify the coefficients Pi (in particular reduce their degree in n).

2.2 Redundant initial conditions

Proposition 2.2. Let a be the series defined by a0, . . . , am−1 and the skew polynomial
P = (P0 + P1x+ · · ·+ Prx

r)xm−r, with Pr(λ) 6= 0,∀λ ∈ IN.
Suppose that m > r, Pr(−1) 6= 0 and P0(−1)am−r−1 +P1(−1)am−r+ · · ·+Pr(−1)am−1 = 0.
Let b be the series defined by b0 = a0, . . . , bm−2 = am−2, Q = τ−1(P0) + τ−1(P1)x + · · · +
τ−1(Pr)x

r)xm−r−1. Then a = b.

Algorithms for the splitting of formal series; applications to alien ... 237

2.3 Right factor

Proposition 2.3. Let a be the series defined by a0, . . . , am−1 and a skew polynomial P , of
degree m, with Pm(λ) 6= 0,∀λ ∈ IN.
Let b be the series defined by b0 = a0, . . . , br−1 = ar−1 and a skew polynomial Q, of degree
r.
Suppose that Q is a right factor of P , and that Q(a) = 0,∀j ≤ m− r − 1.
Then a = b.

Proof. r < m; P = RQ with Qr(λ) 6= 0,∀λ ∈ IN and deg(R) = m− r.

Q(a)(j) = Q(b)(j),∀j ≤ m− r − 1,

R(Q(a)) = RQ(a) = P (a) = 0,

and R(Q(b)) = R(0) = 0,

then Q(a) = Q(b).

So a0 = b0, . . . , ar−1 = br−1, and Q(a) = Q(b) = 0, then a = b.

2.4 Guessing a right factor

Let a be the series defined by a0, . . . , am−1 and the skew polynomial P = P0 + P1x+ · · ·+
Pmx

m, with Pm(λ) 6= 0,∀λ ∈ IN.
Knowing a0, a1, . . . , am−1, am, . . . aN−1, we determine another polynomial Q of degree r,
such that Q(a)(n) = 0, 0 ≤ n ≤ N − r − 1. We will explain in the next section how to do
that.
We consider the polynomials P andQ as polynomials with rational coefficients (in C|| (n)[x; τ, 0])
and compute a greatest common right divisor Q̃. Suppose that Q̃ is not trivial, and of de-
gree r.
We denote by c̃1 and c̃2 two polynomials (in C|| (n)[x; τ, 0]) such that c̃1P + c̃2Q = Q̃. We
put v the lcm of the denominators of the coefficients of c̃1, c̃2 and Q̃. After multiplication
by v, we obtain polynomials c1, c2 and Q̂ in C|| [n][x; τ, 0] such that c1P + c2Q = Q̂. So
Q̂(a)(j) = 0,∀j ≤ N − r − 1.
We compute the ŵ the gcd of the coefficients of Q̂ and divide Q̂ by ŵ to obtain Q =
Q0 +Q1x+ · · ·+Qrx

r. Define

λ = max{λ ∈ IN, ŵQr(λ) = 0}
= −1 if ŵQr(λ) 6= 0,∀λ ∈ IN.

Consider now the series b defined by b0 = a0, . . . , br+λ = ar+λ and the skew polynomial

xλ+1Q.
Suppose that N ≥ m− r + r + λ+ 1. Then a = b.

238 Fauvet et al. Transgressive Computing

Proof. Q(a)(j) = 0,∀λ < j ≤ N − r − 1, so xλ+1Q(a)(j) = 0,∀j ≤ N − r − λ− 2.

Moreover xλ+1Q divides (right, in C|| (n)[x; τ, 0]) xλ+1P , and the coefficients of the quotient

have for denominator some shifted of τλ+1(Qr), so xλ+1Q is a right factor of xλ+1wP , for
a polynomial w ∈ C|| [n] without root in IN. We can apply Proposition 2.3.
Conclusion: we can apply the first subsection “redundant conditions” to the new polynomial
xλ+1Q in order to reduce its degree.

2.5 Guessing a new polynomial Q

At the present time, it is done by two ways:

• solving by hand a linear system, for fixed values of r, the degree of Q (in x) and of
maxd, the maximum of the degrees of the coefficients of Q (in n). This is done by the
function diminue syst for all values r ≤ deg(P) and maxd ≤ maxi deg(Pi);

• using the gfun package [17] and the function listtorec; this is done by the function
diminue gfun ; the number of terms N used can be given by the user as parameter,
by default it is assigned to a value depending on the degree of P (in x) and the max
of the degrees of the coefficients of P in n.

2.6 Examples

1. consider the series
∑

n≥0 n!(x2n + x2n+1). As a solution of the differential linear
homogeneous equation

(2 + 6x+ 3x2 + x3)y(x) + (3x2 + 8x3 + 3x4− 4x− 2)y′(x) + (x3 + 2x4 + x5)y′′(x) = 0,

it is defined by Desir by the 4 first terms a0 = a1 = a2 = a3 = 1 and the skew
polynomial

P = (4 + j)2 − 15− 6j + (−21− 6j + 2(4 + j)2)x+ (−2− 2j + (4 + j)2)x2

+(−10− 4j)x3 + (−8− 2j)x4.

With diminue syst, we findQ = j+j2−2x+(2−2j)x2 = Q̃ = Q̂ = Q and ŵ = 1, λ = 1.
That means that the series can be defined by the first terms [1, 1, 1, 1] and x2Q.
With diminue gfun and N = 20, we obtain an other polynomial Q, but which leads
to the same Q as before.
On this example, we didn’t reduce the degree of the skew polynomial, but we simplified
the coefficients.

2. the Ramis-Sibuya equation is the following differential linear homogeneous equation
of order 3:

eq := (3x3 − 10x2 − 2x− 4)x6y′′′(x) + (12x5 − 47x4 − 16x3 − 50x2 − 8x− 8)x3y′′(x)

+2(3x6−14x5−12x4−5x3−14x2−6x−4)xy′(x)+(12x4−14x3+60x2+12x+8)y(x) = 0.

Algorithms for the splitting of formal series; applications to alien ... 239

This equation admits a series solution

f̂(t) = t(1 + 2t2 − 7t3 + 24t4 + . . .) = ĝ(t) + ĝ(t2),

where ĝ denotes the Euler series ĝ(t) =
∑

n≥0(−1)nn!tn.

We first consider the series f̂
t (the regular part of the series in the internal data

furnished by Desir) defined by the first terms [1, 0, 2,−7, 24,−118] and a skew poly-
nomial of degree 6

P = P0 + P1x+ P2x
2 + P3x

3 + P4x
4 + P5x

5 + P6x
6

with coefficients Pi of maximum degree 3.

Such a skew polynomial is represented in Maple by OrePoly(P0, P1, . . . , P6).
We find a polynomial

Q = OrePoly

(
7

2
+

25

4
j +

13

4
j2 +

1

2
j3,

5

2
+

9

4
j +

1

2
j2, 7 +

11

2
j + j2,

5

2
+ j

)
,

which divides P : Q = Q̃. v = 4, so that Q̂ = 4Q̃, ŵ = 1 and Q = Q̂, λ = −1.
The same series is defined by the first terms [1, 0, 2] and the skew polynomial Q =
14 + 25j + 13j2 + 2j3 + (5 + 2j)(j + 2)x+ (28 + 22j + 4j2)x2 + (10 + 4j)x3.
On this example, we reduce the degree of the polynomial from 6 to 3.

The series f̂ is defined by the first terms [0, 1, 0, 2,−7, 24] and the skew polynomial
P1 =

∑6
i=0 τ

−1(Pi)x
i).

We find a poynomial Q1 which is not a factor of P1, but the right gcd of P1 and
Q1 is not trivial. Finally, we find that the series f̂ can be defined by the first terms
[0, 1, 0, 2] and the polynomial

x(j
(
2 j2 + 7 j + 5

)
+ (2 j + 3) (1 + j) x+ (4 j2 + 14 j + 10)x2 + (4 j + 6)x3).

So we obtain a polynomial of degree 4.

Remark 2.4. on both these examples, the results are given by diminue syst. The
function diminue gfun doesn’t give any new polynomial Q.

3 Splitting of a series

We consider a series f̂(x) =
∑

n≥0 anx
n, defined by its first terms a0, . . . , am−1 and the skew

polynomial xm−r(P0 + P1x+ · · · + Prx
r), with P0 6= 0 and Pr(λ) 6= 0,∀λ ∈ IN, λ ≥ m− r.

Our goal is to split the series.
Let α ∈ IN∗. Let q ∈ IN, 0 ≤ q ≤ α− 1 and f̂q(x) =

∑
j≥0 ajα+qx

j , so that

f̂(x) = f̂0(x
α) + · · ·+ xα−1f̂α−1(x

α).

We want to build a recurrence equation with polynomial coefficients satisfied by each of the
α subseries f̂q. An algorithmic process to do this has been first introduced by F. Naegele
[13] and implemented in A#.

240 Fauvet et al. Transgressive Computing

3.1 Description of the method

The principle is the following: if we suppose that f̂ is defined by a recurrence equation of
the form

Q0(j)aj +Q1(j)aj+α + · · ·+Qr(j)aj+rα = 0, (∗)
then each equation

Q0(jα + q)ajα+qj +Q1(jα + q)a(j+1)α+q + · · ·+Qr(jα+ q)a(j+r)α+q = 0

will define the qth subseries.
So it is now sufficient to describe an algorithm that permits to transform the recurrence
equation

P0(j)aj + P1(j)aj+1 + · · ·+ Pr(j)aj+r = 0,

into a recurrence equation of type (∗).
For this, we consider the system of r(α− 1) + 1 linear equations:

P0(j + i)aj+i + P1(j + i)aj+i+1 + · · · + Pr(j + i)aj+i+r = 0, for i = 0, . . . , r(α− 1),

and we solve it considering as unknown the r(α − 1) coefficients aj+k such that α doesn’t
divide k, that is the terms:

aj+1, . . . , aj+α−1, aj+α+1, . . . , aj+2α−1, . . . , aj+(r−1)α+1, . . . , aj+rα−1.

After Gaussian elimination, the system becoms Ax = b, with a matrix A in which there is
at least one null row for which the corresponding element in b gives the wanted equation.

3.2 Examples

1. we consider the first example of section 2.6, with α = 2.
If the series is defined by the four first terms [1, 1, 1, 1] and the skew polynomial P ,
the function scindage returns two series defined by skew polynomials of degree 4 and
maximum degree of the coefficients 8. But after applying diminue syst, we obtain
that both subseries are defined by a0 = 1 and the skew polynomial −1− j + x.
If the same series is defined by the four first terms [1, 1, 1, 1] and the skew polynomial
x2Q, the function scindage returns two series defined by skew polynomials of degree
2 and maximum degree of the coefficients 2. Of course, after applying diminue syst,
we obtain the same reduced result as before.

2. we consider the second example of section 2.6, with α = 2. More precisely, we split in
two subseries the series defined by [1, 0, 2] and the skew polynomial Q. We find that
f̂0 is defined by a0 = 1 and the skew polynomial −2 − 6j − 4j2 + x, and that f̂1 is
defined by [0,−7] and the skew polynomial

x
(
−16j4 − 116j3 − 302j2 − 334j − 132 − (16j3 − 96j2 − 187j − 118)x + (7 + 4j)x2

)
.

Algorithms for the splitting of formal series; applications to alien ... 241

3. we can split the series defined by [0, 1, 0, 2] and the skew polynomial Q1 for big values
of α. With α = 9 or 10, the result is immediate. For α = 10, the recurrence equation
for the corresponding first subseries f̂0 is of degree 2 and maximum degree of the
coefficient 20. Unfortunately, the function diminue syst takes more time to give no
better result.

3.3 From recurrence equation to differential equation

In this section, our goal is to compare our results to the results obtained by M. Barkatou
and al. in [1]. In this paper, the authors proposed different methods to find, given a series
f̂ =

∑
n≥0 anx

n solution of an ordinary linear differential equation and given an integer α,

a differential equation satisfied by the subseries f̂ j(x) =
∑

n≥0 aj+mrx
j+mr. So, we treat

the same problem, modulo the fact that f̂ q(x) = xqf̂q(x
q).

As an example, they take the equation of Ramis-Sibuya, with α = 2, and obtain a differential
equation of order 5 (and maximum degree of the coefficient 13), satisfied by the two subseries
f̂0 and f̂1. If they apply similar methods to non homogeneous linear differential equations,
they obtain two (homogeneous) linear differential equations of order 4 (and maximum degree
of the coefficients 12) satisfied by each subseries f̂0 and f̂1.
With our method, knowing the initial conditions and a recurrence equation, we use the
package gfun and the function diffeqtorec to perform the Mellin transform and obtain a
non homogeneous differential equation satisfied by each subseries. Then an homogeneous
differential equation is simply found by differentiating the non homogeneous one divided by
the right member.
By this way, we find that the series f̂1 is solution of the following linear equation:

−4x3y′′′(x)− 22x2y′′(x) + (1− 22x)y′(x)− 2y(x) = 0.

For the series f̂0, we find the following operator of degree 5:

16x7 d

dx5
y (x) +

(
16x5 + 212x6

) d

dx4
y (x) +

(
80x4 + 762x5

) d

dx3
y (x)

+
(
768x4 + 59x3 − 4x2

)
y′′ (x) +

(
9x+ 132x3

)
y′ (x) − 10 y (x) .

4 Examples

4.1 Description of the calculations

We are now ready to apply the techniques described above to cope with series S that appear
in a basis of formal solutions to some linear differential equation. The calculations that we
perform for the reduced equations of order 2 and 3 respectively, of which C3 and C4 are
solutions are summed up by the following stages:
– We split each series S in subseries.
– For each subseries, we generate a linear ODE with an irregular–regular point with one

242 Fauvet et al. Transgressive Computing

critical time, and of rank one at the origin, of which the given subseries is solution.
– Then the Borel transform of this series is also solution of a linear ODE with polynomial
coefficients, in the Borel plane, by Fourier duality ([8]).
– Finally, we are in a position to apply numerical procedures to estimate the analytic
continuation of the subseries, as in [8].

The calculations are detailed and exhaustive for C3; C4 we have only room to show
the initial stages, but the rest is straighforward, as we have now satisfactory tools for the
splitting.

Remark 4.1. We express the equations in the variable x, with x = 1/z, in order to use the
procedures (Desir, etc) which are designed for a singularity at the origin.

4.2 The accelerating C3

This function is solution of the following equation:

acc3 := 12xy′ (x) + 3x2y′′ (x) + 6 y (x)− y (x)

x3
= 0

A basis of formal solutions is given by Desir under this form:

> desir(acc3,y(x),t,10,res);

[[x (t) = 1/3 t2, y (t) = e−2 t−3 (
1− 5

144 t
3 + 385

41472 t
6 − 85085

17915904 t
9 +O

(
t10
))
t−3/2]]

The variable ser contains the regular part of one solution. The function prepa scindage
extracts the summability properties and transforms the series into a suitable data struc-
ture: it is described by the initial conditions and the polynomial coefficients of the
recurrence equation.

> ser prep:=prepa scindage(ser);

the series is 3 summable
ser prep := [r, [1, 0, 0], [−1/12 + 1/12 (3/2 + r)2 , 0, 0, 1/3 (1 + 1/3 r)

√
3]]

Here is a readable form of the series:

1− 5
48

√
3t3 + 385

1536 t
6 − 85085

221184

√
3t9 +O

(
t10
)

The result of the splitting is the following:

> S_S := scindage(3,ser_prep);

S S := [[r, [1], [15 + 108 r + 108 r2, 48
√

3 + 48
√

3r]], [r, [], [1]], [r, [], [1]]]

We try to simplify the recurrence equation for the non null series:

> s1_s := diminue_syst(S_S[1]);

s1 s := [r, [1], [5 + 36 r + 36 r2, 16
√

3 + 16
√

3r]]

A readable form of the split series is as follows:

y1(t) = 1− 5
48

√
3t+ 385

1536 t
2 − 85085

221184

√
3t3 + 37182145

14155776 t
4 +O

(
t5
)

Differential equation satisfied by the previous series multiplied by t:

equa :=
(
5x− 16

√
3
)
f(x) + 16

√
3x d

dxf (x) + 36x3 d2

dx2 f (x)

> desir(equa,f(x),t,3);

Algorithms for the splitting of formal series; applications to alien ... 243

[[x (t) = t, f1 (t) = t
(
1− 5

48

√
3t+ 385

1536 t
2 +O

(
t3
))

],

[x (t) = t, f2 (t) = e4/9
√

3
t t
(
1 + 5

48

√
3t+ 385

1536 t
2 +O

(
t3
))

]]

For the following, we denote by y2 the regular part of f2.
Differential equation satisfied by its Borel transform:

equaborel :=
(
16
√

3 + 72 ζ
)
d
dζφ (ζ) +

(
16
√

3ζ + 36 ζ2
)
d2

dζ2
φ (ζ) + 5φ (ζ) = 0

This equation presents two singularities:

sing := [0,−4/9
√

3]

A basis of formal solutions at the origin:

> frobenius(equaborel,phi(zeta),zeta=0,3);

[φ1 (ζ) = 1− 5
48

√
3ζ + 385

3072 ζ
2 +O

(
ζ3
)
,

φ2 (ζ) = ln (ζ)
(
1− 5

48

√
3ζ + 385

3072 ζ
2
)
− 13

24

√
3ζ + 719

1024 ζ
2 +O

(
ζ3
)
]

The series φ1 is the Borel transform of ty1 = f1.
A basis of solutions in the neighborhood of the non null singularity:

> frobenius(equaborel,phi(zeta),zeta=sing[2],3);

[ψ1 (ζ) = 1 + 5
48

√
3ζ + 385

3072 ζ
2 +O

(
ζ3
)
,

ψ2 (ζ) = ln (ζ)
(
1 + 5

48

√
3ζ + 385

3072 ζ
2
)

+ 13
24

√
3ζ + 719

1024 ζ
2 +O

(
ζ3
)
]

We verify that the series coefficient of log(ζ) in ψ2 is B̂y2, the Borel transform of y2.
By analytic continuation, we perform the connection:

φ1 = λ1ψ1 + λ2ψ2, with {λ2 = −0.1591549446, λ1 = 0.9241811708}

The alien derivative of φ1 = B̂f1 at the singularity −4/9
√

3 is 2iπλ2B̂y2.

> evalf(2*I*Pi*lambda2);

−1.000000010 i

This result is coherent with our knowledge about the relationship between the studied
differential equation and the Airy equation on one hand, and the exact computation of the
Stokes constants for the Airy equation ([11, 9]) on the other hand. Anne Duval noticed
15 years ago the very simple relation between C3 and the Airy function ([12]). The Galois
group of Airy’s equation is SL2(C||), one of the rare groups that had been calculated prior
to Ramis’s theorem (and of N. Katz’s results).

4.3 The accelerating C4

We study now the following equation:

acc4 := −36x2y′′ (x)− 72xy′ (x)− 4x3y(3) (x)− 24 y (x) +
y (x)

x4
= 0

A basis of formal solutions is given by Desir:

> desir(acc4,y(x),t,15,res);

[[x (t) = 1/4 t3, y (t) = e−3 t−4 (
1− 7

144 t
4 + 385

41472 t
8 − 39655

17915904 t
12 +O

(
t15
))
t−2]]

244 Fauvet et al. Transgressive Computing

> ser_prep:=prepa_scindage(ser);

the series is 4 summable
ser prep := [r, [1, 0, 0, 0,− 7

36
3
√

4, 0, 0, 0],

[16
(
− 7

432 − 1
576 r + 1

288 (6 + r)2 − 1
1728 (6 + r)3

)
3
√

4, 0, 0, 0, 5
36 − 1/12 (6 + r)2 ,

0, 0, 0, 1/4 (−2− 1/4 r) 42/3]]

We perform the splitting:

> S_S := scindage(4,ser_prep);

S S := [[r, [1,− 7
36

3
√

4, 385
2592 42/3],

[0,−1760 22/3 − 2928 22/3r − 1536 22/3r2 − 256 22/3r3,−3540 − 2880 r − 576 r2,
− 648 3

√
2− 216 3

√
2r]], [r, [], [1]], [r, [], [1]], [r, [], [1]]]

In this case, the simplification of the recurrence relation defining the non null series permits
to reduce by 1 the degree of the recurrence equation:

> diminue_syst(S_S[1]);

[r, [1,− 7
36

3
√

4], [312 r + 56 + 384 r2 + 128 r3, 309 3
√

2 + 432 3
√

2r + 144 3
√

2r2, 108 22/3 + 5422/3r]]

Here is the readable form of the splitted series:

1− 7
36 22/3t+ 385

1296
3
√

2t2 − 39655
69984 t

3 + 665665
10077696 22/3t4 +O

(
t5
)

Differential equation satisfied by the previous series multiplied by t:

equa :=
(
28 22/3x3 + 21x2 − 108 3

√
2x
)
g′ (x) +

(
144x3 + 54 3

√
2x2 + 412 22/3x4

)
g′′ (x)

+
(
144x4 + 384 22/3x5

)
g(3) (x) + 64 22/3x6g(4) (x) +

(
−21x+ 108 3

√
2
)
g (x) = 0

> desir(equa,g(x),t,3);

[g1 (x) = x2
(
108 3
√

2− 309x+ 19825
36 22/3x2 +O

(
x3
))
,

g2 (x) = x
(
54 3
√

2− 21x+ 385
24 22/3x2 +O

(
x3
))
,

g3 (x) = e−3/16
3√2(−3+i

√
3)

x x

(
1− 42 i

√
3x

−54 3√2(−3+i
√

3)−324 3√2
+ 4620 22/3x2

−31104 3√2−7776 3√2(−3+i
√

3)
+O

(
x3
))

g4 (x) = e3/16
3√2(3+i

√
3)

x x

(
1 + 42 i

√
3x

54 3√2(3+i
√

3)−324 3√2
+ 4620 22/3x2

−31104 3√2+7776 3√2(3+i
√

3)
+O

(
x3
))

]

For the following, we denote by y3 the regular part of g3.
Differential equation satisfied by the Borel transform of g1 and g2:

equaborel :=
(
108 3
√

2 + 576 ζ + 384 22/3ζ2
)
φ′′ (ζ) +

(
54 3
√

2ζ + 144 ζ2 + 64 ζ322/3
)
φ(3) (ζ)

+
(
309 + 412 22/3ζ

)
φ′ (ζ) + 28 22/3φ (ζ) = 0

This equation presents three singularities:

sing := [0, 3/16
3
√

2
(
−3 + i

√
3
)
,−3/16

3
√

2
(
3 + i

√
3
)
]

A basis of formal solutions at the origin:

[φ1 (ζ) = ζ
(
216 3
√

2− 309 ζ + 19825
108 22/3ζ2 − 5551015

31104
3
√

2ζ3 +O
(
ζ4
))
,

φ2 (ζ) = 54 3
√

2− 21 ζ + 385
48 22/3ζ2 − 39655

7776
3
√

2ζ3 +O
(
ζ4
)
,

φ3 (ζ) = 2 ln (ζ)
(
54 3
√

2− 21 ζ + 385
48 22/3ζ2 − 39655

7776
3
√

2ζ3
)

+ 216 3
√

2− 288 ζ + 3359
24 22/3ζ2 − 1391917

11664
3
√

2ζ3 +O
(
ζ4
)
]

Algorithms for the splitting of formal series; applications to alien ... 245

The series φ2 is the Borel transform of g2.
A basis of solutions in the neighborhood of the first non null singularity:

[ψ1 (ζ) = ζ
(
−6912 i 3

√
2
√

3− 6912 3
√

2 +
(
9888 − 9888 i

√
3
)
ζ + 317200

27 22/3ζ2 +O
(
ζ3
))
,

ψ2 (ζ) = −1728 3
√

2− 1728 i 3
√

2
√

3 +
(
672 − 672 i

√
3
)
ζ + 1540

3 22/3ζ2 +O
(
ζ3
)
,

ψ3 (ζ) = 2 ln (ζ)
(
−1728 3

√
2− 1728 i 3

√
2
√

3 +
(
672 − 672 i

√
3
)
ζ + 1540

3 22/3ζ2
)

− 6912 i 3
√

2
√

3− 6912 3
√

2 +
(
9216 − 9216 i

√
3
)
ζ + 26872

3 22/3ζ2 +O
(
ζ3
)
]

We verify that the series coefficient of log(ζ) in ψ3 is proportional to B̂y3, the Borel transform
of y3 : an illustration of the bridge equation (1.1).

5 Conclusion

The algorithms for the manipulation and in particular the splitting of formal series that
we have described in the present paper have enabled us to perform calculations with alien
derivations for series solutions of some linear ODEs of rank k ≥ 1, with one critical time.
Numerical results of this sort are completely new, even in simple situations. The numerical
results we give for the accelerating functions C3 and C4 yield data that can be used in a
straightforward way:
• to perform numerical approximations to the constants of structure of the Lie–Galois
algebra of the corresponding equations
or, in another direction,
• to obtain, as in [9], resummation of formal solutions in a “large” sector, past the Stokes
lines, as we have a control of the Stokes phenomenon through the coefficient Aω of the
bridge equation.

We stress the fact that the examples that we treat, in the present work and in a con-
tinuation of it for other equations of single rank or for cases with several critical times,
are neither innocent nor anecdotic : a great number of the so called classical functions are
indeed solutions of linear ODEs, and more specifically, the most interesting among them
are solutions to equations with one irregular-singular point and at most another singular
point which is at worst regular–singular (the class of Hamburger equations; in particular
the confluent hypergeometric equations).
In a way, the present computations, although they rely on mathematics that are now con-
sidered as well known (Gevrey asymptotics and the like), use in a certain sense the DESIR
code up to its limits, and thus yield new results that are consequences of the seminal works
made by Jean Della Dora 25 years ago.

1. M.A. Barkatou, F. Chyzak, and M. Loday-Richaud. Remarques algorithmiques liées au rang
d’un opérateur différentiel linéaire. In From Combinatorics to Dynamical Systems, volume 3 of
IRMA Lectures in Mathematics and Theoretical Physics, pages 87–129, 2003.

2. Braaksma, B. L. J.; Immink, G. K.; Sibuya, Y. The Stokes phenomenon in exact asymptotics,
Pacific J. Math. 187 (1999), no. 1, 13–50.

3. M. Bronstein and M. Petrovsek. An introduction to pseudo-linear algebra. Theoretical Com-
puter Science, (157):3–33, 1996.

246 Fauvet et al. Transgressive Computing

4. P.M. Cohn. Free Rings and their Relations. Academic Press, 1971.

5. J. Della Dora, C. Di Crescenzo, and E.Tournier, An algorithm to obtain formal solutions of a
linear homogeneous differential equation at an irregular singular point, In EUROSAM 82, ed.
J. Calmet, volume 144 of Lecture Notes in Computer Science page 273. Springer-Verlag, Berlin
and Heidelberg (1982).

6. J. Écalle, Les fonctions résurgentes, Vol. 1, 2, 3, Publ. Math. Orsay (1981–85) .

7. J. Écalle, L’accélération des fonctions résurgentes, Manuscript, Orsay 1987.

8. F.Fauvet, J. Thomann, Formal and numerical calculations with resurgent functions, to appear in
Numerical Algorithms, Vol 40, 4, December 2005, online at http://dx.doi.org/10.1007/s11075-
005-5326-5

9. F. Richard–Jung Représentations graphiques de solutions d’équations différentielles dans le
champ complexe, PhD thesis, Strasbourg 1988.

10. M.Loday-Richaud, Introduction à la Multisommabilité, Gazette des Mathématiciens,
SMF No.44 (avril 1990).

11. J. Martinet; J.-P. Ramis, Théorie de Galois différentielle et resommation in: Computer algebra
and differential equations (E. Tournier ed.) Academic Press 1987.

12. J. Martinet; J.-P.Ramis, Elementary acceleration and multisummability, Ann. Inst. H. Poincaré
Phys. Théor. 54 (1991), no. 4, 331– 401.

13. F. Naegele. Autour de quelques équations fonctionnelles analytiques. PhD thesis, Institut
National Polytechnique de Grenoble, 1995.

14. F.Jung, F.Naegele, J.Thomann, An algorithm of multisummation of formal power series, solu-
tions of linear ODE equations Mathematics and computers in simulation 42 (1996).

15. M. van der Put; M. Singer, Galois theory of linear differential equations, Springer 2003.

16. J.-P. Ramis, Filtration Gevrey sur le groupe de Picard-Vessiot d’une équation différentielle
irrégulière, Informes de Matematica, IMPA, Série A, 045, June 1985, Rio de Janeiro (1985),
1–38.

17. B. Salvy and P. Zimmermann. Gfun: A maple package for the manipulation of generating and
holonomic functions in one variable. ACM Transactions on Mathematical Software, 20(2):163–
177, june 1994.

Frédéric Fauvet & Jean Thomann
Mathématiques - IRMA

Université Louis Pasteur et CNRS
7, rue Descartes

67084 Strasbourg Cedex (France)
fauvet@math.u-strasbg.fr

thomann@math.u-strasbg.fr

Françoise Richard-Jung
LMC-IMAG, 51 rue des Mathématiques

38041 Grenoble Cedex 9 (France)

Francoise.Jung@imag.fr
http://www-lmc.imag.fr/lmc-

cf/Francoise.Jung/

Ramifications and Singularities of Foliations 247

Ramifications and Singularities of Foliations

Pedro Fortuny Ayuso

March 13, 2006

Abstract

We study the behaviour of sequences of blowing-ups under ramifications, the main
result being that for any finite sequence π of blowing-ups, there is a ramification mor-
phism ρ such that the elimination of points of indeterminacy π̃ of π−1 ◦ ρ is a sequence
of blowing-ups with centers at regular points of the exceptional divisors and that if π is
the reduction of singularities of a holomorphic foliation F , then ρ can be chosen such
that π̃⋆ρ⋆F has only simple singularities. As an application, we give a simplified version
of Camacho-Sad’s proof of the Separatrix Theorem.

Introduction

Blowing-up techniques have been used successfully since the very beginnings of the study of
singularities of algebraic and analytic objects (see [9], although the usage is even older). The
most famous example is, obviously, Hironaka’s Resolution of Singularities in characteristic
zero [14] (and its extension to analytic spaces [3]), together with Zariski’s [21] (and Walker’s
[20]) result for surfaces and for three-dimensional varieties [22], and Abhyankar’s positive-
characteristic cases (see [2]). One of the main steps in any desingularization process are the
combinatorial sequences of blowing-ups: those whose centers are intersections of irreducible
components of exceptional divisors; they are closely related to toric geometry [13], [17] and
in a vague sense, they measure the complexity of the singularity: in the case of plane curves,
they are responsible for the apparition of Puiseux Exponents

In this paper, following the “transgressive” spirit of the conference, we present a diffe-
rent approach to the study of singularities of holomorphic foliations using ramifications:
maps ρ : (C2, 0)→ (C2, 0) with local equation (y1, y2) = (xr1, x2) for some integer r ≥ 1. We
study the behaviour of sequences of blowing-ups under these transformations, and prove
that if π : X → (C2, 0) is a finite sequence of blowing-ups, then there is a ramification
ρ such that if π̃ : X → (C2, 0) is the elimination of points of indeterminacy of π−1 ◦ ρ,
then it is a sequence of blowing-ups centered at regular points of the exceptional divisor.
Thus, any finite sequence of blowing-ups can be transformed into one without combinatorial
subsequences. This generalizes the fact that any germ of singular curve can be transformed
by a ramification into a union of regular components.

When π is the reduction of singularities of a germ of holomorphic foliation F in (C2, 0),
then ρ can be chosen such that the pull-back π̃⋆ρ⋆F has only simple singularities.

248 Fortuny Ayuso Transgressive Computing

As an example, we give in Section 2 a simplified version of Camacho and Sad’s proof of
the Separatrix Theorem [6, 7, 8, 18], avoiding the (cumbersome) combinatorial arguments.

The technique described in this paper has already been successfully used in contexts
related to singularity theory: for studying an oscillation problem related to Thom’s Gradient
Conjecture (see [12], in which they are called ramification-rectification morphisms) and for
studying the polar curves of plane holomorphic foliations ([15], [10] and [11]).

1 Reduction of Singularities and Ramifications

Fix a sequence of blowing-ups π == πn ◦ · · · ◦π1 : X → (C2, 0) whose respective exceptional
lines are Ei. Given a germ of analytic curve γ at (C2, 0), π⋆γ will denote the strict transform
of γ by π. The following notation will simplify all the discussions below:

Definition 1.1. We say that π is a regular tree of blowing-ups if the center of πi is a regular
points of the exceptional divisor for all i. The sequence π is a chain of blowing-ups if the
center Pi+1 of πi+1 belongs to Ei. Finally, a regular tree which is a chain will be called a
string of blowing-ups; its length is n.

If π is a regular tree, we say that an irreducible component Ei of the exceptional divisor
E is a son of component Ej (and that Ej is the father of Ei) if Ei ∩ Ej 6= ∅ and i > j.

Definition 1.2. Let E = ∪ni=1Ei be the exceptional divisor of π. We say that the irre-
ducible component Ej corresponding to πj is π−terminal if (Ej ·Ej) = −1 (self-intersection
number). In other words, there is no i > j such that the center Pi of πi belongs to Ej (i.e.
Ej has no sons).

The following notation has become common in the present contex:

Definition 1.3. An irreducible analytic curve γ : (C, 0)→ (C2, 0) is a curvette through Ei
if π⋆γ meets E transversely at Ei (in particular, π⋆γ is non-singular); notice that trans-
versely implies that π⋆γ ∩E is a non-singular point of E (it is not a crossing of irreducible
components of E).

We say that a germ of analytic curve γ is π−terminal if it is a curvette through a
π−terminal divisor.

Given a regular tree π : X → (C2, 0) and a π−terminal divisor E, there exists a unique
string πE : XE → (C2, 0) with terminal divisor Ẽ such that there is a commutative diagram

X
π

##GG
GG

GG
GG

G

πE

��
XE

πE // (C2, 0)

where πE is a finite sequence of point blowing-ups and (πE)−1(Ẽ) = E. This πE is called
a branch of π.

The fundamental concept of this paper is that of ramification:

Ramifications and Singularities of Foliations 249

Definition 1.4. A ramification morphism is a map ρ : (C2, 0) → (C2, 0) such that there
are local analytic coordinates (u, v) and (x, y) at (0, 0) ∈ (C2, 0) in which

(x(u, v), y(u, v)) = ρ(u, v) = (ur, v)

for some positive integer r, called the ramification order. These coordinates will be called
adapted to ρ. The curve u = 0 is the direction of ramification.

Given a sequence of blowing-ups π and a ramification morphism ρ, we say that ρ is
transversal to π if there are local coordinate systems (u, v) and (x, y) adapted to ρ such
that none of the centers of π is the infinitely near point given by T(0,0)(x = 0). Transversality
to a curve will mean transversality to its resolution of singularities.

Recall [14, 1] that given a germ of analytic surface YP and g, h ∈ OYP
relatively prime,

with g(P) = h(P) = 0, there is a finite sequence of point blowing-ups η : Ỹ → Y such that
if f = g/h, then f ◦ η is a well-defined holomorphic map (the result in [14] is much more
general, but we only need this statement). The minimal η with this property is called the
elimination of points of indeterminacy of f (see also [19]).

A holomorphic foliation F in a non-singular analytic surface X can be identified locally
with a germ of holomorphic 1−form ω, whose local expression a(x, y)dx+ b(x, y)dy is such
that a and b are relatively prime in C{x, y}. We will speak (abusing notation) indifferently
of F and ω when there is no possibility of confusion. A separatrix of F is a germ of analytic
curve γ : (C, 0)→ X such that the pull-back γ⋆ω is null. A point P is a simple singularity
of F if there are coordinates at P such that ω(P) = 0 and the linear part of the vector field
−b(x, y)∂/∂x + a(x, y)∂/∂y has two different eigenvalues µ 6= λ 6= 0 with µ/λ 6∈ Q>0.

We shall make use of the well-known

Theorem (Seidenberg’s reduction of singularities, extended version [16, 5]).
Given a germ of holomorphic foliation F in (C2, 0), there is a finite sequence of blowing-ups
π : X → (C2, 0) such that:

1. All the singularities of the pull-back π⋆F of F are simple. [16]

2. If E ⊂ π−1(0, 0) is an irreducible component of the exceptional divisor which is di-
critical (i.e. E is generically transversal to π⋆F), and Γ 6⊂ π−1(0, 0) is an invariant
curve of π⋆F which intersects E, then Γ and E meet transversaly [5].

Condition (2) can be stated saying that any component of the exceptional divisor which
is generically transversal to F is actually transversal to F . A reduction of singularities of
F is a map π which satisfies (1) and (2). If π is minimal, it will be called the reduction of
singularities of F . Notice that usually only (1) is required, but we shall impose also (2).

If F is a germ of foliation in (C2, 0), an F−terminal object (curvette, curve, divisor. . .)
will be a π−terminal object for π the reduction of singularities of F . Notice that if ρ⋆F is
the pull-back of F , by ρ, then any separatrix of ρ⋆F is mapped by ρ into a separatrix of F .

Our main results are the following:

250 Fortuny Ayuso Transgressive Computing

Theorem 1.5. Let π : X → (C2, 0) be a finite sequence of blowing-ups. There exists a
ramification ρ such that if π̃ : X̃ → (C2, 0) is the elimination of points of indeterminacy of
π−1 ◦ ρ : (C2, 0)→ X , then π̃ is a regular tree.

Moreover, if π is a reduction of singularities of a holomorphic foliation F , then ρ can
be chosen such that all the singularities of π̃⋆ρ⋆F are simple.

And its obvious consequence:

Corollary 1.6. Given a germ of holomorphic foliation F in (C2, 0), there exits a ramifi-
cation morphism ρ such that the reduction of singularities of ρ⋆F is a regular tree.

Remark 1.7. It is clear that the reduction of singularities of a foliation F is a regular tree
if and only if any F − terminal curve is regular.

1.1 Elimination of points of indeterminacy of a ramification

Let π : X → (C2, 0) be the blowing up of the origin and ρ : (C2, 0) → (C2, 0) any ramifica-
tion. In suitable systems of coordinates, the equations of the rational map π−1 ◦ ρ are

(x1, y1) = (ur, v/ur) and (x2, y2) = (ur/v, v) (1)

(in each of the local charts of X). An elementary argument shows that the indeterminacy
of π−1 ◦ ρ at the origin is eliminated in exactly r blowing-ups. Let E1 be the exceptional
divisor of X ; if ρ̃ : X̃ → X is the elimination of points of indeterminacy of π−1 ◦ ρ and the
exceptional divisor of X̃ is decomposed as Ẽ = E11 ∪ · · · ∪ E1r (in order of apparition of
exceptional lines), then there is a point P ∈ E1 such that ρ̃(E1i) = P for i = 1, . . . , r − 1
whereas ρ̃(E1r) = E1 and, again in suitable coordinates,

(x1, y1) = (urr, vr) with E1 ≡ (x1 = 0) and E1r ≡ (ur = 0) (2)

that is, ρ̃ is a ramification of order r, at any Q ∈ E1r − E1(r−1), in the direction of the
exceptional divisor E1r.

Equations (1) and (2) are easily translated to the case of a string π of n blowing ups: one
verifies easily that ρ̃ is a string of nr blowing-ups. Let E = E1∪ · · · ∪En be the exceptional
divisor of π. Applying equation (2) iteratively one sees that the exceptional divisor of π̃
can be written Ẽ = (E11 ∪ · · · ∪ E1r) ∪ · · · ∪ (En1 ∪ · · · ∪ Enr) with ρ̃(Eij) ⊂ Ei. Cover X
and X̃ with the standard charts:

{ X =
(
U1 ∪ · · · ∪ Un

)
∪ Un

X̃ =
(
U11 ∪ · · · ∪ U1r

)
∪ · · · ∪

(
Un1 ∪ · · · ∪ Unr

)
∪ Unr

(3)

where each U i contains (abusing terminology) the point at infinity of the exceptional divisor
Ei of πi, and Un contains the origin of En. Also, U ij contains the point at infinity of Eij
for each i, j and Unr the origin of Enr. There are systems of coordinates (the usual ones)
(xi, yi) for U i, (xn, yn) for Un, (uij, vij) for U ij and and (uir, vir) for Uir such that:

(uir, vir) =

(
1

vir
, uirvir

)
and (uij , vij) =

(
1

vi+1j+1
, ui+1j+1v

2
i+1j+1

)
(4)

and the analog conditions in X . An easy induction proves the following:

Ramifications and Singularities of Foliations 251

Proposition 1.8. The local expression of ρ̃ in U ij and U i is:

(xi, yi) = ρ̃(uij , vij) =
(
ur−j+1
ij vr−jij , uj−1

ij vjij

)
. (5)

For chains of blowing-ups which follow the infinitely near points of a curve with only
one Puiseux pair, we have:

Proposition 1.9. Assume π : X → (C2, 0) is a chain of blowing-ups which is the desingu-
larization of a curve γ with one Puiseux exponent of the form p/q with (p, q) = q. Then:

• There is a ramification ρ transversal to π such that the elimination of points of inde-
terminacy ρ̃ : X̃ → X of π−1 ◦ ρ is a string.

• Moreover, if ρ is of order r = qr and Q is the intersection of π⋆γ with the exceptional
divisor π−1(0), then ρ̃ is, at ρ̃−1(Q), a ramification transversal to π⋆γ of order rq

Proof. Write the continuous fraction expansion of p/q = [a0, a1, . . . , ah]. Let π0 be the
maximal string in π starting at the beginning and π0 the remaining blowing-ups. Consider
the diagram

X
π0

��

X̃

ρ̃
99s

s
s

s
s

s ρ̃0
//

π̃0

��

X0

π0

��

(C2, 0)
ρ

// (C2, 0)

(6)

where X̃ is the elimination of points of indeterminacy of π−1
0 ◦ ρ. To be coherent with the

notation of Proposition 1.8, assume that π0 has length n, i.e. n = a0 + 1. We claim that
for some r, the map ρ̃0 lifts holomorphically to X (in other words, for that r, the rational
map ρ̃ is actually holomorphic). The sequence π0 starts by blowing-up En ∩ En−1, so that
we need only check that ρ̃0 restricted to En−1r ∪En1 ∪ · · · ∪Enr−1 lifts to X . Consider the
matrices

A =

(
1 −1
0 1

)
and B =

(
1 0
−1 1

)
,

and, for any l = 1, . . . , h−1 and any i = a1 + · · ·+al+ s let ϕi(A,B) = BsAal · · ·Ba2Aa1−1

(assuming l odd, and the corresponding product for l even). The equations of ρ̃ at Unj are

ρ̃(unj, vnj) =

(
u
ej
1
njv

ej
2
nj , u

fj
1
njv

fj
2
nj

)
(7)

where (
ej1 ej2
f j1 f j2

)
= ϕi(A,B) ·

(
r − j + 1 r − j
j − 1 j

)

252 Fortuny Ayuso Transgressive Computing

for some 0 ≤ i ≤ a1 + · · ·+ah which depends on the point of X we are looking at. From (7)
it is clear that ρ̃ is holomorphic in Unj (that is, has no indetermination point in Unj) if and

only if ej1e
j
2 ≥ 0 and f j1f

j
2 ≥ 0 (i.e. if the exponents in each component have the same sign).

Hence, it is enough to find a ramification order r for which all the possible pairs (ej1, e
j
2)

and (f j1 , f
j
2) share that property. One proves by induction that for any index i, there are

Ki, Li, αi, βi ∈ Z such that
(
ej1 ej2
f j1 f j2

)
=

(
Kir + αi(j − 1) Kir + αij
Lir + βi(j − 1) Lir + βij

)
. (8)

Let r be a common multiple of αiβi for all 0 ≤ i ≤ a1 + · · · + as. For this r, the exponents
ej1, e

j
2 are always consecutive multiples of αi so that ej1e

j
2 ≥ 0 because either one of them

is zero or both have the same sign. The same holds for f j1 and f j2 and βi. Thus, ρ̃ is
well-defined for this r, as needed.

The hypothesis on r shows that ρ̃−1(Q) ∈ Enj0 for j0 + a0q = p. Using the extended
Euclidean Algorithm one proves that at this divisor, the corresponding fj and ej satisfy

f j2 = 0 and ej2 = rq in (7). A simple computation gives now the second statement.
The proof of the following result is a tedious but straightforward computation:

Lemma 1.10. Let σ : (C2, 0) → (C2, 0) be a holomorphic map such that there are local
coordinates (x, y) and (u, v) for which (x, y) = σ(u, v) = (ue1ve2 , uf1vf2) with (e1, e2) and
(f1, f2) as in (8). If F has a simple singularity at (0, 0), then σ⋆F has a simple singularity
at (0, 0).

We can now give the
Proof of Theorem 1.5. Let T = F1 ∪ · · · ∪ Fp be the union of all the terminal divisors of π,
and let γ1, . . . , γp be a corresponding family of π−terminal curves. We may assume that all
the γi are singular, and that π is given by the sequence π = πp ◦ · · · ◦ π1, where πi is the
blowing-up sequence leading to Fi. It is clearly enough to show that for any i, there is a
ramification morphism ρi such that ρ⋆i γi is a union of regular curves, for ρ = ρp ◦ · · · ◦ ρ1

would satisfy the thesis. Hence, we need only prove that given an irreducible singular curve
γ with desingularization π, there is a ramification ρ such that

1. The curve ρ⋆γ is a union of non-singular branches.

2. If π̃ : X̃ → (C2, 0) is the elimination of poins of indeterminacy of π−1 ◦ ρ, then it is a
regular tree.

3. For the second statement: any Q ∈ X̃ whose image ρ̃(Q) in X is simple for π⋆ω, is
simple for ρ̃⋆π⋆ω.

If γ has multiplicity m, then (1) holds for any ramification of order r multiple of m.
Property (2) is a straightforward consequence of propositions 1.8 and 1.9.
Finally, (3), follows from Lemma 1.10, because ρ̃ sends divisors into divisors and se-

paratrices into separatrices and because the reduction of singularities of F satisfies both
properties of the extended version of Seidenberg’s theorem.

Ramifications and Singularities of Foliations 253

2 Application: the Separatrix Theorem

Given a germ of holomorphic foliation F in (C2, 0), and a regular separatrix S passing
through Q = (0, 0), the Camacho-Sad index of F at Q along S is

IQ(F , S) = − Res0

(
a(x, 0)

b(x, 0)
dx

)
.

(assuming that F is defined near Q by ω = ya(x, y)dx + b(x, y)dy and S ≡ (y = 0)).
The following result is classical (partially known at least since [4]):

Proposition 2.1. If Q is a simple singularity of F , S is a smooth separatrix of F through
Q with IQ(F , S) 6= 0 then there is another (smooth) separatrix T passing through Q.

Let now π be the blowing-up of (0, 0) and call E to the exceptional divisor. Then

Theorem 2.2 ([6]). If E is invariant for the pull-back π⋆F of F and P1, . . . , Pr are the
singular points of π⋆F in E, then

r∑

i=1

IPi(F , E) = −1 (9)

Moreover, if S is invariant for F , π⋆S is its pull-back by π and Q = E ∩ S, then

IQ(π⋆F , π⋆S) = I(0,0)(F , S) − 1. (10)

If S and T are both smooth separatrices of F and Q = S ∩ T is a simple singularity of
F , then IQ(F , S) = 1/IQ(F , T) whenever any of both indices is non-zero.

Theorem 2.3 ([6]). Given a germ of holomorphic foliation F at (C2, 0), there is a sepa-
ratrix for F passing through (0, 0).

Proof. We assume from now on that the foliation is non-dicritical, as these have not only
one but an infinite number of separatrices.

Ramifications send separatrices of ρ⋆F into separatrices of F so that, by Corollary 1.6,
we need only prove the result for foliations whose reduction of singularities is a regular tree.

Let, thus, F be such that its reduction of singularities π : X → (C2, 0) is a tree and let
E = E1∪· · ·∪En be the exceptional divisor. By Proposition 2.1, we only need to show that
there is a point Q ∈ Ei for some i with Q 6∈ Ej for i 6= j such that IQ(F , Ei) 6= 0. Assume,
by contradiction, that there is no such Q. This means that, for any Q in the regular part
of E, the corresponding index is 0. Under this assumption, we have:

Remark: If an irreducible component F of E has s sons, then
∑

Q∈F
IQ(F , F) = −s− 1, (11)

and all the terms in the sum are rational numbers. This is (easily) proved by induction on
the maximal length of a branch starting from F , using Theorem 2.2 and our assumption

254 Fortuny Ayuso Transgressive Computing

that all the residues in the regular part of F are 0. A direct consequence of this is that if
F ′ is the father of F and P = F ∩ F ′, then

IP (F , F ′) = −1. (12)

The first divisor E1 having no father, all the singularities belonging to it either are the
crossing with a son of E1 or have zero index along E1. Hence, from the Remark and
Equation (12), if G1, . . . , Gr are all the sons of E1, letting Qi = E1 ∩Gi, we must have

−r − 1
(11)
=
∑

IQ(F , E1)=

r∑

i=1

IQi(F , E1)
(12)
=

r∑

i=1

−1 = −r

which gives the desired contradiction.

References

[1] Complex algebraic surfaces, London Math. Soc. Student Texts, no. 34, Cambridge
University Press, 1996.

[2] S. S. Abhyankar, Resolution of singularities of arithmetical surfaces, Arithmetical Al-
gebraic Geometry (Proc. Conf. Purdue Univ., 1963), Harper & Row, New York, 1965,
pp. 111–152.

[3] J. M. Aroca, H. Hironaka, and J. L. Vicente, Desingularization theorems, Memorias
Matemáticas del Instituto Jorge Juan, vol. 30, C.S.I.C., Madrid, 1977.

[4] C. A. Briot and J. C. Bouquet, Propriétés des fonctions définies par des equations
différentielles, Journal de L’École Polytechnique (1856), no. 36, 133–198.

[5] C. Camacho, A. Lins-Neto, and P. Sad, Topological invariants and equidesingularization
for holomorphic vector fields, Journal of Differential Geometry 20 (1984), 143–174.

[6] C. Camacho and P. Sad, Invariant varieties through singularities of holomorphic vector
fields, Ann. of Math. 115 (1982), 579–595.

[7] J. Cano, An extension of the Newton-Puiseux polygon construction to give solutions of
pfaffian forms, Ann. de L’Institut Fourier (1993), no. 43, 125–142.

[8] , Construction of invariant curves for singular holomorphic vector fields, Proc.
of the AMS 125 (1997), no. 9, 2649–2650.

[9] O. Chisini, La risoluzione delle singolarità di una superficie mediante transformazioni
birazionali dello spazio, Mem. Accad. Sci. Bologna VII (1891), no. 8.

[10] N. Corral, Courbes polaires d’un feuilletage singulier, C. R. Acad. Sci. Paris Sér. I
Math. 331 (2000), no. 1, 51–54.

Ramifications and Singularities of Foliations 255

[11] N: Corral, Sur la topologie des courbes polaires de certaines feuilletages singuliers, Ann.
Inst. Fourier (2003).

[12] P. Fortuny and F. Sanz, Gradient vector fields do not generate twister dynamics, Jour-
nal of Differential Equations 174 (2001), 91–100.

[13] W. Fulton, Introduction to toric varieties, Princeton University Press, Princeton, NJ,
1993.

[14] H. Hironaka, Resolution of singularities of an algebraic variety over a field of charac-
teristic zero, Ann. of Math. 79 (1964), 109–306.

[15] P. Rouillé, Sur les polaires des certaines 1-formes, C. R. Acad. Sci. Paris. Série I, Math.
326 (1998), no. 6, 677–680.

[16] A. Seidenberg, Reduction of singularities of the differential equation ady = bdx, Amer.
J. Math. (1968), 248–269.

[17] B. Teissier, Valuations, deformations and toric geometry, Resolution of Singularities
(A Research Textbook in Tribute to Oscar Zariski) (F. Oort H. Hauser, J. Lipman and
A. Quirós, eds.), Progress in Mathematics, vol. 181, Birhkäuser, 2000, Proceedings of
the Working Group on Resolution of Singularities, Obergurgl 1997.

[18] M. Toma, A short proof of a theorem of Camcho and Sad, Enseign. Math. 45 (1999),
311–316.

[19] Lê Dũng Tràng and C. Weber, Équisingularité dans les pinceaux de germes de courbes
planes et c0−suffisance., Enseign. Math. 43 (1997), no. 3-4, 355–380.

[20] R. J. Walker, Reduction of the Singularities of an Algebraic Surface, Ann. Math. (1935),
no. 36, 336–365.

[21] O. Zariski, The reduction of singularities of an algebraic surface, Ann. of Math. 40
(1939), 639–689.

[22] , Reduction of the singularities of algebraic three-dimensional varieties, Ann. of
Math. (2) 45 (1944), 472–542. MR 6,102f

Pedro Fortuny Ayuso.
Colegio Mayor Peñafiel.

Universidad de Valladolid. Spain.
pfortuny@sdf-eu.org

http://pfortuny.sdf-eu.org

256 Fortuny Ayuso Transgressive Computing

Formal power series and polynomial dynamical systems 257

Formal power series and polynomial dynamical systems

Mikhail V. Foursov Christiane Hespel

Abstract

In this article we consider the problem of describing the formal power series that
arise as generating series of polynomial affine dynamical systems. We introduce new
notions of multiset weighted grammars and multiset weighted automata and show that
the generating series of polynomial dynamical systems are generated by such grammars.
We conjecture moreover that any formal power series generated by a multiset weighted
grammar is a generating series of a polynomial dynamical system.

1 Introduction

The notion of formal power series in noncommutative variables was introduced by M.P.
Schützenberger [9], in relation to automata and formal languages. Many problems from the
theory of formal languages use formal power series : for example, arithmetic problems of
the theory of formal languages, study of stochastic processes and of the context-free gram-
mars. The formal power series also represent an interesting tool for solving combinatorial
problems : enumeration of planar graphs, permutations and rearrangements in monoids.

Two principal families of formal power series have been studied : rational series and a
subfamily of them formed by the recognizable and algebraic series. The rational series were
also introduced by M.P. Schützenberger who showed that certain properties of rational series
in one variable have a good generalization in noncommutative variables. He established the
equivalence between the recognizability and the rationality of proper formal power series.

Another application of formal power series lies in the treatment of dynamical systems.
M. Fliess [4] developed the idea that the generating series of a system can be used to code
the input/output behavior of the system. This idea, together with the idea that the natural
realization of a rational series is a bilinear system, led to the creation the algebraic modeling
[7].

The main goal of this article is to describe, similarly to the relationship between the
rational series and bilinear systems, the relationship between another class of formal power
series and a larger class of affine dynamical systems. In sections 4 and 5, we introduce the
multiset weighted grammars and multiset weighted automata. In section 6, we show that
the generating series of polynomial dynamical systems are exactly those accepted by the
multiset weighted automata. In section 7, we conjecture furthermore that the formal power
series generated by multiset weighted grammars are exactly the same as the those accepted
by multiset weighted automata.

258 Foursov et al. Transgressive Computing

2 Preliminaries

An affine dynamical system is a system of ordinary differential equations of the form

q′(t) =v0(q) +
m∑

j=1

vj(q)uj(t),

s(t) =h(q(t)),

(1)

where

1. u(t) = (u1(t), . . . , um(t)) ∈ Rm is the input vector,

2. q(t) = (x1, . . . , xn) ∈M is the current state, whereM is a real differential manifold,

3. {v0,v1, . . . ,vm} is a family of smooth vector fields on M,

4. h :M→ R is a smooth function called the observation map,

5. s(t) ∈ R is the output function.

We will be working with the causal functional that associates to the set of m input
functions (also called commands) u(t) the corresponding output function s(t). To the
commands u1(t), u2(t), . . . , um(t) we associate the alphabet Z = {z0, z1, . . . , zm} of (m+ 1)
letters, z0 being associated to the drift (which we will represent as an additional constant
input function u0(t) ≡ 1). To every multi–index I = (i1, i2, . . . , ik) we associate the word
w = zI = zi1zi2 · · · zik . These words form Z∗, the free monoid over Z. (The empty word is
denoted by λ.)

The behavior of causal functionals is uniquely described by two noncommutative power
series: the generating series and the Chen series.

The generating series G =
∑

w∈Z∗〈G|zI〉zI of the system [4] is the geometric contribu-
tion and it is independent of the input. Its coefficients 〈G|zI 〉 are obtained by iteratively
applying Lie derivatives corresponding to the vector fields to the observation map and
evaluating the resulting expression at the initial state q0:

〈G|zI〉 = 〈G|zi1zi2 · · · zik〉 = vi1 ◦ vi2 ◦ · · · ◦ vik ◦ h
∣∣
q0
.

(The Lie derivative of the function f(x1, . . . , xn) with respect to the vector field v =
(v1, . . . , vn) is defined by v(f) =

∑
i vi

∂f
∂xi

.) The generating series completely describes
the causal functional. More precisely, two formal power series define the same functional if
and only if they are equal [5, 11].

The Chen series Cu(t) =
∑

w∈Z∗〈Cu(t)|zI〉zI measures the input contribution [2, 3], and
is independent of the system. The coefficients of the Chen series are calculated recursively
by integration using the following two relations:

• 〈Cu(t)|λ〉 = 1,

Formal power series and polynomial dynamical systems 259

• 〈Cu(t)|w〉 =

∫ t

0
〈Cu(τ)|v〉uj(τ)dτ for a word w = vzj .

The causal functional s(t) is then obtained locally as the product of the generating series
and the Chen series [6]:

s(t) = 〈G||Cu(t)〉 =
∑

w∈Z∗
〈G|w〉〈Cu(t)|w〉 (2)

This formula is known as the Peano–Baker formula, as well as the Fliess’ fundamental
formula.

3 Rational weighted grammars, rational formal power series

and bilinear dynamical systems

A bilinear dynamical system is an affine dynamical system (1) such that the coefficients of
the vector fields are linear in the states.

A formal power series P ∈ K〈〈Z〉〉 is called rational [1] if it is obtained by a finite
numbers of the four main operations (sum, Cauchy product, external product over the ring
K and Kleene star) on the individual letters. The rational formal power series are accepted
by means of weighted (or multiplicity) automata [10].

The rational series are quite interesting in the study of dynamical system because the
generating series of a bilinear dynamical system is rational.

In this section we introduce rational weighted grammars which generate the rational
formal power series. Consider for example the following bilinear dynamical system :

y′(t) = x(t) + y(t)u(t), y(0) = y0

x′(t) = − x(t)u(t), x(0) = x0

s(t) = y(t)

(3)

Its generating series in accepted by the following weighted automaton :

Y X1

x0y0

z0

z1 −z1

Definition 3.1. A rational weighted grammar over the field K is a quintuple
(V,Σ, P, S, f), where

• V is a finite set of nonterminal symbols,

• Σ is (another) finite set of terminal symbols,

260 Foursov et al. Transgressive Computing

• S is a distinguished element of V called the start symbol,

• P is a binary relation V → K × Σ × (V \{S}) called the production rules, with the
property that the binary relation for the start symbol does not involve any terminal
symbols.

• f : V → K is a function, called the evaluation function.

Remark 3.2. Let us remark that the production rules do not involve any rules of the
form A → k ∈ K, and these rules are grouped into the evaluation function. The reason
for this choice will be explain hereafter. The condition on the binary relation is made for
convenience, but a grammar that does not satisfy these rules can be easily rewritten in such
a form.

Definition 3.3. Let A→ k1zB ∈ P , where k1 ∈ K, z ∈ Σ and A,B ∈ V . Let w = k2w̄A ∈
K × Σ∗ × V . Then k1 · k2w̄zB is derivable from w, denoted w =⇒ k1 · k2w̄zB.

Definition 3.4. The monomial kw (where k ∈ K and w ∈ Σ∗×V) is said to be derivable

from S, if it can be obtained by a finite number of derivations starting at S.

Definition 3.5. The coefficient k of the word z ∈ Σ∗ of the formal power series generated
by the grammar is calculated as follows : k =

∑
kif(Ai), where the sum is over all the

words derivable from S of the form kizAi, where ki ∈ K and Ai ∈ V .

The generating series of the dynamical system (3) is generated by the following gram-
mar :

S → Z

Z → z0X + z1Z

X → − z1X
f(Z) = z0

f(X) = x0

(4)

Theorem 3.6. Let

x′i(t) =
∑

j

aijxj(t) +
∑

j,k

bijkxj(t)uk(t)

xi(0) = xi

s(t) =
∑

cixi(t)

(5)

be a bilinear dynamical system with m inputs u1(t), . . . , um(t). Then its generating series
is generated by the following rational grammar :

S → ciXi

Xi →
∑

j

aijXjz0 +
∑

j,k

bijkXjzk

f(Xi) = xi

(6)

and recognized by the following weighted automaton :

Formal power series and polynomial dynamical systems 261

• each state is a starting state with the weight ci,

• each state is an output state with the weight xi,

• for the state Xi the transitions are δ(Xi, z0) = {aijXj} and δ(Xi, zk) = {bijkXj} for
k > 0.

Proof.
The correspondence between bilinear systems and weighted automata is well-known [8].

The correspondence between weighted automata and rational weighted grammars is obvious
from the construction.

4 Multiset weighted grammars and multiset formal power
series

In this section, we will introduce multiset weighted grammars and explain the reasons why
we have chosen this definition.

Definition 4.1. A multiset is a grouping of elements with no particular order, in which
the elements can appear several times.

Example 4.2. {A,A,B} = {B,A,A} is a multiset.

Definition 4.3. A weighted multiset grammar over the field K is a quintuple
(V,Σ, P, S, f), where

• V is a finite set of nonterminal symbols,

• Σ is (another) finite set of terminal symbols,

• S is a distinguished element of V called the start symbol,

• P is a binary relation V → K × Σ∗ ×M(V \{S}) called the production rules (where
M(V \{S}) is the set of multisets over V \{S}), with the property that the binary
relation for the start symbol does not involve any terminal symbols.

• f : V → K is a function called the evaluation function.

Definition 4.4. Let A → k1zW ∈ P , where A ∈ V , k1 ∈ K, z ∈ Σ∗ and W ∈ M(V). Let
w = k2w̄(X ∪ {A} ∪ Y) ∈ K × Σ∗ ×M(V), with k2 ∈ K, w̄ ∈ Σ∗ and X,Y ∈ M(V). Then
w =⇒ k1k2w̄z(X ∪W ∪ Y).

In other words, the words are generated from left to right in such a way that the
nonterminal symbols are all kept in the multiset.

262 Foursov et al. Transgressive Computing

Definition 4.5. The monomial kw (where k ∈ K and w ∈ Σ∗ ×M(V)) is derivable from

S, S
∗

=⇒ kw, if it can be obtained by a finite number of derivations starting at S.

Definition 4.6. The evaluation function f can be extended to f̃ over K〈Σ∗ ×M(V)〉 by
the following rules:

• f̃(A+B) = f̃(A) + f̃(B), where A,B ∈ K〈Σ∗ ×M(V)〉

• f̃(kzA) = kzf̃(A) for each k ∈ K, z ∈ Σ∗ and A ∈M(V),

• f̃(A ∪B) = f̃(A) · f̃(B), where A,B ∈M(V),

• f̃({Y }) = f(Y) for each Y ∈ V .

Definition 4.7. The word w ∈ Σ∗ belongs to the support of the formal power series P
generated by the multiset weighted grammar G if there is a derivation S

∗
=⇒ kwY with

some k ∈ K and Y ∈M(V). Usually, k 6= 0 is assumed.

Definition 4.8. The coefficient k of the word w belonging to the support of the formal
power series P generated by the multiset weighted grammar G is given by k =

∑
kif̃(Ai),

where the sum is over all the words kiwAi
∗⇐= S, where ki ∈ K and Ai ∈M(V).

Definition 4.9. A formal power series generated by a multiset weighted grammar is called
a multiset formal power series.

Example 4.10. Let us consider the following grammar {S → Y, Y → zY 2, f(Y) = 1}.(For
simplicity, we will not use the curly brackets to note the multisets.) The derivations proceed
as follows :

S =⇒ Y =⇒ zY 2 =⇒ z2Y 3 + zY zY 2 = 2z2Y 3 =⇒ 6z3Y 4 =⇒ · · ·

The formal power series generated by this grammar is thus

L = 1 + z + 2z2 + 6z3 + · · · =
∑

n

n!zn.

We have chosen this somewhat unusual definition of grammars for the following reasons
(among others), essentially in view of their utilization to describe the generating series of
polynomial dynamical systems.

Remark 4.11. The nonrecursiveness of the start symbol and the property that the binary
relation for the start symbol does not involve any terminal symbols are not limitations. If
these conditions are not satisfied, the grammar can be easily rewritten by adding a new
start symbol so that these two properties are satisfied in the new grammar.

Formal power series and polynomial dynamical systems 263

Remark 4.12. No class of weighted grammar where all symbols are fully noncommutative
seems to correspond to polynomial affine dynamical systems. Consider for example the
weighted multiset grammar

G1 =

S → 2XY,

X → 2z1Y,

Y → 2z2X,

f(X) = 1, f(Y) = 1.

(7)

Now, let us try the two following weighted grammars where all the symbols are fully non-
commutative :

G2 =

S → XY + Y X,

X → 2z1Y,

Y → 2z2X,

f(X) = 1, f(Y) = 1.

G3 =

S → XY + Y X,

X → z1Y + Y z1,

Y → z2X +Xz2,

f(X) = 1, f(Y) = 1.

which might seem to be other choices to describe polynomial affine dynamical systems. The
languages generated by these three grammars are :

L1 = 2 + 4z1 + 4z2 + 16z1z2 + 16z2z1 + 32z1z2z1 + 32z2z
2
1 + 32z1z

2
2 + 32z2z1z2 + · · ·

L2 = 2 + 4z1 + 4z2 + 16z1z2 + 16z2z1 + 40z1z2z1 + 24z2z
2
1 + 24z1z

2
2 + 40z2z1z2 + · · ·

L3 = 2 + 4z1 + 4z2 + 16z1z2 + 16z2z1 + 32z1z2z1 + 16z2z
2
1 + 16z2

1z2 + 16z1z
2
2+

+ 16z2
2z1 + 32z2z1z2 + · · ·

We have thus L1 6= L2 and L1 6= L3.

Remark 4.13. It seems to be impossible to devise a grammar that corresponds to a non-
linear dynamical system, without using an evaluation function. Compare for example :

G1 =

S → Y

Y → zY 2

f(Y)→ 1,

and G2 =

{
S → Y

Y → zY 2 + 1

In the second case, the derivations end in the traditional way, i.e. when there are no more
nonterminal symbols. The languages generated by these grammars are :

L1 = 1 + z + 2z2 + 6z3 + · · · ,
L2 = 1 + z + 16z2 + 272z3 + · · ·

5 Multiset weighted grammar in Greibach normal form and
weighted multiset automata

Definition 5.1. A multiset weighted grammar is said to be in Greibach form if the
rules involve only one letter of the terminal alphabet, that is P is a binary relation V →
K × Σ× (V \{S})∗.

264 Foursov et al. Transgressive Computing

We say that such grammars are in Greibach form by analogy to the context–free (ordi-
nary) grammars, even though the languages we consider are not necessarily context–free and
even though not all context–free languages can be generated by multiset weighted grammars
(for example {anbn|n ∈ N} cannot be generated by such a grammar).

Definition 5.2. A weighted multiset automaton M over the field K is a septuple
(Q,Σ,Γ, δ, q0, F, f), where

1. Q is a set of states,

2. Σ is a finite set called the input alphabet,

3. Γ is a finite set called the multiset alphabet,

4. q0 is the initial state,

5. F ⊆ Q is a set of final states,

6. δ is a transition function from Q× (Σ∪{λ})× (Γ∪ {λ}) to subsets of K ×Q×M(Γ),
where M(Γ) is the set of multisets over Γ,

7. f : Γ→ K, is an evaluation function.

The configurations of the automaton are denoted by the quadruple [q, w, Y, k] where q
is a state, w the word processed so far, Y the current multiset and k the current monomial
coefficient.

The computations in a weighted multiset automaton are effectuated as follows. The
multiset is initiated with {S} and the monomial coefficient with 1. Now suppose [k, qj , B] ∈
δ(qi, a,A) and that A is present in the multiset. The above transition causes the automaton
to

• change the state from qi to qj,

• process (read) the symbol a,

• remove A from the multiset of the automaton,

• join the multiset B to the multiset of the automaton,

• multiply the monomial coefficient by k.

The computation can be terminated at a final state by multiplying the monomial co-
efficient by

∏n
i=1 f(Ai), where {A1, . . . , An} is the current state of the multiset of the au-

tomaton. If the multiset contains several occurrences of the symbol A, the above rule can
be applied to each different occurrence of A and thus it will lead to different derivations.

Definition 5.3. The word w ∈ Σ∗ belongs to the support of the formal power series P

accepted by the weighted multiset automaton M if there is a computation [q0, λ, {S}, 1]
∗
⊢

[qf , w, Y, k] for a final state qf , a multiset Y and a nonzero coefficient k ∈ K.

Formal power series and polynomial dynamical systems 265

Definition 5.4. The coefficient k of the word w from the support of the formal power
series P accepted by the weighted multiset automaton M is calculated as the sum of the
coefficients of all the possible computations that allow one to process w.

Theorem 5.5. Let G be the multiset formal power series in Greibach normal form, with
the alphabet Σ, accepted by the multiset weighted grammar (V,Σ, P, S, f), where P = {S →
ksW} ∪ {X → kiziYi}. Then it is recognized by the weighted multiset automaton M =
(Q,Σ,Γ, δ, q0, F, f), where

• Q = {q0, q1, q2},

• Γ = V ,

• F = q2,

• δ(q0, λ, S) = [ks, q1, {W}],

• [ki, q1, {Yi}] ∈ δ(q1, zi,X).

• [1, q2, ∅] ∈ δ(q1, λ, λ).

Proof.
The proof is immediate from the definitions of weighted multiset grammars in Greibach

form and weighted multiset automata.

6 Multiset weighted grammars and polynomial affine dy-
namical systems

Theorem 6.1. Let

x′i(t) = v0i(x1(t), . . . , xn(t)) +
∑

j

vji(x1(t), . . . , xn(t))uj(t)

s(t) = h(x1(t), . . . , xn(t)),

xi(0) = xi,

(8)

be an affine dynamical system with polynomial coefficients vji. Then its generating series
is generated by the following grammar :

S → h(X1, . . . ,Xn),

Xi → v0i(X1, . . . ,Xn)z0 +
∑

j

vji(X1, . . . ,Xn)zj ,

f(Xi) = xi,

(9)

where V = {X1, . . . ,Xn}.

266 Foursov et al. Transgressive Computing

Proof.
The proof is done by induction. The coefficient of the empty word is the same using

both methods.
Now suppose that for each monomial zI = zi1 · · · zik of length k ≤ m, we have vik ◦

vik−1
◦ · · · ◦ vi1 ◦ h =

∑
j cj
∏
p x

ljp
p (t) and S

∗
=⇒ ∑

j cj
∏
pX

ljp
p zI , where all the possible

derivation are effectuated in the grammar.
Take zJ = zIzs for a zs ∈ Σ. The coefficient of zJ in the generating series is

vs

(∑

j

cj
∏

p

x
ljp
p (t)

)
=
∑

j

cj
∑

q

ljqvsq(x1(t), . . . , xn(t))
∏

p

x
ljp−δpq
p (t) (10)

On the other hand, using all the possible derivations involving zs we obtain :

∑

j

cj
∏

p

X
ljp
p zI =⇒

∑

j

cj
∑

q

ljqvsq(X1, . . . ,Xn)
∏

p

X
ljp−δpq
p zIzs. (11)

Applying the evaluation function to (11) and evaluating (10) at the initial conditions,
we see that the coefficient of the generating series of (8) is the same as the coefficient of the
series generated by the multiset weighted grammar (9).

Let us remark that many nonpolynomial dynamical systems can be rewritten as poly-
nomial ones. Suppose, for example, that the dynamical system involves a function f(x(t))
which is a solution of a polynomial system of autonomous ODEs. Then we can introduce
a new variable x̃(t) and add an additional equation that is satisfied by f(x). For exam-
ple, ex(t) can be replaced by x̃(t) inside the dynamical system, together with an additional
equation x̃′(t) = x̃(t).

Of course, not all affine dynamical systems can be rewritten in polynomial form. Con-
sider, for example, the function f(t) =

∑
n ant

n, where an = 1 for prime n and 0 otherwise.
The generating series of the dynamical system y′(t) = f(y(t)) cannot be generated by a
finite weighted grammar (otherwise, we would get an easy way to calculate algorithmically
all prime numbers !)

7 Reduction of multiset weighted grammars to Greibach nor-
mal form

Conjecture 7.1. A multiset weighted grammar can be reduced to a Greibach normal form
(but it is not necessarily unique).

We are unable so far to prove this conjecture, but, at least in the case of one–letter
grammars, once the generated formal power series is identified, it is often not too hard to
find (using a computer algebra software) an affine dynamical system whose generating series
is exactly this series.

Formal power series and polynomial dynamical systems 267

Example 7.2. Take the grammar G = {S → Y, Y → z2Y 2, f(Y) = y0}. It generates the
formal power series R =

∑
n n!yn+1

0 z2n. The Peano-Baker formula gives us immediately
that

s(t) = y0 +
1

2
y0
√
πy0 t exp

(
y0t

2

4

)
erf

(√
y0t

2

)
, (12)

where erf ′(t) = 2e−t
2
/
√
π.

s(t) satisfies the following differential equation:

s′′(t) =
(ts′(t)− s(t))(ts′(t) + 2s(t))

t2s(t)− 2
, s(0) = y0, s

′(0) = 0, (13)

which is not written as a dynamical system. However it can be easily rewritten as :

y′(t) = x(t)(t2y(t)− 2), y(0) = y0,

x′(t) = − 2y2(t)

(t2y(t)− 2)2
− tx(t)y(t)

t2y(t)− 2
, x(0) = 0,

(14)

whose generating series is generated by the grammar in Greibach form:

S → Y

Y → zX(T 2Y − 2)

X → − 2zY 2D2 − zTXY D
T → z

D → − z(2TY + T 2X(T 2Y − 2))D2

f(Y) = y0, f(X) = 0, f(T) = 0, f(D) = −1/2,

(15)

where T represents t and D represents 1/(t2y(t)− 2).
This Greibach grammar is not unique, another one can be obtained from the differential

equation:

y′(t) = x(t), y(0) = y0,

x′(t) =
(tx(t)y(t)− y(t))(tx(t) + 2y(t))

t2y(t)− 2
, x(0) = 0,

(16)

whose solution is also y(t). Other ODEs are also possible.

Remark furthermore that the following grammars in Greibach form, which might seem
to be equivalent to G, generate in fact different formal power series :

{
Y → zZ,

Z → zY 2,

{
Y → zY Z,

Z → zY,

{
Y → zZY 2,

Z → z.
(17)

The easiest way to check this is to write corresponding dynamical systems.

268 Foursov et al. Transgressive Computing

8 Conclusions

In this article we have presented a new type of weighted grammars and weighted automata
generating (respectively accepting) the formal power series which are generating series of
polynomial affine dynamical systems. We conjecture moreover that a more general type of
weighted grammars generate the same formal power series.

An interesting direction to follow is to find a criterion allowing one to verify whether
there exists a weighted multiset automaton accepting a given formal power series. Another
direction could be to describe all the formal power series that arise as generating series of
an affine dynamical system, not necessarily polynomial.

Acknowledgments

The authors would like to thank Didier Caucal and Arnaud Carayol for helpful discussions.

References

[1] J. Berstel and C. Reutenauer, Les séries rationnelles et leurs langages, Masson, 1984.

[2] K.-T. Chen, Algebras of iterated path integrals and fundamental groups, Trans. Am.
Math. Soc. 156 (1971), 359–379.

[3] K.-T. Chen, Iterated path integrals, Bull. Am. Math. Soc. 83 (1977), 831–879.

[4] M. Fliess, Fonctionnelles causales non linéaires et indéterminées non commutatives,
Bull. Soc. Math. France 109 (1981), 3–40.

[5] M. Fliess, On the concept of derivatives and Taylor expansions for nonlinear in-
put/output systems, in “IEEE Conference on Decision and Control” (San Antonio,
Texas), 1983, 643–648.

[6] M. Fliess, Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transi-
tives et séries génératrices, Invent. Math. 71 (1983), 521–537.

[7] C. Hespel, Une étude des séries formelles non commutatives pour l’approximation et
l’identification de systèmes dynamiques, HDR thesis, Université de Lille–I, 1998.

[8] G. Jacob, Réalisation des systèmes réguliers (ou bilinéaires) et séries génératrices non
commutatives, Séminaire d’Aussois, RCP567, Outils et modèles mathématiques pour
l’automatique, l’analyse de systèmes et le traitement du signal (CNRS Landau), 1980.

[9] M.P. Schützenberger, Un problème de la théorie des automates, séminaire Dubreil-Pisot
3 (1959–1960).

[10] M.P. Schützenberger, On the definition of a family of automata, Inform.Contr. 4 (1961),
245–270.

Formal power series and polynomial dynamical systems 269

[11] Y. Wang and E.D. Sontag, On two definitions of observation spaces, Syst. Contr. Lett.
13 (1988), 279–289.

[12] Y. Wang and E.D. Sontag, Algebraic differential equations and rational control systems,
SIAM J. Contr. Optim. 30 (1992), 126–1149.

[13] Y. Wang and E.D. Sontag, Generating series and nonlinear systems; analytic aspects,
local realizability, and I/O representations, Forum Math. 4 (1992), 299–322.

Mikhail V. Foursov
IRISA/Université de Rennes–1

Campus Universitaire de Beaulieu
35042 Rennes Cedex, France

foursov@irisa.fr

Christiane Hespel
IRISA/INSA de Rennes

20, avenue des Buttes de Coësmes
35043 Rennes Cedex, France

hespel@irisa.fr

270 Foursov et al. Transgressive Computing

Noncommutative computing and rational approximation of multivariate ... 271

Noncommutative computing and rational approximation of

multivariate series

Christiane Hespel Cyrille Martig

Abstract

For any multivariate series s ∈ R[[Xi]]1≤i≤n, we propose an algorithm for computing
a family of rational series (sk)k∈N such that the difference s− sk is at least of order k.
The method consists in using the computation in noncommutative variables: for any
order k, we construct a rational (recognizable) series snck

∈ R〈〈Xi〉〉1≤i≤n in noncom-
mutative variables, of minimal rank rk, such that sk is its commutative image. With
this object, we provide the Hankel matrix H(snck

) of the series snck
by computing

the coefficients of every word w ∈ {Xi}∗1≤i≤n from the coefficients of s, in order to
maintain the linear dependence relations existing in the already identified part of the
Hankel matrix H(snck

). And then, we construct a noncommutative rational series snck

of minimal rank, such that its commutative image sk is equal to s, up to order k (for
every monomial of total degree ≤ k). By computing the commutative image of the
regular expression associated with snck

, we rewrite sk as a quotient of 2 polynomials.
The rational series sk is then provided as a quotient of 2 polynomials.
If s is rational, there is an order k0 such that ∀k ≥ k0, the rank of snck

is rk0
. And then

for k ≥ k0, the commutative image of snck
is s, provided as a quotient of 2 polynomials.

Introduction

The starting point is the following : Marie-Françoise Roy has set us the problem of writing
a rational multivariate series in the form of a polynomial quotient. This is a subject of
interest particularly for handling multivariate series in the Symbolic Computation.
We chose to use the noncommutative computation, the Schützenberger theorem allowing us
to reduce a rational series to a recognizable series. By taking this property into account, the
noncommutative series seemed the best computing tool. When dealing with this problem
by this method, we had to construct some rational approximants of multivariate series : the
approximant of the multivariate series s up to order k is described as a pair of polynomials
(Pk, Qk), the coefficients being in R (and not in a semiring [4]). For a given k, this pair is
not generally unique. Moreover, this approximant is not a multivariate Padé approximant
[2] computed by a gaussian elimination or by Gröbner bases [5], is not a generalization
of the Padé approximant [3], but a rational approximant sk obtained by computing its
noncommutative associated series snck of minimal rank. So, when this rank is small, the
method is all the more efficient because the basis vectors are indexed by short words.

272 Hespel et al. Transgressive Computing

When s is rational, the family (Pk/Qk)k∈N converges towards s, is stationary and there is
an order k0 such that ∀k ≥ k0, Pk/Qk = P/Q = s.

1 Preliminaries

For a series in a single variable, a well-known theorem describes this result [9].

Theorem 1.1. Let
∑∞

j=0 sjX
j+1 ∈ K[[X]] be a formal power series with coefficients in a

field K of characteristic 0. Then there are 2 polynomials P,Q ∈ K[X], such that

deg(Q) < deg(P),
Q

P
=

∞∑

j=0

sj
Xj+1

if and only if there is an integer p ∈N such that the ranks of the Hankel matrices at order
k, ∀k ≥ p, are p.
In that case, there exists P of degree p and Q of degree at most p− 1. The minimal possible
degree of P is p, and the pair (P,Q) is completely determined by these conditions of degree
and on condition that P is monic. The polynomials P and Q are then prime.

The proof of this theorem is based on the resolution of a linear equations system obtained
by identifying the coefficients of X l.
Let us remark that the condition about the finiteness of the Hankel matrix rank of s
expresses the recognizability of s, that is the rationality, for a single variable.

1.1 Commutative multivariate series

See [6].

Definition 1.2. K being a semiring, the set of the formal series K[[Xi]]i∈I built with the
commutative variables {Xi}i∈I is made of infinite sums obtained from the commutative
monoid {Xi}∗i∈I/C, where C = {XiXj = XjXi ∀i 6= j}i,j∈I .
The polynomials semiring is denoted by K[Xi]i∈I .

Definition 1.3. Rational series in commutative variables

1. The set of the rational series K[[Xi]]i∈I is the smallest subring containing K[Xi]i∈I
being rationally closed.

2. If K is a commutative field, a series s ∈ K[[Xi]]i∈I is rational if and only if s is the
expansion at zero point of a rational fraction P/Q such that P,Q ∈ K[Xi]i∈I and
Q(0, · · · , 0) 6= 0.

Definition 1.4. Recognizable series in commutative variables

Noncommutative computing and rational approximation of multivariate ... 273

1. K being a commutative field, s ∈ K[[Xi]]i∈I is recognizable if and only if the K-
module generated by the row-vectors or the column-vectors of its Hankel matrix, is
free and finitely generated. The ranks of these 2 modules are equal to the rank of s.
The Hankel matrix of s ∈ K[[Xi]]i∈I is defined as an infinite tabular, the rows and
the columns of which are indexed by {Xi}∗i∈I/C and such that the element indexed
by (v,w) ∈ {Xi}∗i∈I/C × {Xi}∗i∈I/C is the coefficient 〈s|vw〉.

2. K being a commutative field, s ∈ K[[Xi]]i∈I is recognizable if and only if s is the
Taylor expansion at zero point of a rational fraction

P/

k∏

j=1

Qj

where P ∈ K[Xi]i∈I , and Qj ∈ K[Xj] such that Qj(0) 6= 0, ∀j, 1 ≤ j ≤ k.

Unfortunately, For a series in several commutative variables the set of rational series
strictly contains the set of recognizable series. For instance, the series s ∈ R[[X1,X2]]

s =
∑

n≥0

Xn
1X

n
2

is rational because it is the expansion of 1
1−X1X2

but it is not recognizable because the rank
of its Hankel matrix is infinite.

When we try to generalize the proof of theorem 1.1, for several commutative variables,
the computations seem inextricable. An idea consists in using the computation in noncom-
mutative variables.

1.2 Series in noncommutative variables

These definitions and notations are in [1, 13, 14, 15]. K is a semiring.

Definition 1.5. Formal power series in noncommutative variables

1. A non empty finite set X is an alphabet. An element of X is a letter.
The free monoid X∗ generated by the alphabet X is the set of the finite words
Xi1 · · ·Xil of some elements of X, including the empty word denoted by 1.
The set X∗ is a monoid for the concatenation product.

2. A formal power series s in noncommutative variables is a function:

s : X∗ → K

The coefficient s(w) of w in s is denoted by 〈s|w〉.
3. The set of the formal power series s over X with coefficients in K is denoted by
K〈〈X〉〉. A structure of semiring is defined on K〈〈X〉〉 by the sum and the Cauchy
product. Two external operations (product acting on the left, on the right) from K
to K〈〈X〉〉 are defined.
The set of polynomials is denoted by K〈X〉

274 Hespel et al. Transgressive Computing

1.2.1 Rational series in noncommutative variables

Definition 1.6. Rational formal power series in noncommutative variables

1. The rational operations in K〈〈X〉〉 are the sum, the product, the two external products
on K〈〈X〉〉 and the star operation defined by:
T ∗ =

∑
n≥0 T

n for T proper i.e. such that 〈T |1〉 = 0

2. A subset of K〈〈X〉〉 is rationally closed if it is closed for the rational operations.
The smallest subset containing a subset E of K〈〈X〉〉 which is rationally closed, is
called the rational closure of E.

3. A series s is rational if s is element of the rational closure of K〈X〉.

1.2.2 Recognizable series in noncommutative variables

We propose several equivalent definitions [1, 6, 7, 8, 12], K being a commutative field:

Definition 1.7. Recognizable formal power series in noncommutative variables

1. A series s ∈ K〈〈X〉〉 is recognizable if there exists an integer N ≥ 1, and a monoid
morphism

µ : X∗ → KN∗N

and 2 matrices λ ∈ K1∗N and γ ∈ KN∗1 such that

∀w ∈ X∗, 〈s|w〉 = λµ(w)γ

2. A series s ∈ K〈〈X〉〉 is recognizable if there exists an integer N equal to the rank of
its Hankel matrix H(s) = (〈s|w1.w2〉)w1,w2∈X∗ .
The first row of H(s) indexed by the word 1 describes s.
The other rows are the “remainders” of s by a word w. For instance, the row LX1

represents the “right remainder” of s by X1, denoted by s ⊲ X1.

3. A series s ∈ K〈〈X〉〉 is recognizable if it is described by a finite weighted automaton
obtained from its Hankel matrix “remainders”.

1.2.3 Theorem of Schützenberger

For a series in several noncommutative variables, the theorem of Schützenberger proves the
equivalence rationality-recognizability [15, 1].

Theorem 1.8. A formal series is recognizable if and only if it is rational.

Noncommutative computing and rational approximation of multivariate ... 275

1.2.4 Finite weighted automaton obtained from a rational series

This method is developed in [11]. It is based on the following theorem [8, 12]:

Theorem 1.9. A formal series s ∈ R〈〈X〉〉 is recognizable if and only if its rank N is
finite. Then it is recognized by a R−matricial automaton M = (N, γ, λ, µ). Two sets of
words {gi}1≤i≤N and {dj}1≤j≤N , the length of which is < N , can be determined such that
the application χ from X∗ to R

N×N defined by

(χ(w))i,j = 〈s|gi.w.dj〉

satisfies χ(w) = χ(1)µ(w) with χ(1) invertible.

1. The method consists in extracting, from its Hankel matrix H(s) (the rank of which is
N), a system B of N row-vectors (Lwi)i∈I (resp. N column-vectors (Cwj)j∈J), indexed
by some words of minimum length, such that their determinant is 6= 0 and such that
every row (resp. every column) of H(s) can be expressed as a linear combination of
B.
These relations allow us to define ∀Xk ∈ X the matrices µ(Xk) describing the action
of the letter Xk on the row-vector Lwi (resp. the column-vector Cwj).
The first row (resp. the first column) of B defines λ.
And γ is the initial vector t(1 0 · · · 0).
So the series s can be written:

s =
∑

w∈X∗
〈s|w〉 =

∑

w∈X∗
λµ(w)γ

2. We define from B and matrices µ(Xi), γ and λ, a finite weighted (left or right)
automaton A = {X,Q, I,A, τ} such that

• X is the alphabet

• The vertices set is Q = {Lwi}i∈I representing {s ⊲ wi}i∈I(resp. Q = {Cwj}j∈J
representing {wj ⊳ s}j∈J).

• The first row (resp. the first column) I of B is the initial vertex.

• Every transition between some vertices, belonging to τ is labeled by a letter
Xi ∈ X and valued by the coefficient appearing in the linear dependence relation.

• A is the final states set. It is the set of the rows Lw (resp. the columns Cw) of
B such that 〈s|w〉 6= 0.

1.2.5 Regular expression obtained from the finite R-weighted automaton

The method used is a generalization of the computing of the regular expression associated
with a finite state automaton.

276 Hespel et al. Transgressive Computing

• We write the equations system satisfied by the automaton at every state qi ∈ Q:

Ri =

card(Q)∑

j=1

(

n∑

k=1

αi,j,kXk)Rj + γi, αi,j,k ∈ R

• We rewrite this system according to the following way:
If Ri = ∆Ri + Γ satisfies the following hypothesis (H)

Hypothesis (H) : ∆ and Γ are some regular expressions and ∆ is proper

then Ri = ∆∗Γ.
By substituting this expression of Ri in every equation, we get a smaller equations
system

Rj = ΛRj + Ω

It is easy to prove that the equations system of the automaton satisfies the hypothesis
(H) and that, after the suggested rewriting, these hypothesis are still satisfied.
Then we obtain R1 associated with the initial state, by making such substitutions.
This is a presentation of the finite R-weighted automaton as a regular expression.

And then, a rational series in noncommutative variables can be presented by a finite
weighted automaton or by a regular expression [11].

Example 1.10. We take the alphabet X = {X1,X2} and consider the series

s =
∑

w∈X∗
(|w|X1 − |w|X2) w

• Its Hankel matrix H(s) is:

1 X1 X2 X2
1 X1X2 X2X1 X2

2 · · ·
1 0 1 −1 2 0 0 −2 · · ·
X1 1 2 0 3 1 1 −1 · · ·
X2 −1 0 −2 1 −1 −1 −3 · · ·
X2

1 2 3 1 4 2 2 0 · · ·
X1X2 0 1 −1 2 0 0 −2 · · ·
X2X1 0 1 −1 2 0 0 −2 · · ·
X2

2 −2 −1 −3 0 −2 −2 −4 · · ·
· ·

Noncommutative computing and rational approximation of multivariate ... 277

• Its rank is 2. We choose the first two rows L1, LX1 associated with the first two
columns C1, CX1 for generating H(s).
We have the following linear dependence relations:

LX2 = 2L1 −LX1

LX2
1

= −L1 +2LX1

LX1X2 = L1 = LX2X1

We extract µ(X1), µ(X2), λ et µ.

µ(X1) =

(
0 −1
1 2

)

and

µ(X2) =

(
2 1
−1 0

)

The initial vector is:

γ =

(
1
0

)

and the covector is:
λ =

(
0 1

)

• A finite weighted automaton is represented by the graph given by the figure 1.

x2

x1

2−1

1

−1

1

2

x1
L

1
L

Figure 1: graph of the example 1.10

• We compute the regular expression associated with every state. Then we obtain:

s = (s ⊲ X1)(X1 −X2) + s(2X2)

278 Hespel et al. Transgressive Computing

(s ⊲ X1) = s(X2 −X1) + (s ⊲ X1)(2X1) + 1

We extract from the second equation

s ⊲ X1 = (s(X2 −X1) + 1)(2X1)∗

We obtain by substituting in s:

s = (2X1)∗(X1 −X2)[(X2 −X1)(2X1)∗(X1 −X2) + 2X2]∗

We write, by misusing the quotient:

s =
1

1− 2X1
(X1 −X2)

1

1− (X2 −X1) 1
1−2X1

(X1 −X2)− 2X2

This series is exchangeable (if we permute the order of the letters in the word, the
coefficient is unchanged). Its commutative image (by setting X1X2 = X2X1) is:

sco =
X1 −X2

(1− (X1 +X2))2

Nevertheless this series is different from s =
∑

w∈X∗ (|w|X1 − |w|X2) w
For instance, 〈sco|X2

1X2〉 = 3 because it is obtained by summing

〈s|X2
1X2〉 = 1, 〈s|X1X2X1〉 = 1, 〈s|X2X

2
1 〉 = 1

2 Method for multivariate series s ∈ R[[Xi]]1≤i≤n

We prove and use the following results.

2.1 Case of a recognizable series in commutative variables

Proposition 2.1. If s is a recognizable series in commutative variables, the series snc in
noncommutative variables obtained by assigning to 0 every coefficient except those of the
increasing words Xi1

1 · · ·Xin
n assigned to those of s, is recognizable.

Proof. The proof consists in constructing from the Hankel matrix H(s) the rank of which
is finite, the Hankel matrix of snc and in proving that its rank is finite.
We use two steps

1. Let snc︸︷︷︸ be the series in noncommutative variables obtained by assigning every word

w such that |w|X1 = i and |w|X2 = j to 〈s|Xi
1X

j
2〉. This series is recognizable because

its Hankel matrix is obtained by duplicating some rows and some columns from H(s)
and rank(H(s)) = rank(H(snc︸︷︷︸)).

Noncommutative computing and rational approximation of multivariate ... 279

2. Let A︸︷︷︸ be its finite weighted automaton containing n states, built with its Hankel

matrix “remainders”.

3. We construct from A︸︷︷︸ a new automaton A associated with snc by suppressing every

transition labeled by X1 consecutive to some transitions labeled by X2.
The method is the following:

• We make a copy of the part of A︸︷︷︸ containing the transitions labeled by X1 and

the corresponding states. (If some transitions are both labeled by X1 and X2,
we split them into two parts.) The states qi are renamed qi1 in this copy.

• We make a copy of the states which are an extremity of some transition labeled
by X2. These states qj are renamed qj2 in this copy. We construct the transitions
labeled by X2 between qi1 and qj2, labeled by X2 between qj2 and qk2, with the
corresponding weigthing, if these transitions exist in A︸︷︷︸ between the same states

indexed with the first index.

• q11 is the initial state of A if q1 is the initial state of A︸︷︷︸
If qt is a final state of A︸︷︷︸ then if they exist, qt1 et qt2 are final states of A.

According to this construction, the automaton A contains at most 2n states.

And then the series snc is recognizable.

Corollary 2.2. If s is recognizable, we can define a regular expression E describing snc
and then

s = commutative image(E) = P/Q

for some polynomials P,Q.

Example 2.3. Let us consider the recognizable series s ∈ R[[X1,X2]], satisfying

s =
∑

i,j≥0

Xi
1X

j
2

According to Proposition 2.1, the rank of snc is finite.
We choose the basis made of the rows L1, LX2 associated with the columns C1, CX1 of its
Hankel matrix. The rank is 2 ,

µ(X1) =

(
1 0
0 0

)

and

µ(X2) =

(
0 0
1 1

)

The initial vector is:

γ =

(
1
0

)

280 Hespel et al. Transgressive Computing

The covector is:
λ =

(
1 1

)

A finite weighted automaton is represented by the graph given by the figure 2.

2X
L

1L
x2

x1

1 1

1

Figure 2: graph of the example 2.3

We obtain the regular expressions associated with the states L1 and LX2 :

snc = 1 +X1snc +X2(snc ⊲ X2)

snc ⊲ X2 = 1 +X2(snc ⊲ X2)

We get
snc ⊲ X2 = (X2)∗

And
snc = (X1)∗(1 +X2X

∗
2)

Then

s =
1

1−X1

1

1−X2

2.2 Case of a rational, non-recognizable series in commutative variables

Proposition 2.4. If s is rational and non-recognizable in commutative variables, then s is
commutative image of one (at least) series snc rational in noncommutative variables.

Proof. Let s ∈ R[[Xi]]i∈I be a rational series. According to the definition 1.3, there exists
P,Q ∈ R[Xi]i∈I such that Q(0, · · · , 0) 6= 0 and

s =
P (X1, · · · ,Xn)

Q(X1, · · · ,Xn)

By setting Q(0, · · · , 0) = q0, we obtain:

s =
1

q0

P (X1, · · · ,Xn)

(1− 1
q0
R(X1, · · · ,Xn))

=
1

q0

P (X1, · · · ,Xn)

(1− T (X1, · · · ,Xn))

Noncommutative computing and rational approximation of multivariate ... 281

with R(X1, · · · ,Xn), T (X1, · · · ,Xn) ∈ R[X1, · · · ,Xn]
The series

snc =
1

q0
Pnc(X1, · · · ,Xn)(Tnc(X1, · · · ,Xn))∗

is just what we need, for some polynomials in noncommutative variables
Pnc(X1, · · · ,Xn), Tnc(X1, · · · ,Xn) ∈ R〈X1, · · · ,Xn〉
such that
P (X1, · · · ,Xn), T (X1, · · · ,Xn) ∈ R[X1, · · · ,Xn]
are their respective commutative image.
The series snc is not generally single, Pnc, Tnc being generally multiple and the product of
Pnc and T ∗

nc in snc being possible at right like at left.

Corollary 2.5. If s is rational and non-recognizable, we can progressively construct ac-
cording to the length k of the words, the Hankel matrix H(snck) of a series snck of minimal
rank, by maintaining the linear dependence relations existing in the already built part of the
matrix (its rows and columns are ordered by increasing length of the words indexing them).
Then

∀k, sk = commutative image(snck) = Pk/Qk

∃k0 ∈N such that for k ≥ k0, there holds sk = P/Q = s

Proof. For sake of simplicity, we present the proof in the case of 2 variables X1,X2. We
order rows and columns of Hankel matrix by increasing length of the words indexing them
and for a given length, the columns and the rows are ordered according to the lexicographic
order of the words indexing them.
For a given order k, we build at first the part H(snck)≤k of the Hankel matrix H(snck) of
snck related to the words of length ≤ k. This matrix H(snck)≤k will be then extended to
the words of length > k in an infinite matrix H(snck) of minimal rank.

1. Computing of H(snck)≤k

• Identification of coefficients of the words Xi
1,X

i
2:

〈snck |Xi
j〉 = 〈s|Xi

j〉 ∀i 0 ≤ i ≤ k, j = 1, 2

• Computing of all coefficients other than the previous ones

∑

|w|X1
=p1, |w|X2

=p2

〈snck |w〉 = 〈s|Xp1
1 Xp2

2 〉 (E)

The column C1 is free. Two cases may occur:

282 Hespel et al. Transgressive Computing

– The column CX1 is linearly dependent on C1 in the already identified part.
We extend it in order to preserve this linear dependence. By using (E), we
obtain some coefficients such that 〈snck |X1X2〉 and we copy these new values
in the columns CwX1 and CwX2, for |w| < k. We consider now CX1X2, CX2

2
,

the columns CwX1 being necessarly dependent on the previous ones.

– The column CX1 is free in the already identified part. We consider CX2 . If
it is dependent on the previous columns C1, CX1 in the already identified
part, we extend it in order to preserve this linear dependence and we copy
the new values in the columns C1, CwX2 and, by using (E), in CwX1.
If CX2 is free, we consider the next column · · ·

So we obtain H(snck)≤k, without getting necessarily every identified coefficient.
Generally, it remains some indeterminates by extending linearly the columns.

2. Extension of H(snck)≤k to H(snck) (see [10])
We extend H(snck)≤k to the words of length > k by maintaining the linear relations
existing in the already built part. So we obtain H(snck), Hankel matrix of snck ,
noncommutative rational series of minimal rank such that its commutative image sk
satisfies:

order(s− sk) > k

Example 2.6. Let s ∈ R[[X1,X2]] be the series:

s =
∑

i,j∈N

Xi
1X

j
2(

inf(i,j)∑

k=0

(
|i− j|+ 2k

k

)
)

This series is rational and we will obtain rank(snc) = 3.
For k = 2, the Hankel matrix H(snc2)≤2 get by the previous algorithm is

1 X1 X2 X2
1 X1X2 X2X1 X2

2

1 1 1 1 1 2∗ 1∗ 1

X1 1 1 2∗
X2 1 1∗ 1

X2
1 1

X1X2 2∗
X2X1 1∗
X2

2 1

where the values marked by a star are computed according to the algorithm. The rank is
2, a basis being {C1, CX2}.
Then we can provide snc2 = (X1 + 2X2X

∗
2X1)∗(1 +X2X

∗
2) and s2 = 1

1−(X1+X2+X1X2)
.

Noncommutative computing and rational approximation of multivariate ... 283

For k ≥ 4, the rank of snck is 3.
For instance, for k = 4, the Hankel matrix H(snc4)≤4 get by the previous algorithm is

1 X1 X2 X2

1
X1X2 X2X1 X2

2
X3

1
· · · X2

1
X2 X1X2

2
X2X1X2 X3

2
· · ·

1 1 1 1 1 2 1 1 1 · · · 1 2 1 1 · · ·
X1 1 1 2 1 1 1 2 1 · · · 1 1 3 2 · · ·
X2 1 1 1 1 1 1 1 1 · · · 1 1 1 1 · · ·
X2

1
1 1 1 1 1 1 1 · · ·

X1X2 2 2 2 2 3 2 2 · · ·
X2X1 1 1 1 1 1 1 1 · · ·

X2

2
1 1 1 1 1 1 1 · · ·

X3

1
1 1 1 · · ·

· · · · · ·
X2

1
X2 1 1 1 · · ·

X1X2

2
2 2 2 · · ·

X2X1X2 1 1 1 · · ·
X3

2
1 1 1 · · ·

· ·

We choose the basis {C1, CX2 , CX1X2} and we obtain:

snc4 = snc = [X1 +X2(X2 + 2X1X2)∗X1(X1 −X2)]∗[1 +X2(X2 + 2X1X2)∗(1 + 2X1)]

Its commutative image is:

sk = s =
1

(1−X1X2)(1− (X1 +X2))

Particular cases

1. The noncommutative series snc is obtained by evenly distributing the coefficient of
Xi

1X
j
2 in s (by symmetry) over every words having this same commutative image

Xi
1X

j
2 .

Example 2.7.

s =
∑

n≥0

(X1 +X2)n

Then snc =
∑

w∈{X1,X2}∗ w and

s =
1

1− (X1 +X2)

2. The noncommutative series snc is obtained by assigning to 0 every coefficient of w in
snc except ∀ i, j the coefficient of a single word wi,j containing i occurences of X1

and j occurences of X2 assigned to the coefficient of Xi
1X

j
2 in s.

Example 2.8.

s =
∑

n≥0

Xn
1X

n
2

Then snc = (X1X2)∗ and

s =
1

1−X1X2

284 Hespel et al. Transgressive Computing

2.3 Case of an ordinary multivariate series

Corollary 2.9. For every multivariate series s ∈ R[[Xi]]1≤i≤n, we can construct a family
(sk)k∈N of rational series such that the difference s− sk is at least of order k.

3 Conclusion

For a given multivariate series s ∈ R[[Xi]]1≤i≤n, we propose a new algorithm providing a
family of rational approximants (Pk/Qk)k∈N , rk being the minimal rank of the noncommu-
tative intermediate series snck .
The disadvantages of this method are the following: From order k to order k + 1, the
computing is not generally acquired. There is not generally unicity of snck . Moreover, the
complexity of this algorithm is acceptable for n = 2 variables, the number of words of length
≤ k built on an alphabet of n letters being O(nk) .
The advantages of this method are: The computations are elementary. The rational ap-
proximants provided snck are of minimal rank rk. Moreover, when this rank is small, the
method is all the more efficient because the basis vectors are indexed by short words.
And when s is rational, the family (Pk/Qk)k∈N is stationary and there is an order k0 such
that ∀k ≥ k0, Pk/Qk = P/Q = s.
This algorithm of rational approximation is suitable for implementation in a symbolic en-
vironment.

References

[1] Berstel J., Reutenauer C., Rational series and their languages, Springer-Verlag, 1988.

[2] Cuyt A., A comparison of some multivariate Padé approximants, SIAM J. Math.
Anal.,vol. 14, pp. 195-202, 1983.

[3] Cuyt A., How well can the concept of Padé approximant be generalized to the multi-
variate case, J. Comput. Appl. Math., vol. 105, pp. 25-50, 1999.

[4] Drosde M., Gastin P., The Kleene-Schützenberger theorem for formal power series in
partially commuting variables, Information and Computation, vol.153, pp. 47-80, 1999.

[5] Fitzpatrick P., Flynn J., A Gröbner basis technique for Padé approximation, J. Sym-
bolic Comput., vol 13, pp. 133-138, 1992.

[6] Fliess M., Sur certaines familles de séries formelles, Thèse d’état, Université de Paris
7, 1972.

[7] Fliess M., Matrices de Hankel, J. Maths. Pur. Appl., vol.53, pp. 197-222, 1974.

[8] Fliess M., Un outil algébrique : les séries formelles non commutatives, in “Mathe-
matical System Theory” (G. Marchesini and S.K. Mitter Eds.), Lecture Notes Econom.
Math. Syst., Springer Verlag, vol. 131, pp. 122-148, 1976.

Noncommutative computing and rational approximation of multivariate ... 285

[9] Gantmacher F.R., Théorie des matrices, tome 2, Dunod, 1966.

[10] Hespel C., Jacob G., Approximation of nonlinear dynamic systems by rational series,
Theoret. Comput. Sciences, vol. 79, pp. 151-162, 1991.

[11] Hespel C., Une étude des séries formelles non commutatives pour l’Approximation et
l’Identification des systèmes dynamiques, Thèse d’état, Université de Lille 1, 1998.

[12] Jacob G., Réalisation des systèmes réguliers (ou bilinéaires) et séries génératrices non
commutatives, Séminaire d’Aussois, RCP567, Outils et modèles mathématiques pour
l’Automatique, l’Analyse des Systèmes, et le traitement du Signal (CNRS Landau),
1980.

[13] Reutenauer C., Séries formelles et algèbres syntactiques, J. Algebra, vol. 66, pp. 448-
483, 1980.

[14] Salomaa A., Soittola M., Automata Theoretic aspects of Formal Power Series, Springer,
1978.

[15] Schützenberger M.P., On the definition of a family of automata, Inform. and Control,
vol. 4, pp. 245-270, 1961.

Christiane Hespel
IRISA-INSA de Rennes

35043 Rennes cedex, France
hespel@irisa.fr

Cyrille Martig
IRISA-INSA de Rennes-Ecoles de Coëtquidan

35043 Rennes cedex, France
cyrille martig@yahoo.fr

286 Hespel et al. Transgressive Computing

Self-similar trajectories in multi-input systems 287

Self-similar trajectories in multi-input systems

Roland Hildebrand

Abstract

Self-similar trajectories play an important role in deterministic feedback control sys-
tems that possess a symmetry group of Fuller type. We consider self-similar trajectories
in multi-input systems and the linear part of the associated Poincaré maps in orbit space
with respect to the symmetry group. We show that Fuller groups contract the symplec-
tic structure of the system’s phase space and derive some properties of the spectrum
and the eigenvectors of the Poincaré map.

Introduction

We consider self-similar trajectories in deterministic feedback control systems, which give
rise to Hamiltonian dynamics via Pontryagins maximum principle. Self-similar trajectories
were discovered by Fuller in 1960 [1]. Fuller considered the optimal control system

ẋ = y, ẏ = u ∈ [−1, 1], x(0) = x0, y(0) = y0, J(u(·)) =
1

2

∫ ∞

0
x2(t) dt→ inf . (1)

Here u is a bounded scalar control; x, y parametrize the state space R2; and the cost
functional J is to be minimized over all measurable control functions u(t). Fuller has found
that outside the origin the optimal feedback control is bang-bang. The origin itself is a
singular stationary trajectory of second order. The ratio of successive intervals of time
between successive control switchings turned out to be constant. Therefore Fuller named
the corresponding trajectories constant-ratio trajectories. They are the prototype of self-
similar trajectories. In system (1) the origin is an accumulation point of control switchings.
This phenomenon is called chattering and is closely related to self-similar trajectories.

Fuller discovered [2] that system (1) possesses a one-parametric symmetry group GF .
Namely, if (x(t), y(t), u(t)) is an optimal trajectory of the system, then (λ2x(tλ), λy(tλ), u(tλ))
is also an optimal trajectory for any positive number λ. We say that a trajectory is self-
similar if it is invariant with respect to a nontrivial subgroup of GF . Consider an orbit of
GF in state space. The phase velocity of the optimal synthesis has the same direction at
any point of this orbit, and determines a direction field on orbit space. Without the origin
(0, 0), the orbit space will be homeomorphic to S1. It consists of a single periodic orbit of
the direction field and corresponds to a one-parametric family of self-similar trajectories.

This example demonstrates that self-similar trajectories are important elements in the
structure of the optimal synthesis of systems with a symmetry of Fuller type. Namely, they

288 Hildebrand Transgressive Computing

correspond to periodic orbits and stationary points of the direction field that is defined on
orbit space with respect to the symmetry group. Fuller [3] developped a detailed algorithm
for calculating self-similar trajectories in the case of a symmetrically bounded scalar input.
He considered the case where the control jumps between the two extremal values and the
intervals between successive control switchings form a decreasing geometric progression.

The techniques presented in this paper allow to find self-similar trajectories in the general
case and to reveal the behaviour of the system in the neighbourhood of these trajectories.

Applications of self-similar trajectories are not restricted to systems with a Fuller group.
Zelikin and Borisov developped a theory of chattering [7]. In particular, they showed that,
provided a certain approximate Fuller symmetry holds, singular manifolds of codimension
2 and order 2 serve as base of a fibration in state space with fibres orbitally equivalent to
the optimal synthesis of system (1). The global structure of the synthesis is retained in the
fibre, and the self-similar trajectories of the non-perturbed system possess equivalents in
the perturbed system, although the latter are no more self-similar.

The paper is organized as follows. In section 1 we define self-similar trajectories and
Fuller groups and describe the treated class of optimal control systems. In sections 2 and
3 we develop algorithms for finding self-similar trajectories and calculating the linear part
of the Poincaré map associated with the corresponding periodic orbits, or alternatively, the
linearization in the neighbourhood of corresponding stationary points (Algorithms 1 and 2,
Theorem 2.1). We provide a criterion of optimality of a self-similar trajectory (Theorem
2.4) and investigate integral manifolds consisting of optimal trajectories in a neighbourhood
of a hyperbolic periodic orbit (Theorem 3.3). In the next section we show that Fuller groups
contract the sympletic structure of phase space and derive some properties of the spectrum
and the eigenvalues of the Poincaré map (Theorems 4.10 and 4.11). Finally we draw some
conclusions.

1 Definitions and preliminaries

We look for self-similar trajectories in systems given by the following generalization of (1).

x = (x1, . . . , xl) ∈ Rl,
l∑

i=1

mix
(j)
i = 0 ∀ j = 1, . . . , n− 1; J(u(·)) =

1

2

∫ ∞

0

l∑

i=1

mix
2
i dt→ inf;

x(n) = u, u ∈ U =

{
(u1, · · · , ul) ∈ Rl |ui ≤ 1 ∀ i = 1, . . . , l;

l∑

i=1

miui = 0

}
. (2)

Here mi > 0; the state space M is parametrized by the l components of the vector x and

its time derivatives x
(j)
i up to order n − 1. Since there are restrictions

∑l
i=1 x

(j)
i = 0, the

state space has n × (l − 1) dimensions. The cost functional J is to be minimized over all
measurable inputs u(t). The set U of admissible control values is an (l − 1)-dimensional
simplex embedded in the space Rl parametrized by the coordinates u1, . . . , ul. Suppose
the initial point (x(0), ẋ(0), . . . , x(n−1)(0)) in state space is fixed; then the functional J is

Self-similar trajectories in multi-input systems 289

strictly convex on the convex set of all admissible functions u(·). Hence by Kuhn-Tucker’s
theorem, the optimal solution exists and is unique for any fixed initial point in state space.

Let us apply Pontryagin’s maximum principle [6] to system (2). We obtain the Pon-

tryagin function H = −1
2

∑l
i=1mix

2
i +

∑n−1
j=1

∑l
i=1 ψ

j
i x

(j)
i +

∑l
i=1 uiψ

n
i . Here the vector

ψj = (ψj1, . . . , ψ
j
l) is conjugated to the vector of (j−1)-th order derivatives x(j−1). The con-

jugated variables satisfy the equations ψ̇1
i = mixi ∀ i = 1, . . . , l; ψ̇j = −ψj−1 ∀ j = 2, . . . , n.

The control u is determined by ψn according to the maximum principle. Suppose there

exists a i ∈ {1, . . . , l} such that
ψn

i
mi

<
ψn

i′
mi′

for any i′ 6= i, then the control is given by

ui′ = 1 ∀ i′ 6= i, ui = −
∑

i′ 6=imi′

mi
. (3)

Without loss of generality we can put
∑l

i=1 ψ
j
i = 0 for all j = 1, . . . , n [4]. We consider

only regular trajectories in system (2). By [4, Remark on p.3] we then cover also the case
of singular trajectories, anyway.

Let us introduce coordinates yji in phase space; here i ∈ {1, . . . , l}, j ∈ {1, . . . , 2n}:

yji = (−1)j−1ψ
n−j+1
i

mi
, yn+j

i = (−1)n−1x
(j−1)
i , ∀ i = 1, . . . , l; j = 1, . . . , n.

Let us join coordinates with equal upper indices to vectors yj ∈ Rl. Then the restrictions
and Hamiltonian dynamics are given by

ẏj = yj+1 ∀ j = 1, . . . , 2n− 1; ẏ2n = (−1)n−1u;
∑l

i=1
miy

j
i = 0 ∀ j = 1, . . . , 2n. (4)

The control u is given by (3); here i is the index for which y1
i is smallest. The phase space

of the system is parametrized by the 2nl components of the vectors y1, . . . , y2n with 2n
restrictions. Hence it has 2n(l − 1) dimensions. The phase space can be considered as
the cotangent fibration T ∗M over the state space M . The latter is parametrized by the
components of the vectors yn+1, . . . , y2n with n restrictions. It has n(l − 1) dimensions.

Proposition 1.1. [4, Proposition 1] Suppose ρ is a trajectory of system (4). Then ρ is a
lifting to T ∗M of an optimal trajectory if and only if it tends to the origin of T ∗M .

In the sequel, we shall call any trajectory in phase space T ∗M optimal, if it is a lift of
an optimal trajectory in state space M .

On phase space there acts a one-parametric group G of linear transformations. It is
parametrized by a multiplicative parameter λ ∈ R+. The element Gλ corresponding to the
number λ multiplies the coordinate yji by λ2n−j+1, Gλ : (y1, . . . , y2n) 7→ (λ2ny1, . . . , λy2n).

Definition 1.2. We call the group G Fuller group.
The action of G on T ∗M induces an action on state space M , because the action on the

variables yn+1, . . . , y2n does not depend on the values of the other variables. It is readily
seen that Gλ takes any trajectory of system (4) to another trajectory with a change of time
scale by the factor λ. Optimal trajectories are taken to optimal trajectories.

290 Hildebrand Transgressive Computing

Corollary 1.3. Suppose y(t) is a trajectory of system (4); then for any λ > 0 the trajectory
y′(t) = Gλ(y(tλ)) is also a solution of system (4). If y(t) is optimal, then so is y′(t).

Thus system (4) induces a direction field on orbit space (T ∗M)/G. If we remove the
origin, which is a separate orbit, orbit space will be homeomorphic to the sphere S2n(l−1)−1.
Denote the space ((T ∗M)/G) \ {0} ∼= S2n(l−1)−1 by Σ∗. Since at any point of an orbit the
same control is applied, the control function u given by (3) is defined also on Σ∗. We have
the same situation in state space. The velocity field defined on M by the optimal synthesis
points in the same direction at any point of a given orbit with respect to G. Hence the
optimal synthesis induces a direction field on orbit space M/G. If we remove the origin,
then this orbit space will be homeomorphic to the sphere Sn(l−1)−1. Denote the space
(M/G) \ {0} ∼= Sn(l−1)−1 by Σ. The optimal synthesis defines a section M → T ∗M of the
cotangent fibration. This section induces an embedding Σ → Σ∗. In the sequel, we will
identify Σ with its image in Σ∗. In view of the above, we call a trajectory in Σ∗ an optimal
trajectory if it belongs to Σ.

Definition 1.4. We call any trajectory of system (4) self-similar, if it is invariant with
respect to a non-trivial subgroup of G.
Corollary 1.5. The preimage of a self-similar trajectory in Σ∗ consists of stationary points
and/or periodic orbits.

Definition 1.6. We call a periodic orbit ζ in Σ∗ an s-chain, if the restriction of the control
function to ζ is piecewise constant and has s points of discontinuity.

It can be shown that any periodic orbit in Σ is an s-chain for some s > 1. Hence we
can restrict our study to stationary points and s-chains consisting of regular arcs.

2 An algorithm for finding self-similar trajectories

Beside the group G, there exists a subgroup of the permutation group Sl that acts on state
space of system (4). This group permutes components yji of the vectors yj that correspond
to equal weights mi. Let us denote this subgroup by S. Clearly it takes optimal trajectories
to optimal trajectories. Moreover, the action of S commutes with the action of G. Hence,
S acts also on the spaces Σ and Σ∗.

There exists an involution T of system (4), which multiplies the coordinate yji by
(−1)j+1. Suppose y(t) is a trajectory of system (4); then y′(t) = T (y(−t)) is also a trajec-
tory. However, T does not take optimal trajectories to optimal ones.

We look for periodic orbits in Σ∗ that have a finite number of control switchings and
consist of regular arcs. Let us index the l vertices of the simplex U of admissible controls.
We denote control (3) by control i, i = 1, . . . , l.

Theorem 2.1. Self-similar trajectories with constant control exist only for odd n. In this
case for any i ∈ {1, . . . , l} there is a unique self-similar trajectory with constant control i.
This trajectory passes through the origin and consists of three orbits of the group G. One of
them corresponds to a stationary point on Σ.

The proof is by integrating the system dynamics and applying Proposition 1.1.

Self-similar trajectories in multi-input systems 291

Proposition 2.2. If n is even, then there are no stationary points on Σ. If n is odd, then
there exist exactly 2l−2 stationary points on Σ. l of them correspond to regular trajectories.
Proof. There is a bijection between stationary points on Σ and optimal self-similar trajec-
tories with constant control. By Theorem 2.1, there are no such trajectories for even n.
Suppose n is odd. It is not hard to deduce from the maximum principle that any proper
face of the simplex U contains a unique control that is realized on an optimal trajectory
with constant control. But there are 2l − 2 such faces. The regular trajectories correspond
to the l vertices of the simplex.

Consider an s′-chain ζ (s′ > 1), where the controls i1, . . . , is′ are used successively,
thereafter the chain closes. Denote the initial switching point of ζ by q̃0. Denote the next
switching point, which is attained after using control i1, by q̃1, the next by q̃2 and so on,
up to the terminal point q̃s′ , which coincides with q̃0. Consider a point q0 ∈ T ∗M on the
orbit q̃0. Denote the trajectory of system (4) that goes through q0 by ρ. Denote the next
switching point on ρ by q1, the next by q2 and so on, up to qs′ . The point qs′ lies again
on the orbit q̃s′ = q̃0, but in general it does not coincide with q0. There exists exactly one
positive number λ′ such that the element Gλ′ ∈ G takes q0 to qs′.

Definition 2.3. We call the number λ′ the contraction coefficient of the s′-chain ζ.
The definition is correct, because λ′ does not depend on the initial point q0 ∈ q̃0. By

Proposition 1.1, the following assertions hold.

Theorem 2.4. An s-chain with contraction coefficient λ is optimal if and only if λ < 1.

Corollary 2.5. Trajectories in Σ∗ that converge to on optimal s′-chain ζ are optimal and
lie in the space Σ.

The complexity of the equations determining q̃0 and λ′ quickly increases with s′. But if
we restrict our investigations to chains that are invariant with respect to an element of the
discrete symmetry group S, then the number of relevant switchings can be reduced.

Suppose there exists a divisor s of s′ and a permutation σ ∈ S such that σ takes q̃0 to
q̃s. There exists a number λ such that Gλ(σ(q0)) = qs. Clearly λ′ = λs

′/s, and the condition
λ′ < 1 is equivalent to λ < 1. Instead of the equation Gλ′(q0) = qs′ we can now consider the
simpler equation Gλ(σ(q0)) = qs, for fixed σ and i1, . . . , is.

By definition, put i0 = σ−1(is) and is+1 = σ(i1). For any k ∈ {1, . . . , s} the point qk
lies on the orbit q̃k. On the arc that connects qk−1 and qk the control ik is applied. On the
interior of this arc the condition of optimality of control ik holds:

y1
ik
< y1

ik′
∀ ik′ 6= ik. (5)

Denote the time that system (4) needs to pass from qk−1 to qk by tk. Let us compute qk
as a function of qk−1 by integrating (4) with control ik. Assemble the coordinates of phase
space in a vector y = (y2n

1 , . . . , y2n
l , y2n−1

1 , . . . , y1
l)
T ∈ R2nl. Then we can rewrite system (4)

as ẏ = Ay+ bik . Here A is a constant matrix. The diagonal that is obtained by shifting the
main diagonal by l positions downwards is filled with 1’s, the rest with zeros. The constant
vector bi depends only on the control i. Its first l elements form the control i multiplied by

292 Hildebrand Transgressive Computing

(−1)n−1, the other elements are zero. The matrix exponent F (t) = etA is

F (t) =

D0 0 . . . 0
D1 D0 . . . 0
...

...
. . .

...
D2n−1 D2n−2 . . . D0

 .

Here Di = ti

i! Il and Il is the l × l identity matrix. By integrating the system with initial
value qk−1 we obtain y(qk) = F (tk)y(qk−1) + B̄k. Here B̄k depends only on tk and bik ,

B̄k =

∫ tk

0
F (tk − τ)bik dτ = C(tk)

∫ 1

0
F (1− τ)bik dτ = C(tk)Bik .

Here C(t) = diag(tIl, t
2Il, . . . , t

2nIl) is a diagonal 2nl×2nl-matrix, and Bi =
∫ 1
0 F (1−τ)bi dτ

is a constant vector, which depends only on control i.
By iterating the equation y(qk) = F (tk)y(qk−1) + B̄k we finally obtain

y(qk) = F (
∑k

i=1
ti)y(q0) +

∑k

j=1
F (
∑k

i=j+1
ti)B̄j. (6)

By definition empty sums are zero. Denote the linear operator corresponding to the per-
mutation σ by Hσ. The action of the element Gλ can be described as multiplication by the
matrix C(λ). Hence we get the polynomial system of equations

y(qs) = y(Gλ(σ(q0))) = C(λ)Hσy(q0) = F (
∑s

i=1
ti)y(q0) +

∑s

j=1
F (
∑s

i=j+1
ti)B̄j . (7)

Further, F (t) is block-triangular with identity matrices on the diagonal. Since eigenvalues
of permutation matrices have absolute value 1, we get

Proposition 2.6. Suppose |λ| 6= 1, then det(C(λ)Hσ − F (
∑s

i=1 ti)) 6= 0.
For optimal chains we have |λ| 6= 1, and equations (7) can be resolved with respect to

y(q0):

y(q0) =
(
C(λ)Hσ − F (

∑s

i=1
ti)
)−1 (∑s

j=1
F (
∑s

i=j+1
ti)B̄j

)
. (8)

The point qk lies on the switching hypersurface from control ik to control ik+1. This
implies y1

ik
(qk) = y1

ik+1
(qk). By vk denote the 2nl-dimensional row vector that has a 1 on

position ((2n − 1)l + ik) and a -1 on position ((2n − 1)l + ik+1), all other elements being
zero. vk depends only on the controls ik and ik+1. Then y1

ik
(qk) = y1

ik+1
(qk) transforms into

vk

[
F (
∑k

i=1
ti)y(q0) +

∑k

j=1
F (
∑k

i=j+1
ti)B̄j

]
= 0. (9)

For k = 0, . . . , s− 1 we obtain a system of s polynomial equations. It is easily checked that
equation (9) for k = s follows from equation (9) for k = 0 and equation (7).

Self-similar trajectories in multi-input systems 293

Equations (7) and (9) form an overdetermined linear system of 2nl + s equations with
respect to the 2nl unknown components of the vector y(q0). Let us join the coefficient
matrix of this system and its right-hand side to the (2nl + s)× (2nl + 1)-matrix

L =

C(λ)Hσ − F (
∑s

i=1 ti)
∑s

j=1 F (
∑s

i=j+1 ti)B̄j
v0 0

v1F (t1) −v1B̄1
...

...

vs−1F (
∑s−1

i=1 ti) −vs−1

(∑s−1
j=1 F (

∑s−1
i=j+1 ti)B̄j

)

. (10)

System (7), (9) has a solution if and only if all minors of dimension 2nl+ 1 of L vanish.
By Proposition 2.6, this is equivalent to vanishing of all s minors that contain the first 2nl
rows. Thus we obtain a system of s polynomial equations on s + 1 unknown quantities
t1, . . . , ts;λ. Since the point q0 on the orbit q̃0 can be chosen arbitrarily, we can introduce
an additional condition, e.g.

∑s
i=1 ti = 1. Then the number of unknowns will be equal to

the number of equations. Any solution that satisfies conditions (5) and the inequalities
ti > 0 ∀ i = 1, . . . , s; λ > 0, λ 6= 1 determines an s′-chain on Σ∗. The coordinates of the
point q0 are to be found from (8). It can easily be seen that the restrictions on yji are
fulfilled. On ζ the a priori chosen sequence of controls i1, . . . , is is realized and ζ is invariant
with respect to the symmetry σ. Theorem 2.4 yields that ζ is optimal if λ < 1.

Any minor of L that contains the first 2nl rows is a homogeneous polynomial of degree
2n with respect to t1, . . . , ts and a polynomial of degree nl(2n+1) with respect to λ. Hence
the degree of the polynomials does not depend on the parameters s, σ, i1, . . . , is.

Thus we obtain the following algorithm for detection of chains with a given sequence of
controls and invariance with respect to a given symmetry σ ∈ S. Any solution corresponds
to a one-parametric family of self-similar trajectories related by the action of G.

Algorithm 1: (compare also [4, Section 3]) Calculation of optimal self-similar trajec-
tories.

1. Calculate the matrix L according to (10).
2. Compose a system of polynomial equations by putting all minors of dimension 2nl+1

of L to zero that contain the first 2nl rows.
3. Solve the system with an additional constraint eliminating homogeneity in the ti.
4. Calculate the coordinates of the initial point q0 of the self-similar trajectory according

to (8), and of the other switching points according to (6).
5. Check the conditions λ ∈ (0, 1), ti > 0 and (5).

A similar algorithm was given in [3] for the case l = 2, m1 = m2 = 1, s = 1, σ = (12),
n arbitrary, and in [5] for the case l = 2, n = 2, s = s′ = 2, mi arbitrary.

3 The linear part of the Poincaré map

Let ζ be an s′-chain, invariant with respect to the permutation σ ∈ S, with parameters
t1, . . . , ts;λ and switching points q̃0, . . . , q̃s. Let us investigate the behaviour of the dynam-

294 Hildebrand Transgressive Computing

ical system on Σ∗ in a neighbourhood of ζ. We consider only the generic case, when ζ
transversally intersects the switching hypersurfaces at the switching points and the switch-
ing points do not lie on the intersection of more than one switching hypersurface. Then

y1
ik

(qk) = y1
ik+1

(qk) < y1
ik′

(qk) ∀ ik′ 6∈ {ik, ik+1}; ẏ1
ik

(qk)− ẏ1
ik+1

(qk) = y2
ik

(qk)−y2
ik+1

(qk) > 0.
(11)

Let us consider a neighbourhood Q̃ of q̃0 on the switching hypersurface Γ̃i0i1 from control i0
to control i1. If q̃ ∈ Q̃ is sufficiently close to q̃0, then the trajectory that goes through q̃ will
intersect Γ̃i0i1 again in some point P̃ ′(q̃) ∈ Q̃ after s′ control switchings. The mapping P̃ ′

that takes q̃ to P̃ ′(q̃) is called the Poincaré map associated with the periodic orbit ζ. The
point q̃0 is a fixed point of P̃ ′. It is not hard to prove that conditions (11) are sufficient for
nondegeneracy of the Poincaré map at q̃0.

Let us define a mapping P̃ on a neighbourhood of q̃0. Suppose the point q̃ ∈ Q̃ is suffi-
ciently close to q̃0. Consider the trajectory that goes through q̃. After s control switchings
on this trajectory we obtain a point q̃′. By definition, put P̃ (q̃) = σ−1(q̃′). Clearly q̃0 is a
fixed point of the map P̃ , and P̃ ′ ≡ P̃ s′/s. Conditions (11) are sufficient for nondegeneracy
of P̃ at q̃0. The map P̃ is the Poincaré map associated with the image of ζ in orbit space
Σ∗/σ.

Let us compute the maps P̃ ′, P̃ . Define operators Fi(t) (i = 1, . . . , l) acting on T ∗M
by Fi(t) : y 7→ F (t)y + C(t)Bi. The operator Fi(t) is given by the transition matrix of the
dynamical system defined by the control i.

Let Qk ⊂ T ∗M be a neighbourhood of qk ∈ q̃k. Then qk lies on the switching hy-
persurface Γikik+1

from control ik to control ik+1. Let q be a point in Qk. By ρk (resp.
ρk+1) denote the trajectory through q of the dynamical system on T ∗M defined by control
ik (resp. ik+1). The trajectories ρk, ρk+1 intersect the hypersurface Γikik+1

in some points
q′, q′′. By τk (resp. τk+1) denote the time that is needed to get from q to q′ (resp. q′′) along
the trajectory ρk (resp. ρk+1). The functions τk(q), τk+1(q) are smooth in the neighbour-
hood Qk, provided Qk is sufficiently small. These functions are zero on Γikik+1

, specifically
at qk.

Let us define the mapping Tikik+1
= Fik+1

(τk)◦Fik (−τk) on Qk. Any point on Γikik+1
is a

fixed point of Tikik+1
, specifically qk. We can define the following mappings on a sufficiently

small neighbourhood Q0 of q0: P = σ−1 ◦ Gλ−1 ◦ Tisis+1 ◦ Fis(ts) ◦ · · · ◦ Ti1i2 ◦ Fi1(t1),
P ′ = G(λ′)−1 ◦ Tis′ is′+1

◦ Fis′ (ts′) ◦ · · · ◦ Ti1i2 ◦ Fi1(t1). The point q0 is a fixed point of the
mappings P,P ′. These mappings commute with the action of G. The mapping Fi1(τ1),
which projects Q0 on the switching surface Γi0i1 along the trajectories of the system defined
by control i1, also commutes with G. Hence the compositions Fi1(τ1)◦P , Fi1(τ1)◦P ′ induce
mappings of a neighbourhood of q̃0 on the switching surface Γ̃i0i1 in Σ∗. It is not hard to see
that these induced mappings coincide with the Poincaré maps P̃ , P̃ ′. Therefore the linear
part of P̃ , P̃ ′ can be computed from the linear part of the mappings P , P ′ at q0.

Note that the phase velocity vector vt = Ay(q0) + bi1 is an eigenvector of the Jacobi

matrices ∂P (y)
∂y |y=y(q0),

∂P ′(y)
∂y |y=y(q0) with eigenvalues λ−1, (λ′)−1 respectively. Hence the

differentials of P and P ′ induce linear operators on the quotient space Tq0(T
∗M)/span{vt}.

Since any point of the switching surface Γi0i1 is invariant with respect to the projec-

Self-similar trajectories in multi-input systems 295

tion operator Fi1(τ1), the differential of the restriction of the mapping Fi1(τ1) ◦ P (resp.
Fi1(τ1) ◦P ′) on Γi0i1 coincides with the differential of P (resp. P ′). Hence the action of the
differentials D(Fi1(τ1) ◦ P), D(Fi1(τ1) ◦ P ′) on the tangent space Tq0Γi0i1 can be identified
with the action of the differentials of P , P ′ on the quotient space Tq0(T

∗M)/span{vt}.
The vector vλ given by ∂

∂λGλ(y(q0))|λ=1 = dC(λ)
dλ |λ=1y(q0) in the tangent space to q0 is

tangent to the orbit q̃0. Since the mappings Fi1(τ1)◦P , Fi1(τ1)◦P ′ commute with the action
of G, vλ is an eigenvector of the differentials D(Fi1(τ1) ◦P), D(Fi1(τ1) ◦P ′) with eigenvalue
1. The vector vλ consists of the components of the vectors y2n(q0), 2y

2n−1(q0), . . . , 2ny
1(q0)

written one after the other. Hence the differentials D(Fi1(τ1) ◦ P), D(Fi1(τ1) ◦ P ′) induce
an action on the quotient space Tq0Γi0i1/span{vλ}. This action can be identified with the
action of the differentials of the Poincaré maps P̃ , P̃ ′ on the tangent space Tq̃0Γ̃i0i1 . We
proved the following assertion.

Corollary 3.1. The action of the differentials of the Poincaré maps P̃ , P̃ ′ can be canon-
ically identified with the action induced by the differentials of the mappings P , P ′ on the
quotient space Tq0(T

∗M)/span{vt, vλ}.
Let us compute the derivatives ∂P

∂y , ∂P
′

∂y . Consider the differential DTikik+1
at the point

qk. Note that any vector in Tqk(T ∗M) tangent to Γikik+1
is invariant with respect to

DTikik+1
. Furthermore, DTikik+1

takes the phase velocity vector Ay(qk) + bik induced by
the control ik to the phase velocity vector Ay(qk) + bik+1

induced by the control ik+1.
Denote the base vectors in the tangent fibration T (T ∗M) corresponding to differentiation

with respect to yji by eji . Let us introduce another system of base vectors e′ji , where e1ik
is replaced by e′1ik = e1ik + e1ik+1

, e1ik+1
is replaced by e′1ik+1

= Ay(qk) + bik , and the other

vectors e′ji coincide with the corresponding vectors eji . Denote the image of e′ji under the

action of DTikik+1
by e′′ji . Then e′′1ik+1

is given by e′′1ik+1
= Ay(qk) + bik+1

, and the other

vectors e′′ji coincide with the corresponding vectors e′ji .
The switching surface Γikik+1

is given by y1
ik

(qk) = y1
ik+1

(qk). It is easily shown that all

vectors e′ji , e
′′j
i except e′1ik+1

, e′′1ik+1
are tangent to Γikik+1

. By (11), the vectors Ay(qk)+bik ,
Ay(qk) + bik+1

are transversal to Γikik+1
. Hence the matrix E′ (resp. E′′) consisting of the

column vectors e′ji (resp. e′′ji) is nonsingular. Note that the vectors bik , bik+1
differ only at

the ik-th and ik+1-th positions. By substituting these vectors we obtain e′′1ik+1
− e′1ik+1

=

(−1)n−1 1
mik

(
∑l

i=1mi)e
2n
ik

+ (−1)n 1
mik+1

(
∑l

i=1mi)e
2n
ik+1

. At the ((2n − 1)l + ik)-th position

of e′1ik+1
, e′′1ik+1

, which corresponds to the base vector e1ik , we have the term y2
ik

(qk); at the

((2n− 1)l+ ik+1)-th position, which corresponds to the base vector e1ik+1
, we have the term

y2
ik+1

(qk). The differential DTikik+1
is given by E′′(E′)−1. By substituting we obtain

DTikik+1
= I2nl +

(−1)n−1 1
mik

∑l
i=1mi

y2
ik

(qk)− y2
ik+1

(qk)
eik,(2n−1)l+ik +

(−1)n 1
mik

∑l
i=1mi

y2
ik

(qk)− y2
ik+1

(qk)
eik ,(2n−1)l+ik+1

+
(−1)n 1

mik+1

∑l
i=1mi

y2
ik

(qk)− y2
ik+1

(qk)
eik+1,(2n−1)l+ik +

(−1)n−1 1
mik+1

∑l
i=1mi

y2
ik

(qk)− y2
ik+1

(qk)
eik+1,(2n−1)l+ik+1

, (12)

296 Hildebrand Transgressive Computing

where er,s is a matrix which has a 1 at position (r, s) and is elsewhere filled with zeros. Thus
the matrix DTikik+1

differs from I2nl at four positions, which are located at rows ik, ik+1,
which correspond to the base vectors e2nik , e

2n
ik+1

, and columns (2n− 1)l+ ik, (2n− 1)l+ ik+1,

which correspond to the base vectors e1ik , e
1
ik+1

.
The mappings Fik(tk) are affine and their differential is given by F (tk). Since every

element of the groups S, G is a linear transformation, it coincides with its differential. Thus

DP = Hσ−1C(λ−1)DTisis+1F (ts) . . . DTi1i2F (t1),

DP ′ = C((λ′)−1)DTis′ is′+1
F (ts′) . . . DTi1i2F (t1). (13)

We obtain the following algorithm for calculating the differentials of the Poincaré maps
P̃ , P̃ ′ of a given s′-chain ζ that is invariant with respect to a given permutation σ.

Algorithm 2: Calculus of the linear part of the Poincaré map of a given periodic orbit.
1. Compute the matrices DP,DP ′ according to (12),(13).
2. Compute the vector vt = Ay(q0)+ bi1 and the vector vλ, which consists of the compo-

nents of the vectors y2n(q0), 2y
2n−1(q0), . . . , 2ny

1(q0) written one after the other. The vec-
tors vt, vλ span a subspace, which is invariant with respect to the transformations DP,DP ′.

3. Compute the linear transformations that are induced by DP,DP ′ on the quotient
space Tq0(T

∗M)/span{vt, vλ}.
The space Tq0(T

∗M) has dimension 2n(l − 1), whereas the matrices of the differentials
DP,DP ′ given by (13) have size 2nl × 2nl. The space Tq0(T

∗M) is an invariant subspace
of these matrices. Now we shall investigate the linear transformations induced by matrices
(13) on the quotient space span{e2n1 , . . . , e1l }/Tq0(T ∗M).

Firstly, consider how the maps P,P ′ act on the quotient space of the 2nl-dimensional
space parametrized by the coordinates y2n

1 , . . . , y1
l with respect to the subspace T ∗M . This

quotient space can be parametrized by the coordinates Y j =
∑l

i=1miy
j
i , j = 1, . . . , 2n.

Since
∑l

i=1miui = 0, the derivatives Ẏ j do not depend on the control. They are given by
Ẏ 2n = 0, Ẏ j = Y j+1, j = 1, . . . , 2n − 1. Hence transition by time t is a linear operator
given by a triangular matrix with 1’s on the diagonal. The sums Y j are invariant with
respect to the action of S, whereas Gλ multiplies Y j by λ2n+1−j . Therefore the mapping
P (resp. P ′) acts linearly on Y j, and this action is given by a triangular 2n × 2n-matrix
with λ−1, . . . , λ−2n (resp. λ′−1, . . . , λ′−2n) on the diagonal. Obviously the induced mappings
coincide with their differentials. Thus we proved the following assertion.

Corollary 3.2. The action induced by matrices (13) on the quotient space
span{e2n1 , . . . , e1l }/Tq0(T ∗M) is given by diagonizable operators with simple eigenvalues

λ−1, . . . , λ−2n (resp. λ′−1, . . . , λ′−2n).
From the spectrum of DP,DP ′ we can conclude on the behaviour of the optimal syn-

thesis in a neighbourhood of optimal self-similar trajectories. By Corollary 2.5, we have

Theorem 3.3. Suppose ζ is an optimal s′-chain with control sequence i1, . . . , is′ , satisfying
conditions (11). Let its Poincaré map P̃ ′ be hyperbolic, and m− be the dimension of its stable
invariant manifold. Then ζ is embedded in an (m− + 1)-dimensional integral submanifold

Self-similar trajectories in multi-input systems 297

of Σ. The preimage of this submanifold in state space is an (m− + 2)-dimensional integral
submanifold, which consists of optimal trajectories. These trajectories undergo chattering
with periodic sequence i1, . . . , is′ of controls when approaching the origin.

4 Contracting groups and Poincaré map

In this section we prove that the action of G contracts the symplectic structure on T ∗M .
We will deduce some properties of the linear part of the Poincaré maps associated with
optimal periodic orbits in Σ∗. We depart from a generalization of the Theorem of Lyapunov-
Poincaré, whose proof is purely algebraic and omitted here for space limitation reasons.

Proposition 4.1. Suppose B is a regular complex n × n matrix and Λ 6= 0 is a complex
number. Suppose W is a complex n × n matrix such that ΛB = W TBW . Then for any
complex number λ 6= 0 and any natural number m ∈ N the equations B[Ker(W − λ)m] =
Ker(W T− Λ

λ)m, BT [Ker(W − λ)m] = Ker(W T− Λ
λ)m are satisfied.

Corollary 4.2. Suppose λ is an eigenvalue of W ; then Λ
λ is also an eigenvalue of W . The

dimensions of their root subspaces and their proper subspaces coincide.
Suppose the matrices B, W and the number Λ are real, and W has only simple eigen-

values. The space Rn decomposes into a direct sum of minimal invariant subspaces of the
operator W . A minimal invariant subspace has dimension 1 if the corresponding eigenvalue
is real, and it has dimension 2, if it corresponds to a complex-conjugated pair of eigenvalues.
Denote the minimal invariant subspaces of W by V1, . . . , Vr. Let us put in correspondence
to each subspace Vi a number λi. If Vi is onedimensional, then define λi as the correspond-
ing real eigenvalue. If Vi is twodimensional, then define λi as the corresponding complex
eigenvalue that has positive imaginary part. By ¯ denote complex conjugation.

Definition 4.3. We call a minimal invariant subspace Vj conjugated to the subspace Vi, if
λj λ̄i = Λ.

By Corollary 4.2, for any subspace Vi there exists a conjugated subspace Vj . Suppose
Vi, Vj are conjugated subspaces. Then we have Vi = Vj if and only if |λi|2 = Λ.

Proposition 4.4. Suppose the assumptions made above are satisfied. Then
a) For any minimal invariant subspace Vi of W there exist vectors wi ∈ Vi, wj ∈ Vj such
that wTi Bwj 6= 0. Here Vj is the subspace conjugated to Vi.
b) Suppose the minimal invariant subspaces Vi, Vj are not conjugated. Then for any vectors
wi ∈ Vi, wj ∈ Vj we have wTi Bwj = 0.

The proof uses the theorem on the Jordan structure of a matrix and is omitted here.

Consider a differentiable manifold V of even dimension 2m. Let ω be a closed non-
degenerate differential 2-form inducing a symplectic structure on V . By TzV denote the
tangent space to V at the point z ∈ V . Then to any vector v ∈ TzV a 1-form θv ∈ T ∗

z V in
the cotangent space at the point z is assigned. The form θv takes any vector u ∈ TzV to
θv(u) = ω(v, u) and is the convolution ivω of the form ω with the vector v.

298 Hildebrand Transgressive Computing

Definition 4.5. A one-parametric group G of diffeomorphisms gγ of V , where γ ∈ R
is an additive parameter, is called a contracting group, if the following condition holds.
By the action of gγ the form ω is multiplied by e−γ , i.e. for any point z ∈ V we have
ω(z) = e−γg∗γω(g(z)).

Suppose L is a Lagrange submanifold of V , i.e. a submanifold of dimension m on whose
tangent space ω is zero. Then for any z ∈ L and v ∈ TzL we have TzL ⊂ Ker θv. Obviously
any element of a contracting group takes Lagrange manifolds to Lagrange manifolds.

Suppose vG is a smooth vector field on V . It generates a one-parametric group G of
diffeomorphisms of the manifold V .

Proposition 4.6. The following conditions are equivalent:
(i) the group G is a contracting group,
(ii) the form θvG

= ivG
ω satisfies the equation dθvG

= ω.
Proof. By Lv denote the Lie derivative with respect to the vector field v. By defini-
tion, a group is contracting iff for any point z ∈ V and any two vectors u,w ∈ TzV we
have ω(gγ(z))(Dgγ(u),Dgγ(w)) = eγω(z)(u,w). This equation is satisfied iff the equation
LvG

ω = ω holds. Since ω is closed, we obtain LvG
ω = d(ivG

ω) = dθvG
.

Suppose vt(z) is a vector field on V . Parametrize the trajectories of the corresponding
flow by time t. It is well-known that the form θvt(z) is closed if and only if the symplectic
form ω is invariant with respect to transitions along the trajectories of vt. In this case
vt is a Hamiltonian flow. If θvt is exact, then there exists a Hamiltonian H(z) such that
θvt = −dH.

Let L be a continuously differentiable integral Lagrange manifold, which is invariant
with respect to the action of a contracting group G. Then the generating vector field vG
of G and the vector field vt are tangent to L. Suppose there exists a point z0 ∈ L and
numbers T > 0, γ 6= 0 such that gγ ◦ ΦT (z0) = z0, where gγ is an element of the group
G and ΦT is a shift by time T along the trajectories of the Hamiltonian system. The
differential of the mapping gγ ◦ΦT is an automorphism of the tangent space Tz0V . Suppose
u, v are tangent vectors at the point z0. Since the form ω is invariant under shifts in time,
we have ω(u, v) = ω(DΦT (u),DΦT (v)), where DΦT (u),DΦT (v) are tangent vectors at the
point ΦT (z0). On the other hand, the action of the differential Dgγ multiplies the form ω
by eγ . Therefore we have

ω(D(gγ ◦ ΦT)(u),D(gγ ◦ ΦT)(v)) = eγω(u, v). (14)

ByW denote the matrix of the linear mappingD(gγ◦ΦT), by ωz0 denote the skew-symmetric
matrix that corresponds to the form ω(z0). Then (14) becomes eγωz0 = W Tωz0W .

Since L is invariant under any shift ΦT and any diffeomorhism gγ , the subspace Tz0L of
the tangent space Tz0V is invariant under the mapping W .

Suppose W has only simple eigenvalues. Then the space Tz0V decomposes into a direct
sum of minimal invariant subspaces of W . Denote these subspaces by V1, . . . , Vr. The
tangent space Tz0L is an invariant subspace of W . Hence there exists a subset VS ⊂
{V1, . . . , Vr} such that Tz0L = span{v ∈ Vi |Vi ∈ VS}. Since Tz0L is isotropic, for any
Vi, Vj ⊂ Tz0L and vi ∈ Vi, vj ∈ Vj we have ω(vi, vj) = 2vTi ωz0vj = 0.

Self-similar trajectories in multi-input systems 299

Since the matrix ωz0 is nonsingular, the matrix W satisfies the assumptions of Proposi-
tions 4.1 and 4.4. By Corollary 4.2, the set of eigenvalues of W breaks up into pairs. The
product of the eigenvalues in each pair equals eγ .

By Proposition 4.4, conjugated subspaces Vi, Vj cannot at the same time be contained in
the set VS . Since dimTz0L = 1

2 dimTz0V , there cannot exist any subspace Vi that coincides
with its conjugated subspace. Hence the number of minimal invariant subspaces is even.
There exist exactly 2

r
2 Lagrange subspaces of Tz0V that are invariant under W .

Let us summarize these results.

Proposition 4.7. Suppose the matrix W = D(gγ ◦ ΦT) has only simple eigenvalues.
Then the minimal invariant subspaces V1, . . . , V2r of W and the corresponding eigenval-
ues λ1, . . . , λ2r with nonnegative imaginary part can be arranged in a manner such that the
following conditions hold.
a) Tz0L = V1 ⊕ V2 ⊕ · · · ⊕ Vr.
b) λi λ̄r+i = λ̄i λr+i = eγ for any i = 1, . . . , r.
c) For any i = 1, . . . , r there exist vi ∈ Vi, vr+i ∈ Vr+i such that ω(vi, vr+i) 6= 0.
d) For any vi ∈ Vi, vj ∈ Vj such that (j − i) 6≡ 0 mod(r) we have ω(vi, vj) = 0.
e) dimVi = dimVr+i for any i = 1, . . . , r.

Suppose the differential of the diffeomorphism gγ multiplies the vector field vt by eκγ ,
κ > 0, i.e. at any point z ∈ V we have Dgγ(vt(z)) = eκγvt(gγ(z)). This equation holds iff
LvG

vt = −κvt, i.e.
[vt, vG] = κvt. (15)

Let us compute the images W (vt),W (vG). We have DΦT (vt(z0)) = vt(ΦT (z0)). Now we
shall compute DΦT (vG(z0)). We have LvtvG = κvt, therefore vG(ΦT (z0)) = DΦT (vG(z0))+
κTvt(ΦT (z0)). Hence we obtain DΦT (vG(z0)) = (vG−κTvt)(ΦT (z0)). The differential Dgγ
multiplies the vector field vt by eκγ and leaves vG invariant. This yields

W (vt) = eκγvt, W (vG) = vG − κeκγTvt.

Thus the vectors vt and vG + κT
1−e−κγ vt are eigenvectors of the matrix W with eigenvalues

eκγ and 1, respectively.
Suppose vt, vG are linearly independent at z0. Denote the (2m−2)-dimensional quotient

space Tz0V/span{vt, vG} by Ṽ . The linear operator W induces an automorphism W̃ of Ṽ .
Since vt, vG ∈ Tz0L, the quotient space L̃ = Tz0L/span{vt, vG} is well-defined. It is a
(m− 2)-dimensional subspace of Ṽ . By Proposition 4.7, the following assertion holds.

Proposition 4.8. Suppose W has only simple eigenvalues, and the assumptions made
above are satisfied. Then the 2r−2 minimal subspaces Ṽ1, . . . , Ṽ2r−2 of Ṽ that are invariant
under the action of W̃ , and the corresponding eigenvalues λ1, . . . , λ2r−2 with nonnegative
imaginary part can be arranged in a manner such that the following conditions hold.
a) L̃ = Ṽ1 ⊕ Ṽ2 ⊕ · · · ⊕ Ṽr−2.
b) λi λ̄r−2+i = λ̄i λr−2+i = eγ for any i = 1, . . . , r − 2.
c) dim Ṽ2r−3 = dim Ṽ2r−2 = 1, λ2r−3 = e(1−κ)γ , λ2r−2 = eγ .
d) dim Ṽi = dim Ṽr−2+i for any i = 1, . . . , r − 2.

300 Hildebrand Transgressive Computing

Now we apply these results to the self-similar trajectories of system (4). In our case
V is the phase space T ∗M with its canonical symplectic structure. The section of T ∗M
corresponding to the optimal synthesis is a Lagrange submanifold.

Proposition 4.9. The Fuller group G is a contracting group. The parameters γ and λ are
related to each other by the equation λ2n+1 = eγ .
Proof. We have vG(q) = dGλ(q)

dλ (d((2n+1) lnλ)
dλ)−1|λ=1 = 1

2n+1
dC(λ)
dλ y(q). Hence the relation

between the generating vector field vG and the vector field vλ, which was defined in the
previous section, is given by

vG(q) =
1

2n+ 1
vλ =

1

2n+ 1

l∑

i=1

2n∑

j=1

(2n+ 1− j)yji (q)
∂

∂yji
.

The phase velocity vector vt is given by

vt(q) = Ay(q) + bk =
l∑

i=1

2n∑

j=2

yj−1
i (q)

∂

∂yji
+

l∑

i=1

ui
∂

∂y1
i

.

Here k is the applied control. It is easily checked that the Lie bracket [vt, vG] is equal to
1

2n+1vt. Therefore condition (15) with κ = 1
2n+1 is satisfied.

The symplectic form on V = T ∗M is given by ω = 1
2

∑l
i=1

∑2n
j=1(−1)n+1−jmidy

2n+1−j
i ∧

dyji . In coordinate representation we have

(ωij) =
1

2

0 0 . . . 0 (−1)n∆m

0 0 . . . (−1)n−1∆m 0
...

... . .
. ...

...
0 (−1)−n+2∆m . . . 0 0

(−1)−n+1∆m 0 . . . 0 0

. (16)

Here ∆m = diag{m1, . . . ,ml} is a diagonal l × l-matrix.
Hence the form θvG

= ivG
ω is given by

θvG
(q) =

1

2n + 1

l∑

i=1

2n∑

j=1

(−1)n+1−jmijy
2n+1−j
i (q)dyji .

It is not hard to prove that the differential of this form after alternation is equal to (16).
Proposition 4.6 concludes the proof.

Since the mappings σ−1◦Tisis+1 ◦Fis(ts)◦· · ·◦Ti1i2 ◦Fi1(t1), Tis′ is′+1
◦Fis′ (ts′)◦· · ·◦Ti1i2 ◦

Fi1(t1) are not transitions in time of system (4), Proposition 4.7 cannot be applied formally
to the mappings P and P ′. But recall that for proving Propositions 4.7 and 4.8 we used only
that ΦT preserves the form ω. The mappings Fi(t) are transitions in time and preserve ω.
Clearly the action of the group S preserves ω. The differential of the mapping Tikik+1

can be
represented as a composition of differentials of the mappings Fik+1

(τk) and Fik(−τk) with

Self-similar trajectories in multi-input systems 301

frozen argument τk and the differential of Tikik+1
at some point on the switching surface

Γikik+1
. The first two differentials are differentials of transitions in time and hence preserve

ω. By multiplying (12) and (16), we obtain (ωij) = (DTikik+1
)T (ωij)DTikik+1

. Therefore
Tikik+1

also preserves ω.
Note that on any self-similar trajectory corresponding to an s′-chain with s′ > 1 the

vector fields vG and vt are linearly independent. Hence Propositions 4.7 and 4.8 remain
valid also for system (4). By L denote the Lagrange section of the cotangent fibration
T ∗M that is induced by the optimal synthesis. We proved the following assertion on the
differentials of the mappings P , P ′.

Theorem 4.10. Suppose the differential DP has only simple eigenvalues. Then the min-
imal subspaces V1, . . . , V2r of the space Tq0(T

∗M) that are invariant under the action of
DP , and the corresponding eigenvalues λ1, . . . , λ2r with nonnegative imaginary part can be
arranged in a manner such that the following conditions hold.
a) If L is differentiable at q0, then Tq0L = V1 ⊕ V2 ⊕ · · · ⊕ Vr.
b) λi λ̄r+i = λ̄i λr+i = λ−(2n+1) for any i = 1, . . . , r.
c) For any i = 1, . . . , r there exist vi ∈ Vi, vr+i ∈ Vr+i such that ω(vi, vr+i) 6= 0.
d) For any vi ∈ Vi, vj ∈ Vj such that (j − i) 6≡ 0 mod(r) we have ω(vi, vj) = 0.

e) λ1 = λ−1, λ2 = 1, V1 = span{vt}, V2 = span{vλ +
Ps

i=1 ti
1−λ vt}.

f) dimVi = dimVr+i for any i = 1, . . . , r.
Here the vector vt is the phase velocity vector defined by control i1, and the vector vλ is

tangent to the orbit q̃0.
Analogous assertions hold for the differential DP ′, with λ, s replaced by λ′, s′.
By L̃ denote the image of the intersection L ∩ Γi0i1 in space Σ∗. The results on the

differentials of the Poincaré maps P̃ , P̃ ′ can be summarized as follows.

Theorem 4.11. Suppose the differential DP has only simple eigenvalues. Then the mini-
mal subspaces Ṽ1, . . . , Ṽ2r−2 of the space Tq̃0 Γ̃i0i1 that are invariant under the action of the
differential DP̃ , and the corresponding eigenvalues λ1, . . . , λ2r−2 with nonnegative imagi-
nary part can be arranged in a manner such that the following conditions hold.
a) If L̃ is differentiable at q̃0, then Tq̃0L̃ = Ṽ1 ⊕ Ṽ2 ⊕ · · · ⊕ Ṽr−2.
b) λi λ̄r−2+i = λ̄i λr−2+i = λ−(2n+1) for any i = 1, . . . , r − 2.
c) dim Ṽ2r−3 = dim Ṽ2r−2 = 1, λ2r−3 = λ−2n, λ2r−2 = λ−(2n+1).
d) dim Ṽi = dim Ṽr−2+i for any i = 1, . . . , r − 2.

Analogous assertions hold for the differential DP̃ ′, with λ replaced by λ′.
Note that the spectrum of the matrices (13) does not coincide with the spectrum of the

differentials DP,DP ′. By Corollary 3.2, the eigenvalues λ−1, λ−2n (resp. (λ′)−1, (λ′)−2n) of
matrices (13) are always multiple, whereas absence of multiple eigenvalues in the spectrum
of the differentials DP,DP ′ is the generic case. Corollary 3.2 yields the following criterion
of absence of multiple eigenvalues in the spectrum of the differentials DP,DP ′.

Proposition 4.12. The differential DP (resp. DP ′) has only simple eigenvalues if and only
if the numbers λ−1, . . . , λ−2n (resp. λ′−1, . . . , λ′−2n) are eigenvalues of the corresponding
matrix (13) with multiplicity not greater than 2, and any other eigenvalue is simple.

302 Hildebrand Transgressive Computing

5 Conclusions

When constructing an optimal synthesis in a deterministic control problem, one usually
first considers singular trajectories and submanifolds provided by the maximum principle.
These act as structuring elements in the phase portrait. In classical dynamical systems,
however, the structuring elements are fixed points, periodic cycles and associated invariant
submanifolds. If the optimal control problem possesses a certain symmetry group (a Fuller
group), one can consider these classical objects in orbit space with respect to the group.
Computing them yields valuable information on the global structure of optimal synthesis.

In this paper we provide tools and algorithms to compute such elements. To this end we
expolited the interaction of the symplectic structure of the Hamiltonian dynamics emanating
from the maximum principle on the one hand and the Fuller group on the other hand.

References

[1] Fuller A.T. Relay control systems optimized for various performance criteria. In Proc. of
the First Internat. Congr. of the IFAC, Moscow, Vol. 1 (London, U.K.: Butterworth),
1960, 510–519.

[2] Fuller A.T. Dimensional properties of optimal and sub-optimal nonlinear control sys-
tems. Journal of Franklin Institute 289 (1970), 379–393.

[3] Fuller A.T. Constant-ratio trajectories in optimal control systems. Int. J. Contr. 58
(1993), no.6, 1409–1435.

[4] Hildebrand R. An open problem in optimal control theory. Journal of Mathematical
Sciences 121 (2004), no.2, 2178–2220.

[5] Marchal C. Chattering arcs and chattering controls. Journal of Optimization Theory
and Applications 11 (1973), 441–468.

[6] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. The mathemat-
ical theory of optimal processes. Wiley, New York, 1962.

[7] Zelikin M.I., Borisov V.F. Theory of Chattering Control with Applications to Astronau-
tics, Robotics, Economics and Engineering. Birkhäuser, Boston, 1994.

Roland Hildebrand
LMC, IMAG

Université Joseph Fourier
roland.hildebrand@imag.fr

Sudoku y Bases de Gröbner (Sudoku and Gröbner Bases) 303

Sudoku y Bases de Gröbner

(Sudoku and Gröbner Bases)

Jorge Mart́ın-Morales

Abstract

Sudoku is a logic-based placement puzzle. The aim of the canonical puzzle is to enter
a numeral from 1 through 9 in each cell of a 9×9 grid made up of 3×3 regions, starting
with various numerals given in some cells. Each row, column and region must contain
only one instance of each numeral. Proper sudoku puzzle should have unique solutions.
There are many variants of this game. In this paper we give a new method which can
be applied to solving most of those variants using Gröbner bases techniques. Moreover,
if a sudoku has more than one solution, we can also compute all of them.

Resumen

Sudoku es un rompecabezas de colocación cuyo objetivo es rellenar una cuadŕıcula
de 9 × 9 celdas dividida en 9 regiones de 3 × 3 con las cifras del 1 al 9, partiendo de
algunos números ya dispuestos en algunas celdas y de manera que no se repita ninguna
cifra en una misma fila, columna o región. Un sudoku es compatible determinado si
tiene solución única. Existen muchas variantes de este juego con sus correspondientes
resolutores. En este trabajo presentamos un nuevo método basado en técnicas de bases
de Gröbner y aplicable a muchas de esas variantes que además nos permite saber si un
sudoku es compatible indeterminado y en caso afirmativo calcular todas las soluciones.

Introducción

Sudoku es un interesante pasatiempo que se popularizó en Japón en 1986 y se dio a
conocer en el ámbito internacional en 2005, aunque su origen fue en New York con el
nombre de “Number Place”. El objetivo es rellenar una cuadŕıcula de 9× 9 celdas dividida
en 9 regiones de 3× 3 con las cifras del 1 al 9, partiendo de algunos números ya dispuestos
en algunas celdas y de manera que no se repita ninguna cifra en una misma fila, columna
o región 3 × 3, (figura 1). Un sudoku es compatible determinado si la solución es única.
Hay muchas variantes, siendo la más común la de cuadŕıcula 9× 9 con regiones 3× 3, pero
también se utilizan otros tamaños. Además, las regiones no tienen por qué ser cuadradas.
El problema general de resolver un sudoku de tamaño n2 × n2 es NP-completo.

Para n = 3, un sudoku puede interpretarse como un problema de coloreado de un cierto
grafo de 81 vértices, con 9 colores. Una técnica para obtener este coloreado es mediante la

304 Mart́ın-Morales Transgressive Computing

resolución de un sistema polinómico. Esto es discutido en la primera sección donde damos
un ejemplo de un grafo 3-coloreable en el que se muestra cómo las bases de Gröbner nos
permiten calcular todas las soluciones. En la segunda sección explicamos cómo podemos
interpretar un sudoku como un grafo 9-coloreable. También damos un ejemplo de un sudoku
que tiene 98 soluciones e indicamos cómo calcularlas todas usando Singular. Al final de
la segunda sección citamos algunas variantes de sudoku que también pueden modelizarse
con un sistema de ecuaciones polinómicas. En la tercera sección dejamos algunas preguntas
abiertas.

9 4 7

7 9

8

4 5 8

3 2

9 7 6

4

3 5

2 6 8

Figura 1: sudoku con 20 datos

Las bases de Gröbner juegan un papel esencial en Geometŕıa Algebraica y Álgebra
Conmutativa. Sin embargo tienen algunas aplicaciones mucho más básicas y que alguno
de nuestros alumnos desconocen, entre ellas resolver un sistema de ecuaciones polinómicas.
Pensamos que este papel tiene un alto contenido didáctico y podŕıa usarse por los profesores
para mostrar la importancia de las bases de Gröbner a la hora de resolver sistemas de
ecuaciones polinómicas no lineales. Al mismo tiempo se puede aprovechar para motivar el
aprendizaje de algún programa de cálculo simbólico como puede ser Singular, Macaulay2
o CoCoA. Todos los cálculos realizados en este trabajo se hicieron en una máquina AMD
Opteron 252–64 bit, 2,6Ghz–RAM 8 Gb en Singular–3–0–0, bajo el sistema operativo
Fedora Core 4.

1. El problema del n-coloreado de un grafo

El problema del coloreado de un grafo puede resolverse mediante el cálculo de las solu-
ciones de un sistema algebraico [1]. En esta sección incluimos una parte de la discusión de
[1], con algunos comentarios y explicamos cómo podemos resolver ejemplos concretos con
la ayuda de un programa de cálculo simbólico, (Singular [2, 3]).

El problema que se plantea es el siguiente. Dado un grafo G con m vértices y a lo más
una arista entre dos vértices, queremos saber si es posible colorear los vértices usando n
colores de tal manera que dos vértices adyacentes tengan distinto color.

Consideramos ω = e
2πi
n una ráız primitiva n-ésima de la unidad y representamos los

n colores por 1, ω, . . . , ωn−1, las n ráıces de xn − 1. Sean ahora x1, . . . , xm las variables

Sudoku y Bases de Gröbner (Sudoku and Gröbner Bases) 305

que representan los m vértices de G. Vamos a intentar encontrar unas ecuaciones para las
variables xi. Cada vértice xi tiene asignado uno de los n colores. Esto puede representarse
por las ecuaciones

xni − 1 = 0, 1 ≤ i ≤ m. (1)

También si dos vértices xi y xj son adyacentes entonces tienen que tener distinto color.
Puesto que xni = xnj , entonces (xi − xj)(xn−1

i + xn−2
i xj + · · · + xix

n−2
j + xn−1

j) = 0. Nótese
que el factor xi − xj aparece una sola vez en el polinomio xni − xnj . Luego xi y xj tienen
distinto color si y sólo si ∑

k+l=n−1

xki x
l
j = 0. (2)

Ya tenemos el sistema de ecuaciones buscado. Sea I el ideal de C[x1, . . . , xm] generado por
los polinomios de la ecuación (1) y los de la ecuación (2) para los pares (i, j) tales que xi
y xj sean adyacentes. Entonces el grafo G es n-coloreable si y sólo si la variedad V (I) 6= ∅.
Teniendo en cuenta el Nullstellensatz de Hilbert [1], el siguiente resultado es claro.

Teorema 1.1. El grafo G es n-coloreable si y sólo si el ideal I no es el total.

Una forma de proceder es calcular una base de Gröbner G del ideal I y preguntarnos si
G contiene una constante. En caso negativo el grafo G será n-coloreable y la base de Gröbner
nos da mucha información acerca del coloreado del grafo. A partir de ella podemos calcular
una solución, y si tiene más de una, podemos saber cuántas tiene e incluso calcularlas todas.

Nota 1.2. Para calcular una base de Gröbner de I, dado que todos los polinomios de I
están en Q[x], podemos calcular una base de Gröbner en Q[x] y lo que obtengamos también
será una base de Gröbner en C[x]. Ahora bien, si queremos calcular una solución particular
entonces tenemos que introducir un polinomio de la forma xi − ωa y ahora I * Q[x].

Nota 1.3. Por las condiciones del problema existe un número finito de soluciones, aśı que

el ideal I es 0-dimensional y dimC

(
C[x]
I

)
= #Nm \E(I) es el número de soluciones, donde

E(I) = {exp(f) | f ∈ I \ {0}} denota la escalera del ideal respecto de un orden monomial.

Ejemplo 1.4. Consideramos el grafo G de la figura 2

x1

x2
x3 x4

x5

x6
x7

x8

Figura 2: grafo 3-coloreable

El ideal I está formado por los polinomios x3
i − 1, para i = 1, . . . , 8 y por x2

i +xixj +x2
j

para los pares (i, j) ∈ {(1, 2), (1, 5), (1, 7), (1, 8), (2, 3), (2, 8), (3, 4), (3, 7), (4, 5), (4, 6), (5, 6),
(5, 7), (6, 7), (7, 8)}. Calculamos G una base de Gröbner de I respecto al orden graduado
lexicográfico inverso (dp). Para ello podemos escribir en Singular lo siguiente:

306 Mart́ın-Morales Transgressive Computing

ring R = 0,x(1..8),dp; ideal I1,I2,I,G;

for (int i=1; i<=8; i++) { I1[i] = x(i)^3-1; };

proc p (int i, int j) { return(x(i)^2+x(i)*x(j)+x(j)^2); };

I2 = p(1,2), p(1,5), p(1,7), p(1,8), p(2,3), p(2,8), p(3,4),

p(3,7), p(4,5), p(4,6), p(5,6), p(5,7), p(6,7), p(7,8);

I = I1 + I2; G = std(I);

Obtenemos G = {x6 + x7 + x8, x5 − x8, x4 − x7, x2 − x7, x1 + x7 + x8, x
2
7 + x7x8 +

x2
8, x

2
3 +x3x7−x7x8−x2

8, x
3
8− 1}. Como 1 /∈ G, el teorema (1.1) nos dice que el grafo G es

3-coloreable. El número de soluciones del sistema es el número de puntos que hay por debajo
de la escalera del ideal, es decir, el cardinal del conjunto N8\E(I), (ver nota 1.3). Escribimos
en la sesión anterior de Singular vdim(G) y devuelve 12. Esto quiere decir que podemos
colorear el grafo G de 12 formas distintas, pero esencialmente distintas sólo 12

3! = 2, pues el
resto son permutaciones de éstas. Para calcularlas podemos hacerlo resolviendo el sistema
G, que es muy sencillo. Las soluciones, salvo permutaciones, son (1, ω, 1, ω, ω2, 1, ω, ω2) y
(1, ω, ω2, ω, ω2, 1, ω, ω2). Si a este grafo le añadimos la arista que une los vértices x4 y x7,
vemos que el ideal I = (1) y por tanto el grafo G con la nueva arista no es 3-coloreable.

I=I,p(4,7); std(I);

//-> _[1]=1

Nota 1.5. Supongamos que los colores son a1, . . . , an, números complejos distintos cuales-
quieras. Entonces cada vértice xi debe cumplir la ecuación F (x) =

∏n
k=1(x−ak) = 0. Si dos

vértices xi y xj son adyacentes entonces 0 = F (xi)− F (xj) = (xi − xj)G(xi, xj).
1 Aśı que

dos vértices son adyacentes si y sólo si G(xi, xj) = 0. El ideal asociado al grafo G es el
generado por los polinomios F (xi) para i = 1, . . . ,m y por G(xi, xj) para los pares (i, j)
tales que xi y xj son adyacentes. Hemos reescrito las ecuaciones de manera que podemos
representar los colores con números complejos cualesquieras. En el ejemplo (1.4) si tomamos
(a1, a2, a3) = (1, 2, 3), entonces G(x, y) = x2+xy+y2−6x−6y+11 en lugar de x2+xy+y2.

2. Sudoku como un grafo 9-coloreable

El objetivo de un sudoku es rellenar una cuadŕıcula de 9×9 celdas dividida en 9 regiones
de 3 × 3 con las cifras del 1 al 9, partiendo de algunos números ya dispuestos en algunas
celdas y de manera que no se repita ninguna cifra en una misma fila, columna o región 3×3.
Un sudoku es compatible determinado si tiene solución única. En esta sección explicamos
como puede interpretarse un sudoku como un problema de coloreado parcial de un grafo y
entonces, usando las técnicas de la sección 1, podemos resolver un sudoku calculando una
base de Gröbner. Además si el sudoku es compatible indeterminado podemos saber cuantas
soluciones tiene y calcularlas todas. También damos un ejemplo y explicamos cómo usar
Singular para resolverlo. Al final de la sección citamos algunas variates de sudoku.

En primer lugar enumeramos las celdas de un sudoku de la siguiente forma:

1Si F (x) es un polinomio, F (x)−F (y) tiene siempre el factor x− y con multiplicidad 1 y entonces existe
un polinomio G(x, y) tal que F (x, y) = (x − y)G(x, y), donde G(x, y) no es divisible por x − y.

Sudoku y Bases de Gröbner (Sudoku and Gröbner Bases) 307

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54

55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72

73 74 75 76 77 78 79 80 81

Figura 3: enumeración de las celdas

Consideramos el grafo G formado por los vértices xi con i = 1, . . . , 81, de manera que dos
vértices xi y xj están unidos por una arista si y sólo si los ı́ndices i y j están en la misma
fila, columna o región 3× 3. Aśı, por ejemplo, el conjunto de vértices adyacentes a x34 es

{x7, x16, x25, x28, x29, x30, x31, x32, x33, x35, x36, x43, x44, x45, x52, x53, x54, x61, x70, x79}.

Puesto que se trata de un grafo regular de valencia 20, el número de aristas que tiene G
es 81·20

2 = 810. Las cifras del 1 al 9 representan nueve colores. Si una celda está ocupada
por un número k esto quiere decir que el vértice asociado tiene el color k. Luego resolver
un sudoku es equivalente a colorear el grafo G con 9 colores con la condición que algunos
vértices tienen que tener un color predeterminado (el indicado por los números dados). Sea
I el ideal de C[x] generado por los polinomios F (xi) con i = 1, . . . , 81 y por G(xi, xj) para
los pares (i, j) tales que xi y xj son adyacentes, donde

F (x) =

9∏

i=1

(x− i), G(x, y) =
F (x)− F (y)

x− y = x8 + x7y + · · ·+ 1026576.

Si, por ejemplo, queremos resolver el sudoku de la figura 1, tenemos que añadir al ideal I
los polinomios

x2 − 9, x6 − 4, x9 − 7, x15 − 7, x16 − 9, x19 − 8, x28 − 4, x30 − 5, x31 − 8, x37 − 3,

x45 − 2, x51 − 9, x52 − 7, x56 − 6, x63 − 4, x66 − 3, x67 − 5, x73 − 2, x76 − 6, x80 − 8.

Ahora bien, una vez que hemos añadido estos polinomios se puede comprobar que las ecua-
ciones F (xi) = 0 son redundantes y por tanto podemos quitarlas. El sistema de ecuaciones
que resulta tiene 810 ecuaciones (el número de aristas de G) más el número de datos (20
en este caso). Si el sudoku es compatible determinado, el sistema tiene solución única y la
base de Gröbner reducida es de la forma G = {xi − ai | i = 1, . . . , 81} donde todos los ai
son números del 1 al 9. Precisamente esos ai forman la solución buscada.

Ejemplo 2.1. Consideremos el sudoku de la siguiente figura 4.

308 Mart́ın-Morales Transgressive Computing

Hemos escrito las 810 ecuaciones y una subrutina en un archivo “sudoku” que está dispo-
nibles en Internet2. Funciona de la siguiente forma:

<"sudoku";

intmat A[9][9] =

9,0,0,0,0,0,0,0,8, 5,0,0,2,0,8,0,6,0, 0,0,3,7,1,0,0,0,9,

0,0,0,0,7,3,0,5,0, 2,0,0,0,0,0,0,0,4, 0,5,0,1,6,0,0,0,0,

8,0,0,0,2,7,3,0,0, 0,4,0,3,0,9,0,0,1, 7,0,0,0,0,0,0,0,2;

def G = sudoku(A); vdim(G);

//used time: 1.65 sec

//-> 1

El sudoku es compatible determinado y la base de Gröbner reducida G nos da la única
solución.

9 8

5 2 8 6

3 7 1 9

7 3 5

2 4

5 1 6

8 2 7 3

4 3 9 1

7 2

Figura 4: sudoku con 28 datos

9 2 6 5 3 4 7 1 8

5 7 1 2 9 8 4 6 3

4 8 3 7 1 6 5 2 9

1 9 8 4 7 3 2 5 6

2 6 7 9 8 5 1 3 4

3 5 4 1 6 2 9 8 7

8 1 9 6 2 7 3 4 5

6 4 2 3 5 9 8 7 1

7 3 5 8 4 1 6 9 2

Figura 5: solución ejemplo 2.1

Supongamos ahora que tenemos el mismo sudoku pero las celdas 64 y 82 están vaćıas.
Posiblemente el sudoku ya no sea compatible determinado.

A[6,4]=0; A[8,2]=0;

G=sudoku(A); vdim(G);

//used time: 127.71 sec

//-> 53

A la vista de los resultados, hay 53 soluciones distintas. Para calcularlas todas

LIB "solve.lib";

def S = solve(G,5,0,"nodisplay");

setring S; size(SOL);

//-> 53

SOL[1]; //Primera solucion de la lista

2http://www.us.es/gmcedm/

Sudoku y Bases de Gröbner (Sudoku and Gröbner Bases) 309

Siguiendo un proceso análogo podemos ver qué ocurre si la celda 26 está también vaćıa. En
este caso existen 98 sudoku y tardó 1611,67 segundos en calcular la base reducida. También
puede comprobarse que el ejemplo 2.1 con la cifra 4 en la celda 1 no tiene solución, lo cual
no es inmediato a simple vista.

Nota 2.2. Para representar los 9 colores de un sudoku hemos usado los números del 1 al
9 pero, al igual que hicimos con el ejemplo 1.4, podemos usar las ráıces de la unidad. Sin
embargo no hemos observado una clara diferencia desde el punto de vista computacional.

2.1. Algunas variantes de sudoku

Aunque la cuadŕıcula más común es de 9× 9 celdas con regiones 3× 3, existen muchas
variantes de este juego. Pueden ser de otro tamaño, 16 × 16 ó incluso 25 × 25, además las
regiones no tienen por qué ser cuadradas. A veces también se exige que en las diagonales
aparezcan los números del 1 al 9 y sin repetirse. El llamado sudoku samurai es otra variante
de este juego. Este rompecabezas está compuesto por cinco sudokus unidos entre si, uno de
ellos en el centro y los otros cuatro en las esquinas, formando una X.

Figura 6: sudoku killer

Otra interesante variante aparece en el diario londinense The Times con el nombre de “killer
sudoku”. Las reglas son las mismas pero en vez de colocarse algunos números iniciales a par-
tir de los cuales se deducen los restantes, se agrupan algunas casillas por medio de una ĺınea
punteada y se da la suma de los números agrupados, (figura 6). Para más información puede
consultarse http://www.maa.org/editorial/mathgames/mathgames_09_05_05.html.

Todas estas variantes pueden modelizarse de manera algebraica obteniendo un sistema
de ecuaciones polinómicas. Si entra en juego la aritmética de los números enteros entonces
debemos representar los colores con las cifras del 1 al 9. Este es el caso del sudoku killer.
En la figura 6 la casilla 1 y la 10 tienen que sumar 16. No podemos expresar esta condición
si usamos las ráıces de la unidad, sin embargo con los números del 1 al 9 esta condición se
expresa mediante la ecuación x1 + x10 = 16.

310 Mart́ın-Morales Transgressive Computing

3. Otras cuestiones relacionadas

Es conocido que existen 6670903752021072936960 sudoku distintos3. Las bases de Gröbner
nos proporcionan un método para saber cuantos sudoku distintos hay, pues basta con tomar
como dato de entrada el sudoku vaćıo. Lo que ocurre es que la máquina más potente que
actualmente tenemos no pudo terminar el cálculo. Planteamos algunas preguntas que están
todav́ıa abiertas:

Se cree que 17 es el mı́nimo número de datos para que un sudoku sea compatible
determinado4. Todav́ıa no se ha encontrado ningún sudoku compatible determinado
con 16 datos pero no existe ninguna prueba que diga que esto no es posible.

Podemos modelizar un sudoku de manera algebraica y obtenemos un sistema de ecua-
ciones. Nos preguntamos si es posible resolverlo usando métodos numéricos con con-
vergencia global.

Bibliograf́ıa

[1] William W. Adams and Philippe Loustaunau. An introduction to Gröbner bases, vo-
lumen 3 of Graduate Studies in Mathematics. American Mathematical Society, Provi-
dence, RI, 1994.

[2] G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 3.0. A Computer Algebra
System for Polynomial Computations. Centre for Computer Algebra, University of
Kaiserslautern (2005). http://www.singular.uni-kl.de. Contact the Singular team
(singular@mathematik.uni-kl.de) for comments or suggestions.

[3] Gert-Martin Greuel and Gerhard Pfister. A Singular introduction to commutative al-
gebra, Springer-Verlag, Berlin, 2002. With contributions by Olaf Bachmann, Christoph
Lossen and Hans Schönemann, With 1 CD-ROM (Windows, Macintosh, and UNIX).

Jorge Mart́ın Morales
Laboratorio Departamento de Álgebra

Universidad de Sevilla
Correo electrónico jormarmor@alum.us.es

3http://www.shef.ac.uk/~pm1afj/sudoku/
4http://www.csse.uwa.edu.au/~gordon/sudokumin.php

Choosing spline spaces for interpolation 311

Choosing spline spaces for interpolation

Marie-Laurence Mazure

Abstract

It is well-known that Hermite interpolation by polynomial splines is possible if and
only if the interpolation points satisfy classical conditions known as the Schoenberg-
Whitney conditions. We recently proved that, in the most general context of splines
with sections in different spaces, and with connection matrices between consecutive
sections, the possibility of doing Hermite interpolation under the Schoenberg-Whitney
conditions is essentially connected with existence of blossoms. We illustrate this result
with the case of four-dimensional sections, taking advantage of the fact that, in this
special case, we know necessary and sufficient conditions for existence of blossoms.

Introduction

In [14] Schoenberg and Whitney proved that Lagrange interpolation by polynomial splines
was possible if and only if the interpolation points satisfied some conditions, known as the
Schoenberg-Whitney conditions, which we shall recall in Section 1. Roughly speaking they
mean that the interpolation points and the knots of the spline space must interlace in some
sense. Later on, this result was extended to Hermite interpolation [4] and to other types of
spline spaces (e.g., Chebsyhevian splines [15], LB-splines [7]). Many proofs concerning the
Schoenberg-Whitney conditions can be found in the literature, even concerning polynomial
splines. They all strongly rely on the existence of splines of minimal support (B-splines).

We recently addressed the problem of Hermite interpolation in the most general context
of splines with sections in different spaces and with connection matrices between consecutive
sections. In such spaces, existence of minimally supported splines is generally guaranteed
by requiring total positivity for the connection matrices (see [3],[1]). When the sections are
polynomial the assumption of total positivity concerns the connection matrices expressed via
the ordinary derivatives. In the general case, the ordinary derivatives are to be replaced by
special differential operators associated with the different sections. However total positivity
is only a sufficient condition for existence of bases of B-splines, far from being necessary
as we pointed out in [8]. On the other hand, in [10] we established that existence of B-
splines was equivalent to existence of blossoms (see also [11]). This made it natural for us to
wonder whether or not existence of blossoms was also equivalent to the Schoenberg-Whitney
conditions being necessary and sufficient for Hermite interpolation. In [5] we give a positive
answer to this question.

As already mentioned, existence of blossoms is a much weaker condition than total
positivity of all connection matrices. Unfortunately, in the most general case of spline

312 Mazure Transgressive Computing

spaces described above, proving existence of blossoms is far from being an easy problem
to deal with. Still, in the “simple” case of splines with four dimensional sections, we were
able to establish a necessary and sufficient condition for existence of blossoms, based on
geometric characteristics of the sections (see [8],[9]). The latter characterisation is recalled
in Section 3 where we also take advantage of it to illustrate by a few examples the validity
of the Schoenberg-Whitney conditions. This also shows possible choices of spline spaces for
interpolation with shape effects.

1 The Schoenberg-Whitney conditions

Given r ≥ 1 points x1 < x2 < · · · < xr−1 < xr in an interval I, given positive integers
µ1, . . . , µr such that

∑r
i=1 µi = N , and given any real numbers αi,j, 1 ≤ i ≤ r, 0 ≤ j ≤ µi−1,

consider the associated Hermite interpolation problem in N data (based on x1, . . . , xr):

Find F ∈ E such that F (j)(xi) = αi,j , 1 ≤ i ≤ r, 0 ≤ j ≤ µi − 1, (1)

where E is an N -dimensional space of sufficiently differentiable functions on I. This includes
Taylor interpolation (r = 1, µ1 = N) as well as Lagrange interpolation (r = N , µ1 = · · · =
µN = 1).

As is well-known, there is a unique solution to any such problem when E is the polyno-
mial space PN−1 of degree less than or equal to N − 1. For large values of N it is obviously
preferable to replace the space PN−1 by an N -dimensional space of polynomial splines,
defined as follows.

Choose t0 ≤ x1 and tq+1 ≥ xr, a sequence t1 < · · · < tq of interior knots in]t0, tq+1[, and
an associated sequence of multiplicities m1, . . . ,mq, with 1 ≤ mk ≤ n for 1 ≤ k ≤ q. Set
m :=

∑q
k=1mk. If x is a real number and p is a positive integer, the notation x[p] stands

for x repeated p times. With this convention, consider the knot vector

K := (t1
[m1], . . . , tq

[mq]) =: (ξ1, . . . , ξm), with ξi ≤ ξi+1 for 1 ≤ i ≤ m− 1. (2)

Associated with the knot vector K, the polynomial spline space S is composed of all functions
S : [t0, tq+1]→ IR such that

(1) S is Cn−mk at tk, 1 ≤ k ≤ q;
(2) for 0 ≤ k ≤ q, there exists Fk ∈ Pn such that S(t) = Fk(t) for all t ∈ [tk, tk+1].

The space S being (n+ 1 +m)-dimensional, we assume that the degree n, the number q of
interior knots and the multiplicities at the interior knots are selected so that n+1+m = N .
From now on we choose E := S.

With the notation introduced above, the sequence of interpolation points involved in
problem (1) is denoted as follows

I = (x1
[µ1], . . . , xr

[µr]) =: (y−n, . . . , ym), with yj ≤ yj+1 for − n ≤ j ≤ m− 1. (3)

To make the problem meaningful, we must require the following condition to be fulfilled

if xi = tk for some k, 1 ≤ k ≤ q, then µi − 1 ≤ n−mk. (4)

Choosing spline spaces for interpolation 313

Nonetheless, it is well-known that the problem (1) may not be unisolvent. To obtain a
unique solution it is necessary and sufficient to choose the degree, knots and multiplicities
according to the Schoenberg-Whitney conditions recalled below.

Theorem 1.1. For 1 ≤ k ≤ q, we denote by L(k) (resp. R(k)) the number of indices j,
−n ≤ j ≤ m, such that yj < tk (resp. yj > tk). We assume condition (4) to hold. Then,
the Hermite interpolation problem (1) has a unique solution in the polynomial spline space
S described above if and only if

L(k) ≥
k∑

ℓ=1

mℓ , R(k) ≥
q∑

ℓ=k

mℓ, 1 ≤ k ≤ q. (5)

Conditions (5) are known as the Schoenberg-Whitney conditions relative to the knot
vector K. It can be easily checked that they are equivalent to the following interlacing
property linking the interpolation point sequence I and the knot vector K, as introduced
in (2) and (3):

yj−n−1 < ξj < yj for 1 ≤ j ≤ m. (6)

Example 1.2. 1) In order to illustrate the latter conditions (5) or (6), consider first the
case of Lagrange interpolation. Then, the Schoenberg-Whitney conditions (5) are satisfied
if we choose for instance degree n = 3, and the interpolating points x3, . . . , xN−2 as the
simple (interior) knots of the polynomial spline space S on [t0, tq+1] = [x1, xN] to interpolate
in (cubic splines). The fact that neither x2 nor xN−1 is taken as a knot of the spline space
S is classically referred to as a not-a-knot procedure. Indeed, it amounts to interpolating
in the (N + 2)-dimensional space S1 of C2 polynomial splines of degree 3 on [x1, xN] with
all interpolation points x2, . . . , xN−1 as simple knots, imposing two additional conditions,
namely S′′′(x+

2) = S′′′(x−2) and S′′′(x+
N−1) = S′′′(x−N−1), which means nothing but the fact

that x2 and xN−1 are no longer knots.
2) Suppose now that the interpolation problem (1) involves the values of the function and of
its first derivative everywhere, that is, if µ1 = · · · = µr = 2 (hence N = 2r), the Schoenberg-
Whitney conditions are, of course, satisfied by choosing the trivial example n = 3 and the
interpolating points x2, . . . , xr−1 as the double knots of the spline space S. For a more
sophisticated example generalising the not-a-knot procedure exactly as above, we can take
n = 7 and double knots for the spline space S at the interpolating points x3, . . . , xr−2. It
is also possible, for instance, to define S with sections of degree 5, simple knots at x2 and
xr−1, and double knots at x3, . . . , xr−2.

2 Interpolating with shape effects

It may be interesting to interpolate with shape effects, that is, to have at our disposal one
or several shape parameters to slightly modify the interpolating function or curve. This can
be useful, for instance, to make up for the flaws of polynomial spline interpolation which
do not always fulfil satisfying shape preservation properties. With shape effects in view,

314 Mazure Transgressive Computing

-0.5 0 0.5 1 1.5 2 2.5
-1

-0.5

0

0.5

1

1.5

2

-0.5 0 0.5 1 1.5 2 2.5
-1

-0.5

0

0.5

1

1.5

2

Figure 1: Regularly spaced Lagrange interpolation by parametric curves with shape effects
in the space spanned by 1, x, (1−x)p, xq on [0, 1], with, from top to bottom on the left part
of the curve, (left) p = q = 3 (polynomial space P3); 7; 11; and (right) q = 3, p = 3; 5; 8.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.1

-0.05

0

0.05

0.1

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 2: Hermite interpolation. Left: F (0) = F (1) = 0, F ′(0) = F ′(1) = 1 in the space
spanned by 1, x, (1−x)p, xq, with, from the most to the least oscillatory, p = q = 3, 7; 11; 15.
Right: F (1) = F (2) = 0, F ′(1) = F ′(2) = 1 in the space spanned by 1, xk+1, xk+2, xk+3,
with, from bottom to top k = 0 (polynomial space P3); 1; 2; 3.

Choosing spline spaces for interpolation 315

it is necessary to leave the framework of polynomial splines described above. The shape
parameters can be of two types. Either they concern the joint at one (or several) knot(s) tk,
being then obtained by replacing the Cn−mk-continuity at tk by a continuity condition of
order n−mk expressed via a connection matrix (e.g., geometrically continuous polynomial
splines [3]). Or they concern the sections themselves, being then provided by the space(s)
by which we replace the polynomial space of degree n (e.g., tension splines [6], variable
degree polynomial splines [2]).

Figures 1 and 2 illustrate the latter type of shape parameters. In the first three cases,
we interpolate in the four-dimensional space spanned by the functions 1, x, (1 − x)p, xq

on [0, 1], the shape parameters being the two integers p, q ≥ 3. In the fourth case, we
work in the four-dimensional space spanned by the functions 1, xk+1, xk+2, xk+3 on]0,+∞[,
the shape parameter k attached to this space being a non-negative integer. For the sake of
completeness let us mention that all results concerning the latter spaces and their associated
spline spaces are valid with less restrictive conditions on the shape parameters which are
not necessarily integers, with the only requirement p, q > 2 and k ≥ 0, respectively.

In spline spaces, both types of shape parameters can be cumulated : we can replace in
each section the polynomial space by a space in which Hermite interpolation is possible on
the corresponding interval, and at the same time we can allow connection matrices at the
knots. The precise framework is as follows. Starting from the same sequence t0 < t1 <
· · · < tq < tq+1 and from the knot vector K introduced in (2), we suppose that

(a) for k = 0, . . . , q, Ek ⊂ Cn−1([tk, tk+1]) is an n-dimensional Extended Chebyshev
space on [tk, tk+1], i.e., any Hermite interpolation problem in n data has a unique solution
in Ek, or any non-zero element of Ek vanishes at most n − 1 times in [tk, tk+1], counting
multiplicities up to n;

(b) for k = 1, . . . , q, Mk is a lower triangular matrix of order (n −mk), with positive
diagonal.

We now define the spline space S of dimension (n + m) as composed of all functions S :
∪qk=0[t

+
k , t

−
k+1] → IR such that

(1) for 1 ≤ k ≤ q, there exists Fk ∈ Ek such that S(t) = Fk(t) for all t ∈ [t+k , t
−
k+1];

(2) for 0 ≤ k ≤ q, S satisfies the connection condition
(
S(t+k), S′(t+k), . . . , S(n−mk−1)(t+k)

)T
= Mk .

(
S(t−k), S′(t−k), . . . , S(n−mk−1)(t−k)

)T
. (7)

Note that the presence of connection matrices in the definition of S implies that a spline
S ∈ S is defined only separately on each [t+k , t

−
k+1]: in other words, for 1 ≤ k ≤ q, while

S(t+k) and S(t+k) are both meaningful, a priori S(tk) is not. Equality between two splines
in S thus means ordinary equality on]tk, tk+1[for 0 ≤ k ≤ q, and equality on both t−k and
t+k for 1 ≤ k ≤ q. In particular, this makes it necessary to slightly modify the way we state
an Hermite interpolation problem (1) in the spline space S as follows:

Find S ∈ S such that S(j)(xi
εi) = αi,j , 1 ≤ i ≤ r, 0 ≤ j ≤ µi − 1, (8)

where εi ∈ {−,+} for 1 ≤ i ≤ r, and where N =
∑r

i=1 µi = n +m. Of course if the inter-
polation point xi is not a knot we can suppress εi. On the other hand, in any interpolation

316 Mazure Transgressive Computing

problem we always implicitly assume the analogue of condition (4) to be fufilled, which in
our present spline space S becomes

if xi = tk for some k, 1 ≤ k ≤ q, then µi ≤ n−mk. (9)

The result obtained in [5] is as follows.

Theorem 2.1. The following two properties are equivalent:

(i) in the spline space S as well as in any restriction of S to a subinterval, as well as in any
spline space (with n-dimensional section spaces) containing S, any Hermite interpola-
tion problem has a unique solution if and only if the corresponding Schoenberg-Whitney
conditions are satisfied;

(ii) blossoms exist in the spline space Ŝ obtained from S by integration, namely

Ŝ := {Ŝ ∈ C([t0, tq+1]) | DŜ ∈ S},

where D stands for the (possibly left or right) ordinary differentiation.

Moreover, as soon as (ii) holds, we also have:

(iii) in the spline space Ŝ as well as in any restriction of S to a subinterval, as well as in any
spline space (with (n+ 1)-dimensional section spaces) containing Ŝ, any Hermite in-
terpolation problem has a unique solution if and only if the corresponding Schoenberg-
Whitney conditions are satisfied.

Remark 2.2. The main purpose of this paper is interpolation, not blossoms. It is why we
will limit ourselves to explaining the precise meaning of (ii) in the special case addressed
in Section 3. At this stage we shall just stress that blossoms in the space Ŝ are functions
of n variables, defined on a symmetric subset of [t0, tq+1]

n, whose values are obtained by
intersecting convenient osculating flats. The interesting thing is that, in the context used
to state Theorem 2.1, as soon as they exist, blossoms satisfy a few crucial properties which
make it possible to develop the analogue of all design algorithms known for polynomial
splines (evaluation, subdivision, . . .), and by the way, they automatically generate impor-
tant tools such as B-spline-type bases, recurrence relations, . . . The latter tools are strongly
involved in the proof of Theorem 2.1 (see [5]). For further acquaintance with blossoms the
reader can refer to [11], [13] for instance.

Remark 2.3. The spaces spanned by the four functions 1, x, (1 − x)p, xq, considered in
Figures 1 and 2 are not Extended Chebyshev spaces on the interval [0, 1] where we consider
them, except in the case p = q = 3 where the corresponding space is the polynomial
space of degree 3. Indeed, in all other cases, Taylor interpolation is not always possible
because there exist non-zero functions with too many zeros at 0 or 1. As a matter of fact,
in the definition of S, we can weaken our assumption (a) by assuming that any Hermite
interpolation problem in n data based on at least two distinct points has a unique solution
in Ek, thus excluding Taylor interpolation. For such a space we shall use the terminology

Choosing spline spaces for interpolation 317

Quasi Extended Chebyshev space. Equivalently, this means that any nonzero element of Ek

vanishes at most (n− 1) times in [tk, tk+1], but now counting multiplicities up to (n− 1). A
simple way to guarantee that, as soon as blossoms exist in the spline space Ŝ, they satisfy the
same expected properties as in the case of Extended Chebyshev sections, is to require each
Ek to be composed of analytic functions. Theorem 2.1 remains valid in this new context
too provided that, firstly, all interpolation points are involved at most either (n− 1) times
(interpolation in the space S) or n (in Ŝ), and secondly, all knots of the spline space have
positive multiplicities.

3 Interpolation in spline spaces with 4-dimensional sections

The validity of the Schoenberg-Whitney conditions to ensure interpolation in the space Ŝ

was proved in [12] under a requirement of total positivity on the connection matrices in the
case where the sections are Extended Chebyshev spaces. For polynomial sections this total
positivity assumption concerns the matrices connecting the left and right ordinary deriva-
tives at each knot. For sections in more general Extended Chebyshev spaces it concerns the
matrices obtained when expressing the joints at a knot via generalised derivatives, defined
by means of weight functions (see [1]). The main inconvenience of such an assumption
of total positivity is that it is not intrinsic. Indeed, it depends on the chosen differential
operators associated with the Extended Chebyshev spaces (see [15]), and there may be
many different such operators associated with one given Extended Chebyshev space.

Our condition (ii) of Theorem 2.1 is significantly weaker than total positivity of all
connection matrices. It also has the advantage of being intrinsic. However in practice it
is not obvious to know when exactly blossoms do exist in a spline space as general as we
described in Section 2. This is due to the difficulty of checking that various osculating flats
intersect at a single point in high dimension. In [8] we focussed on the somewhat easier
special case of four-dimensional sections (“cubic” splines). There, we were able to achieve a
necessary and sufficient condition for existence of blossoms. Before stating it, we need firstly
to describe the exact framework, and secondly to introduce some geometric characteristics
of the spaces used to build our splines.

As in the previous section we consider a subdivision t0 < t1 < · · · < tq < tq+1. From
now on we assume the knots to be simple, that is, we are now working with the knot vector

K = (t1, . . . , tq).

For 0 ≤ k ≤ q, we suppose that Ek is a three-dimensional Extended Chebyshev space
on [tk, tk+1] or an analytic Quasi Extended Chebyshev space on the latter interval (see
Remark 2.3). Let us denote by Êk ⊂ C([tk, tk+1]) the four-dimensional space obtained
by integration of Ek. On the other hand, for 1 ≤ k ≤ q, we choose three real numbers
βk1 , β

k
2 , β

k
3 , with βk1 , β

k
3 > 0. The corresponding Chebyshevian spline space Ŝ is composed of

all continuous functions Ŝ : [t0, tq+1]→ IR such that

(1) for 0 ≤ k ≤ q there exists F̂k ∈ Êk such that Ŝ(t) = F̂k(t) for all t ∈ [tk, tk+1];

318 Mazure Transgressive Computing

(2) Ŝ satisfies the the connection conditions

(
Ŝ′(tk

+), Ŝ′′(tk
+
)T

=

(
βk1 0
βk2 βk3

)
.
(
Ŝ′(tk

−), Ŝ′′(tk
−)T , 1 ≤ k ≤ q. (10)

Let us now fix an integer k ∈ {0, . . . , q}. The space Êk is an Extended Chebyshev space
or a Quasi Extended Chebyshev space on [tk, tk+1] and it contains constants. Choosing
a basis (1I,Φk

1 ,Φ
k
2 ,Φ

k
3) in Êk, we consider the function Φk := (Φk

1 ,Φ
k
2 ,Φ

k
3). We know that

blossoms exist in the space Êk, the blossom ϕk of Φk being defined on [tk, tk+1]
3 by (see [8],

[9] and other references therein):

{ϕk(x, y, z)} =

Osc2Φk(x) ∩Osc2Φk(y) ∩Osc2Φk(z) if x, y, z are pairwise distinct,
Osc2Φk(x) ∩Osc1Φk(y) if, up to permutation, z = y 6= x,
Osc0Φk(x) := {Φk(x)} if z = y = x.

(11)
In (11), Osc1Φk(x) := {Φk(x) + λΦ′

k(x), λ ∈ IR} is the tangent line at x and Osc2Φk(x) :=
{Φk(x) + λ1Φ

′
k(x) + λ2Φ

′′
k(x), λ1, λ2 ∈ IR} is the osculating plane at x.

In particular, this enables us to consider the Bézier points of Φk w.r. to (tk, tk+1),
namely, the points

Pk,0 := Φk(tk), Pk,1 := ϕk(tk, tk, tk+1), Pk,2 := ϕk(tk, tk+1, tk+1), Pk,3 := Φk(tk+1). (12)

From (11) and (12) one can deduce the existence of real numbers λ+
k,i, i = 1, 2, 3, such that

(
Pk,1 − Pk,0
Pk,2 − Pk,0

)
=

(
λ+
k,1 0

λ+
k,2 λ+

k,3

)(
Φ′
k(tk)

Φ′′
k(tk)

)
, (13)

and a similar relation at the other endpoint:

(
Pk,2 − Pk,3
Pk,1 − Pk,3

)
=

(
λ−k+1,1 0

λ−k+1,2 λ−k+1,3

)(
Φ′
k(tk+1)

Φ′′
k(tk+1)

)
. (14)

The λ’s involved in (13) and (14) are geometric characteristic of the space Êk: they do not
depend on the basis chosen to define blossoms. They satisfy

λ+
k,1 > 0, λ−k+1,1 < 0, λ+

k,3 > 0, λ−k+1,3 > 0.

Selecting a basis (1I, Σ̂1, . . . , Σ̂n+m) in the space Ŝ, we set Σ̂ := (Σ̂1, . . . , Σ̂n+m). First
observe that Osc1Σ̂(x) and Osc2Σ̂(x) are well-defined at any x ∈ [t0, tq+1], even when x is

a knot. Indeed, due to the continuity of the spline Σ̂ and to the connection conditions (10),
at a given knot tk, 1 ≤ k ≤ q, the left and right tangent lines Osc1Σ̂(t−k) and Osc1Σ̂(t+k)
are equal, and so are the left and right osculating planes Osc2Σ(t−k) and Osc2Σ(t+k). We
simply denote them by Osc1Σ(tk) and Osc2Σ(tk), respectively. On the other hand, we
say that a triplet (x1, x2, x3) ∈ [t0, tq+1]

3 is admissible if, for any integer k, 1 ≤ k ≤ q,
satisfying Min(x1, x2, x3) < tk < Max(x1, x2, x3), there exists at least one i ∈ {1, 2, 3} such
that xi = tk. With this definition, the necessary and sufficient condition for existence of
blossoms obtained in [8] can be stated as follows.

Choosing spline spaces for interpolation 319

Theorem 3.1. The Chebyshevian spline space being defined as above, the following two
properties are equivalent

(i) blossoms exist in the space Ŝ, in the sense that the blossom σ of Σ can be defined by
formulae similar to (11), but this, only on the subset of [t0, tq+1]

3 composed of all
admissible triplets (x, y, z);

(ii) the connection matrices satisfy:

βk1 d+
k + βk2 − βk3 d−k > 0 , 1 ≤ k ≤ q, (15)

where the real numbers d−k and d+
k are defined by

d−k :=
λ−k,2 − λ−k,1

λ−k,3
, d+

k :=
λ+
k,2 − λ+

k,1

λ+
k,3

, 1 ≤ k ≤ q. (16)

To illustrate Theorem 3.1, suppose that, for 0 ≤ k ≤ q, the space Êk is the space
spanned by the functions 1, x, (1 − x)pk , xqk on [0, 1] (see Figure 1), up to the change of
variable ϑ(t) := (t − tk)/(tk+1 − tk) (variable degree polynomial splines with connection
matrices). The corresponding numbers d−k and d+

k are then given by (see [9]):

d−k =
1− qk−1

tk − tk−1
, d+

k =
pk − 1

tk+1 − tk
, 1 ≤ k ≤ q. (17)

Other examples can be found in [8].
In the particular situation considered in this section, we thus know that conditions (15)

are equivalent to (i) of Theorem 2.1 and that they imply (iii) of the same theorem. Since
“cubic” splines are the most commonly used splines, we will actually focus on the spline
space Ŝ rather than on S.

Corollary 3.2. Suppose that the connection matrices satisfy conditions (15). Then, a
given Hermite interpolation problem (1) in N = q + 4 data has a unique solution in the
spline space Ŝ if and only if the interpolation points y−3 ≤ · · · ≤ yq ∈ [t0, tq+1] satisfy the
Schoenberg-Whitney conditions, that is, with the notations introduced in Theorem 2.1, if
and only if:

yk−4 < tk < yk for 1 ≤ j ≤ q.
Let us illustrate the latter result in the special case of Lagrange interpolation. Subse-

quently, we shall use the terminology Chebyshevian space for either an Extended Chebyshev
space or an analytic Quasi Extended Chebyshev space. Although the result below can be
valid without it, as mentioned in Remark 2.3, analyticity is a practical assumption to gua-
rantee blossoms to satisfy all desirable properties in Quasi Extended Chebyshev space.

Corollary 3.3. Given any real numbers x1 < · · · < xN , set q := N − 4 and define the
points t0, . . . , tq+1 as follows

t0 := x1, tk := xk+2 for 1 ≤ k ≤ q, tq+1 := xN .

320 Mazure Transgressive Computing

For 0 ≤ k ≤ q, choose a four-dimensional Chebyshevian space Êk containing constants so
that Ek := DÊk is a Chebyshevian space on [tk, tk+1]. For 1 ≤ k ≤ q, choose real numbers
βk1 , β

k
2 , β

k
3 so that

βk1 , β
k
3 > 0, βk2 > βk3 d−k − βk1d+

k . (18)

where the coefficients d−k and d+
k are associated with Êk according to (16). Let Ŝ denote the

corresponding spline space defined as above. Then, for any α1, . . . , αN ∈ IR, there exists a
unique Ŝ ∈ Ŝ such that

Ŝ(xk) = αk, 1 ≤ k ≤ N. (19)

We thus have constructed infinitely many spline spaces to obtain a unique solution to
the Lagrange interpolation problem (19). We now have at our disposal infinitely many
shape parameters, namely:

- on the one hand, the shape parameter(s) inherent in the Chebyshevian space Êk, 0 ≤ k ≤ q;
- on the other, all coefficients βk1 , β

k
2 , β

k
3 , 1 ≤ k,≤ q, supposed to meet the requirement (18).

0 1 2 3 4 5 6 7
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-1 -0.5 0 0.5 1 1.5 2 2.5 3

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3: Lagrange interpolation at regularly spaced points. Not-a-knot procedure (that
is, interior knots of the spline space at 2,3,4,5). Up to appropriate changes of variable,
sections in the space spanned by 1, x, (1−x)5, x5. Everywhere βk1 = βk3 = 1 and everywhere
βk2 = 0, except at the two central knots where βk2 = −7.9,−6, 0 (from the most to the least
oscillatory).

To illustrate this, let us consider again the case of variable degree polynomial splines
with connection matrices adressed in formula (17). In this case, according to the latter
formula, in order to satisfy the connection requirements (18), for given positive βk1 , β

k
3 , we

have to choose βk2 as follows:

βk2 > −βk1
pk − 1

tk+1 − tk
− βk3

qk−1 − 1

tk − tk−1
, 1 ≤ k ≤ q. (20)

Choosing spline spaces for interpolation 321

Interpolation in the corresponding spline spaces is illustrated in Figure 3. As in all our
subsequent examples, the spline space is defined according to the situation described in
Corollary 3.3.

Remark 3.4. The latter inequality (20) makes it obvious that total positivity is not at all
necessary to be able to interpolate under Schoenberg-Whitney conditions (see Figure 3;
also, see the example of trigonometric splines in Remark 3.6 below). Indeed, in this case,
total positivity of the connection matrix at the knot tk just means that the non-diagonal
coefficient βk2 is non-negative. As an instance, for cubic polynomial splines with connection
matrices, and for regularly spaced knots with tk+1 − tk = 1, our condition (20) becomes

βk2 > −2(βk1 + βk3), 1 ≤ k ≤ q.

Remark 3.5. One of the possible interests of the shape parameters introduced is to avoid
oscillations, that is, to try and ensure shape preservation (monotonicity of the interpolating
function if the data are monotonically distributed or monotonicity in one direction of the
interpolating curve if the data points are monotonically distributed in that direction, . . .).
This can be obtained with a relevant choice for the Chebyshevian spaces used to define Ŝ

and for their inherent shape parameter(s). This is illustrated in Figures 4 and 5 with C2

variable degree polynomial splines in the case p = q. We can see the efficiency of the tension
shape parameter p as it goes to +∞. Note that this is the very reason why C2 variable
degree polynomial splines were introduced (see [2]).

0 1 2 3 4 5 6 7
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-1 -0.5 0 0.5 1 1.5 2 2.5 3

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 4: Tension effects with Lagrange interpolation by C2 variable degree polynomial
splines: regularly spaced interpolation points, not-a-knot procedure, and (up to changes of
variable) sections in the space spanned by 1, x, (1−x)p, xp, with, from the most to the least
oscillatory p = 3 (P3);5;7.

322 Mazure Transgressive Computing

0 1 2 3 4 5 6 7
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-1 -0.5 0 0.5 1 1.5 2 2.5 3

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 5: The same as in Figure 4, with p = 15.

1 2 3 4 5 6 7 8

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1 1.5 2 2.5 3

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 6: Lagrange interpolation by polynomial splines with connection matrices. Re-
gularly spaced interpolation points and not-a-knot procedure. Everywhere βk1 = 1 and
βk2 = 0. Left: from the most to the least oscillatory β1

3 = β3
3 = 1; 10; 100 and

β2
3 = β4

3 = 1; 0.1; 0.01. Right: from the most to the least oscillatory, in the first
variable (β1

3 , β
2
3 , β

3
3 , β

4
3) = (1, 1, 1, 1); (1, 0.1, 10, 1); (1, 0.1, 10, 1) and in the second one

(β1
3 , β

2
3 , β

3
3 , β

4
3) = (1, 1, 1, 1); (1, 0.1, 10, 1); (0.01, 10, 0.1, 100).

Choosing spline spaces for interpolation 323

Similar effects can be obtained with the help of connection matrices. This is illustrated
in Figure 6 for cubic polynomial splines with connection matrices satisfying βk1 = 1, βk2 = 0
everywhere. In that case too, efficients tension effects can be obtained by choosing suitable
positive values for the coefficients βk3 .

Remark 3.6. Depending on the given interpolation points x1, . . . , xN and on our choice of the
Chebyshevian spaces Êk it may be impossible to interpolate under C2 continuity. This will
make absolutely necessary to introduce connection matrices. For instance, when choosing Êk

as the trigonometric space spanned by 1, x, cos x, sin x, over [tk, tk+1], for blossoms to exist in
the corresponding C2 spline space it is necessary and sufficient to require max(tk+2− tk) <
2π. Otherwise, we have to use connexion matrices satisfying condition (4.14) of [8].

-1 0 1 2 3 4 5 6

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 7: C2 Lagrange interpolating trigonometric spline curves with, for 0 ≤ k ≤ 10, from
the least to the most oscillatory, tk+1 − tk = 1; 2.8; 3.1. Sequence of interpolation points:
(y−3, . . . , y10) = (t0,

1
2 (t0 + t1), t1, . . . , t10,

1
2(t10 + t11), t11)

In case we want to construct a parametric interpolating trigonometric spline curve (for
given points αk ∈ IRd), it may be interesting to take the length of the intervals as shape
parameters. This is illustrated in Figure 7 with C2-continuity and regularly spaced knots
tk, 0 ≤ k ≤ q + 1 := 11. To be in keeping with the situation described in Corollary 3.3,
we interpolate at each knot (including the end points) and at two additional interpolation
points in the interior of the first and last interval, namely 1

2(t0 + t1) and 1
2(t10 + t11). Such

a choice for the two additional interpolation points implies reduced oscillations towards the
end points. According to (iii) of Theorem 2.1, max(tk+2 − tk) < 2π is only a sufficient
condition for ensuring existence and unicity of any Lagrange interpolation problem in a
C2-trigonometric spline space. To compare, the previous existing sufficient condition was
existence of B-splines with supports contained in an interval on which the trigonometric
space is an Extended Chebyshev space, that is, max(tk+4 − tk) < 2π. For instance, in

324 Mazure Transgressive Computing

Figure 7, only the first length fits in with the latter condition, which itself can be much
better than the total positivity requirement. By way of example, in [8] we pointed out that
C2 trigonometric splines are never in keeping with total positivity when using some natural
weight functions associated with the trigonometric space.

Remark 3.7. Shape effects and shape parameters play an important rôle in Geometric De-
sign. For interpolating curves, they are mainly used for shape preservation purposes as
explained above. But why not also use them to play with the curves for “design interpo-
lation” purposes. This would require to learn how to modify the various shape parameters
depending on the shape effects we wish to obtain.

Figure 8: Shape effects with Lagrange interpolation by C2 splines. Regularly spaced knots.
Left: hyperbolic fish with tk+1 − tk = 0.1 (dotted line: nearly polynomial splines); 14
(continuous line). Right: trigonometric fish with tk+1 − tk = 0.1 (dotted line: nearly
polynomial splines); 3.

To illustrate this we shall limit ourselves to C2 splines with sections either in the trigono-
metric space (see Remark 3.6) or in the hyperbolic space spanned by the four functions
1, x, cosh x, sinhx which is an Extended Chebyshev space over the whole real line. Roughly
speaking, when varying the length between knots, interpolation with either trigonometric
spline curves (with the limitation tk+2− tk < 2π) or hyperbolic spline curves (with no limi-
tation) provides us with somewhat opposite shape effects, as shown in Figure 8 for regularly
spaced knots. In both cases, as well as in Figure 9 later, the interpolation points are all
the knots (including the end points) and the middles of the first and last interval. It seems
obviously interesting to combine these shape effects by mixing hyperbolic and trigonometric
sections. A tiny idea of the possibilities is given in Figure 9, where, for the sake of unifor-
mity we limit ourselves to regularly spaced knots in all examples. Many more effects can
be obtained by cancelling the latter restriction, of course within existence of blossoms, that
is, according to (18) (see relations (4.14) and (4.18) of [8]). Allowing connection matrices
or using other kinds of Chebyshevian spaces for the sections (e.g., those involved in Figure
2, right) would also increase the possibilities.

Remark 3.8. To conclude, note that we have assumed all interior knots to be simple, but
it is actually possible to allow double knots. At a double knot tk, in the definition of the

Choosing spline spaces for interpolation 325

spline space Ŝ the connection condition reduces to

Ŝ′(t+k) = βk1 Ŝ
′(t−k)

for some positive βk1 . No additional condition is required either by interpolation in S or by

existence of blossoms in Ŝ.

Figure 9: Shape effects with Lagrange interpolation by C2 mixed hyperbolic/trigonometric
spline curves, starting from and ending at the top of the tail, first back, then belly. Regularly
spaced knots. Upper left: 4H 6T, tk+1 − tk = 3. Upper right: 4T 6H, tk+1 − tk = 3. Lower
left: 2H 4T 4H, tk+1−tk = 3. Lower right: 3H 1T 4H 1T 1H, tk+1−tk = 4.5 (H=hyperbolic
section, T=trigonometric section).

References

[1] Barry, P.J., de Boor-Fix dual functionals and algorithms for Tchebycheffian B-splines
curves, Constr. Approx. 12 (1996), 385–408.

[2] P. Costantini, On monotone and convex spline interpolation, Math. Comput. 46 (1986),
203–214.

[3] N. Dyn and C.A. Micchelli, Piecewise polynomial spaces and geometric continuity of
curves, Numer. Math. 54 (1988), 319-337.

326 Mazure Transgressive Computing

[4] S. Karlin and Z. Ziegler, Tchebysheffian spline functions, SIAM J. Numer. Anal., Series
B, 3 (1966), 514–543.

[5] A. Kayumov and M.-L. Mazure, Chebyshevian splines: interpolation and blossoms,
preprint.

[6] P. E. Koch and T. Lyche, Exponential B-splines in tension, in Approximation Theory

VI, C. K. Chui, L. L. Schumaker, and J. D. Ward (eds), Acad. Press, N. Y., 1989,
361–364.

[7] T. Lyche and L .L. Schumaker, Total positivity properties of LB-splines, in Total

Positivity and Its Applications, M. Gasca and C. Micchelli (eds.), Kluwer , Dodrecht,
1996, pp. 35-46

[8] M.-L. Mazure, Chebyshev splines beyond total positivity, Adv. Comput. Math. 14

(2001), 129-156.

[9] M.-L. Mazure, Quasi-Chebyshev splines with connection matrices. Application to vari-
able degree polynomial splines, Computer-Aided Geom. Design 18 (2001), 287-298.

[10] M.-L. Mazure, On the equivalence between existence of B-spline bases and existence
of blossoms, Constr. Approx. 20 (2004), 603–624.

[11] M.-L. Mazure, Ready-to-blossom bases in Chebyshev spaces, in Topics in Multivariate

Approximation and Interpolation, K.Jetter, M.Buhmann, W.Haussmann, R.Schaback,
and J.Stoeckler (eds), Elsevier, 12, chapitre 6, 2005.

[12] G. Mühlbach, One sided Hermite interpolation by piecewise different generalized poly-
nomials, to appear in Adv. Comput. Math..

[13] H. Pottmann, The geometry of Tchebycheffian splines, Computer-Aided Geom. Design

10 (1993), 181–210.

[14] I. J. Schoenberg and A. Whitney, On Pólya frequency functions, III, Trans. Amer.

Math. Soc. 74 (1953), 246–259.

[15] L .L. Schumaker, Spline Functions, Wiley Interscience, N.Y., 1981.

Marie-Laurence Mazure
LMC-IMAG

Université Joseph Fourier
mazure@imag.fr

http://www-lmc.imag.fr/lmc-cf/Marie-Laurence.Mazure/

Computing Roadmaps in Smooth Real Algebraic Sets 327

Computing Roadmaps in Smooth Real Algebraic Sets

Marc Mezzarobba Mohab Safey El Din

Abstract

Let (f1, . . . , fs) be polynomials in Q[X1, . . . , Xn] of degree bounded by D that gen-
erate a radical equidimensional ideal of dimension d and let V ⊂ Cn be the locus of
their complex zero set which is supposed to be smooth. A roadmap in V ∩ Rn is a real
algebraic curve contained in V ∩Rn which has a non-empty and connected intersection
with each connected component of V ∩ Rn.

The classical strategy to compute roadmaps is due to J. Canny and leads to algo-
rithms having a complexity within DO(n2) arithmetic operations in Q. This strategy
is based on computing a polar variety of dimension 1 and a recursion on the studied
variety intersected with fibers taken above a critical value of a projection. Thus, it
requires computations with real algebraic numbers and introduces singularities at each
recursive call. Thus, no efficient implementation of roadmap algorithms have been ob-
tained until now. Our aim is to provide an efficient implementation of the roadmap
algorithm. We show how to slightly modify this strategy in order to avoid the use of
real algebraic numbers and to deal with smooth algebraic sets at each recursive call in
the case where the input variety is smooth. Our complexity is hdDO(n) operations in Q

where h bounds the number of recursive call in our algorithm. This quantity is related
to the geometry of V ∩Rn and is bounded by DO(n), thus in worst cases our algorithm
has a complexity within DO(n2) arithmetic operations. We report on some experiments
done with a preliminary implementation of our algorithm.

Keywords. Polynomial System Solving, Real Solutions, Connectedness, Complexity.

Introduction

Let (f1, . . . , fs) be polynomials in Q[X1, . . . ,Xn] of degree bounded by D that generate
a radical equidimensional ideal of dimension d. Let V ⊂ Cn be the algebraic set defined
by f1 = · · · = fs = 0 which is supposed to be smooth in the sequel. A roadmap R
associated to V ∩Rn is an algebraic curve contained in V having a non-empty and connected
intersection with each connected component of V ∩Rn. This paper is devoted to design an
efficient algorithm computing roadmaps in smooth real algebraic sets leading to an efficient
implementation.

Computing roadmaps allows to reduce general connectivity decision problems to con-
nectivity decision in dimension 1 for which there exist algorithms (see [4]). The problem
of deciding connectivity is motivated by problems arising in robot motion planning where
deciding if two given points belong to the same connected component of a semi-algebraic set

328 Mezzarobba et al. Transgressive Computing

is a question of first importance (see [20]). In this context, the computation of a roadmap
can be seen as a preliminary step (see [3]) using connecting subroutines between these
points and the computed roadmap. Roadmaps can also be used to compute the number of
connected components of a semi-algebraic set and parametrized versions of some roadmap
algorithms are used to obtain a semi-algebraic description of the connected components of
a semi-algebraic set (see [4]).

Roadmaps can be extracted from a cylindrical algebraic decomposition but such an
approach leads to algorithmic solutions which are doubly exponential in the number of
variables. The notion of roadmap is explicitly introduced in 1987 by J. Canny (see [5, 6]) who
provides an algorithm computing roadmaps for semi-algebraic set in knDO(n4) operations
in Q (where k is the number of inequalities defining the considered semi-algebraic set. In
the case of real algebraic sets we are considering here, the complexity of his algorithm
is DO(n4). A Monte-Carlo version of Canny’s algorithm computes roadmaps in DO(n2).
Further developments can be found in [14, 13, 15] and in particular [3] where an algorithm
computing roadmaps in a semi-algebraic set having a complexity kd

′
DO(n2) where k is the

number of inequalities and d′ the dimension of the considered semi-algebraic set. In the case
of real algebraic sets, the latter algorithm has a complexity DO(n2) arithmetic operations in
Q. All the algorithms cited above are, in the case of real algebraic sets, based on Canny’s
strategy we present below.

Canny’s strategy to compute roadmaps. Suppose that V ∩ Rn is compact. Canny’s
algorithm computes a “silhouette”, i.e. the critical locus of the restriction of a projection on
a plane P to V. Since V ∩Rn is compact, this silhouette has a non-empty intersection with
each connected component of V ∩Rn but this intersection may be non connected. Classical
results of Morse theory show that it is sufficient to construct roadmaps in the slices which
are fibers taken above the critical values of the restriction to the considered silhouette of
the projection on a line lying in P to obtain connected algebraic curves in each connected
component of V ∩ Rn. Figure 1 illustrates this process in the case of a torus in R3.

The construction of these roadmaps in each slice is done by considering once again a
silhouette in each slice and the critical values of some projection on a line restricted to the
new silhouette. Once again one has to construct roadmaps in each fiber taken above these
critical values and so on until the considered slices are 1-dimensional.

Thus the above construction is based on the recursive calls to a procedure computing:

• a critical locus of the projection on the plane (X1,X2);

• the set E of critical values of a projection on X1

on the set of polynomials defining V where X1 is instantiated to v for each v in E and the set
of variables (X1, . . . ,Xn) is obviously replaced by (X2, . . . ,Xn) so that the next silhouette
is computed relatively to the plane (X2,X3).
Remark that each slice defines a singular variety and is defined as a pre-image of a real
algebraic number by some projection. Thus, deformation techniques based on the introduc-
tion of infinitesimals are required to deal with these singular varieties. This, and the use

Computing Roadmaps in Smooth Real Algebraic Sets 329

Figure 1: Canny’s roadmap in the case of a torus.

of real algebraic numbers, makes the arithmetic on which the computations are performed
extremely heavy. Thus, in despite to the rather good complexity of roadmap algorithms,
they had never been implemented. In this paper, we show how to slightly modify the above
geometric procedure to avoid the aforementioned problems in the case where the input
polynomials define a smooth algebraic variety.

Slight modification of Canny’s strategy in smooth situations. As above, we sup-
pose V ∩Rn is compact and we make the following assumption:

• (H1) the critical locus C of the projection on (X1,X2) restricted to V is 1-dimensional
and is smooth.

• (H2) Above each critical value of the projection on X1 restricted to C, there exists a
unique critical point.

In this case, one can connect the connected components of C lying in the same connected
components of V ∩Rn by considering fibers between each critical value of the projection on
X1 restricted to C. Figure 2 illustrates this process.

Thus, our algorithm is based on the recursive call of the following procedure:

• compute the critical locus C of the projection on the plane (X1,X2);

• compute a set E ⊂ Q containing a rational number between each critical value of the
projection on X1 restricted to C.

on the set of input polynomials defining V where X1 is replaced by v for each v ∈ E.

330 Mezzarobba et al. Transgressive Computing

Figure 2: Roadmap obtained by modifying Canny’s strategy in the case of a torus.

Remark now that since the fibers are taken above a regular value of the projection
on X1, the slices are smooth algebraic varieties. Moreover, the computations are no longer
performed using real algebraic numbers since one can take the fibers above rational numbers.

The proof of the connectedness of the roadmap constructed with respect to the above
scheme closely follows the one of Canny’s algorithm.

Plan of the paper. In the next section, we show how to reduce the study of smooth real
algebraic sets to the study of compact smooth real algebraic sets and that the assumption
which has been done in the modification of Canny’s strategy is generically satisfied. The
following section is devoted to the formal description of the algorithm we obtain. In the last
section, we study the complexity of our contribution using Lecerf’s results (see [12, 16]) on
Geometric Resolution and present some results obtained with our implementation which is
based on Gröbner bases computations.

1 Preliminaries

This section is devoted to some preliminaries required in the sequel. We consider here a set
of polynomials (f1, . . . , fs) in Q[X1, . . . ,Xn] generating a radical equidimensional ideal of
dimension d and their complex zero set V ⊂ Cn which is supposed o be smooth.

We first show how to reduce the problem of computing a roadmap in a smooth real
algebraic set to computing a roadmap in a smooth and compact real algebraic set.

Theorem 1.1. Let A = (a1, . . . , an) ∈ Qn and EA be the set of critical values of the square
of the euclidean distance to A restricted to V. Let R be a rational number which is greater

Computing Roadmaps in Smooth Real Algebraic Sets 331

that max(e, e ∈ E) and Xn+1 be a new variable. Consider the algebraic variety WA defined
by:

f1 = · · · = fs = ((X1 − a1)
2 + · · ·+ (Xn − an)2 +X2

n+1 −R2)

There exists a Zariski-closed subset A ⊂ Cn such that for all A ∈ Qn \ A, the following
holds:

• the above polynomial system generates a radical and equidimensional ideal,

• WA is smooth,

• WA ∩Rn+1 is compact.

Moreover, the projection of a roadmap computed in W ∩ Rn+1 onto (X1, . . . ,Xn) is a
roadmap on V ∩ Rn.

Proof. We only provide here a sketch of proof. The existence of the Zariski-closed subset
A such that for all A = (a1, . . . , an) ∈ Qn \ A, the system

f1 = · · · = fs = ((X1 − a1)
2 + · · ·+ (Xn − an)2 +X2

n+1 −R2)

generates a radical equidimensional ideal and defines a smooth algebraic variety comes from
its characterization as a set of critical values of a polynomial mapping. We refer to [1] and
[2] for similar reasonings.

The compacity of WA is obvious. The properties of connectedness of the projection of
a roadmap in WA are done in [4, Chapter 15].

We consider now A ∈ GLn(Q) and, given f ∈ Q[X1, . . . ,Xn], we denote by fA the poly-
nomial f(A.X) where X denotes the vector (X1, . . . ,Xn). We denote by VA the algebraic
variety defined by:

fA
1 = · · · = fA

s = 0.

Consider also the canonical projections Πi:

Πi : Cn −→ Ci

(x1, . . . , xn) → (x1, . . . , xi)

and denote by K(Πi,VA) the critical locus of Πi restricted to VA.

Theorem 1.2. [2] If V is smooth and equidimensional, there exists a Zariski-closed subset
A ⊂ GLn(C) such that for all A ∈ GLn(Q) \ A, for all i ∈ {1, . . . , d − 1}, K(Πi,VA) are
smooth equidimensional algebraic varieties.

From the above result, one deduces easily the following one:

Corollary 1.3. Up to a generic linear change of coordinates A ∈ GLn(Q), for j =
1, . . . , d − 2, there exists a Zariski-closed subset Pj such that for all (p1, . . . , pj) ∈ Qj \ Pj,
K(Πj+2,VA) ∩Π−1

j (p1, . . . , pj) is a smooth algebraic curve.

332 Mezzarobba et al. Transgressive Computing

Remark 1.4. The above corollary implies that at each recursive call, the assumption of
smoothness of the 1-dimensional computed critical locus and on the computed fibers are
satisfied generically.

Proposition 1.5. Up to a generic linear change of coordinates A ∈ GLn(Q), for j =
1, . . . , d − 2, there exists a Zariski-closed subset Pj such that for all (p1, . . . , pj) ∈ Qj \ Pj,
there exists exactly one critical point above each critical value of πj+2 : (x1, . . . , xn)→ xj+2

restricted to K(Πj+2,VA) ∩Π−1
j (p1, . . . , pj).

Proof. Applying Corollary 1.3, for all j = 1, . . . , d − 2, K(Πj+2,VA) ∩ Π−1
j (p1, . . . , pj) is

smooth.
Consider first the case j = d− 2 and suppose we are dealing with hypersurfaces. Then,

the result is a consequence of [4, Proposition 7.9]. When j = d−2 and we are dealing with a
general algebraic set VA defined by fA

1 = · · · = fA
s = 0, the result is obtained by remarking

that the critical points of a generic projection π restricted to VA are contained in the set of
limits of the critical points of π restricted to the hypersurface defined by fA

1
2
+ · · ·+fA

s
2−ε

when ε tends to 0 (see e.g.[5]).
The other cases are obtained by eventually changing A in such a way that the variables

X1, . . . ,Xj+1 are the only one which are changed so that the previous critical loci of higher
dimension are not changed and one recover a generic situation for the critical loci of lower
dimension.

2 Roadmap Algorithm

We suppose in the sequel that the assumptions (H1) and (H2) are satisfied.

The proof of our algorithm is based on the following proposition which is a well-known
result of Morse Theory. Since we have not found a reference where it is explicitely proved,
we provide a sketch of proof.

Proposition 2.1. Let [a, b] ⊂ R containing a unique critical value v of Π1 restricted to
K(Π2,V) and D[a,b] be a connected component of

(
V ∩Π−1

1 ([a, b])
)
∩ Rn. Then, the semi-

algebraic set D[a,b] ∩
(
Π−1

1 (a) ∪K(Π2,V) ∪Π−1
1 (b)

)
is connected.

Proof. Let x and y be two distinct points of D[a,b]∩
(
Π−1

1 (a) ∪K(Π2,V) ∪Π−1
1 (b)

)
. Suppose

first Π1(x) < v < Π1(y). since Π1 realizes a locally trivial fibration on D[a,v[(resp. D]v,b])

x (resp. y) can be connected to D[a,b] ∩ Π−1
1 (a) (resp. D[a,b] ∩ Π−1

1 (b) via a continuous

path. Let x′ and y′ be the respective intersection of these continuous path with Π−1
1 (a) and

Π−1
1 (b). Since V is smooth, there exists a path γ : t ∈ [0, 1]→ D[a,b] linking x′ and y′ which

does not contain the unique critical point p such that Π1(p) = v. We then exhibit a path
contained in K(Π2,V) ∩D[a,b] by studying Π−1

1 (Π1(γ(t))) ∩K(Π1,V), for t ∈ [0, 1]. From
the compacity of V ∩Rn, the smoothness of V and K(Π1,V) and the assumption (H2), one
deduces a continuous path in K(Π2,V) ∩D[a,b] which links x′ and y′. This configuration is
illustrated in Figure 3.

Computing Roadmaps in Smooth Real Algebraic Sets 333

Figure 3: Local connectedness.

Suppose now that Π1(x) > v and Π1(y) > v. If they are both connected to the unique
critical point p such that Π1(p) = v by a path in K(Π2,V) ∩ D[a,b] then we are done. If
both of them lie on a connected component of K(Π2,V) ∩ D[a,b] which does not contain

p, then they can be connected by D[a,b] ∩ Π−1
1 (b) using the properties of locally trivial

fibration of Π2 and the smoothness of K(Π1,V). The same reasoning is done when one of
them is connected to p: in this case the connected component of K(Π2,V) containing p has
obviously a non-empty intersection with Π−1

1 (]v, b]).
The situation where Π1(x) < v and Π1(y) < v is symmetric to the above one.
At last, one has to deal with the situation where Π1(x) = v and/or Π1(y) = v. Since

K(Π1,V) is smooth, they are connected to points x′ and y′ which are in one of the above
cases.

Algebraic representation of a curve. We focus now on how to represent algebraic
curves. Given a polynomial system generating a 1-dimensional ideal, one expects to obtain
a parametrization of the curve with coefficients in Q(u) where u is a parameter.

Xn = qn(u,T)
q0(u,T)

...

X1 = q1(u,T)
q0(u,T)

q(u, T) = 0

Such a representation can be valid only outside a finite set of values of the parameter u.
Indeed, for almost all specialization e of the parameter u one should retrieve a parametriza-

334 Mezzarobba et al. Transgressive Computing

tion of the zero-dimensional set of points which is the intersection of the curve with the
hyperplane u = e. The variable T encodes the separating element.

From such a representation, one can compute the number of connected components of
the curve (see [4]). From several representations of that kind one can deduce a single one.

Such a parametrization can be computed from a Gröbner basis using [7] or [8] of the
input polynomial system and several computations of Rational Univariate Representations
(see [17]) using interpolation techniques. Other techniques based on the representation
of polynomials by straight-line programs going back to [9, 10, 11] can be used, and more
particularly the algorithm of geometric resolution (see [12] and [16]).

Algorithm 2.2. RoadSubRoutine:

• Input: A set of polynomials (f1, . . . , fs) in Q[X1, . . . ,Xn] generating an equidimen-
sional radical ideal of dimension d and such that V(f1, . . . , fs) is smooth and compact.

• Output: A set R of parameterizations encoding a silhouette and a set S ⊂ Q of
rational numbers.

1. Compute a rational parametrization R encoding the critical locus of Π2 restricted to
V(f1, . . . , fs).

2. Compute the critical values of Π1 restricted to the curve encoded by R.

3. Construct a set S of rational numbers such that there is exactly one element of S
between each critical value of Π1 restricted to the curve encoded by R.

4. Return R and S.

Remark 2.3. The critical locus of Π2 restricted to V(f1, . . . , fs) can be obtained by the
vanishing of suitable minors of Jac(f1, . . . , fs) or by using Lagrange’s system. In the latter
case, one has to compute a rational parametrization of the critical locus after eliminating
Lagrange’s multipliers.

The critical values of Π1 restricted to K(Π2,V(f1, . . . , fs)) can be obtained by computing
the discriminant of the polynomial q(u, T) in the parametrizationR if the separating element
can be chosen equaled to X1. Since one works with generic coordinates, this is the case.

Algorithm 2.4. CompactRoadMap:

• Input: A set of polynomials (f1, . . . , fs) in Q[X1, . . . ,Xn] generating an equidimen-
sional radical ideal of dimension d and such that V(f1, . . . , fs) is smooth and compact.

• Output: A set of parameterizations encoding a roadmap in V(f1, . . . , fs) ∩ Rn.

1. L := []; F := [f1, . . . , fs]

2. if n = 2 return F

3. R,S := RoadSubRoutine([f1, . . . , fs])

Computing Roadmaps in Smooth Real Algebraic Sets 335

4. L := R∪ L

5. L := L ∪ (∪s∈SCompactRoadMap(Evaluate(X1 = s, F)))

6. return L

Remark 2.5. This is an approximative description of the algorithm: specializations of the
initial variables should be memorized at each recursive call to recover a description of the
roadmap in Rn.

Algorithm 2.6. RoadMap:

• Input: A set of polynomials (f1, . . . , fs) in Q[X1, . . . ,Xn] generating an equidimen-
sional radical ideal of dimension d and such that V(f1, . . . , fs) is smooth.

• Output: A set of parameterizations encoding a roadmap in V(f1, . . . , fs) ∩ Rn.

1. Compute the critical values of the square of the euclidean distance to a generic point
A = (a1, . . . , an) ∈ Qn restricted to V.

2. Choose a rational R greater than the maximum of these critical values.

3. Return the result provided by CompactRoadMap with input f1, . . . , fs, (X1 − a1)
2 +

. . . + (Xn − an) +X2
n+1 − R in Q[X1, . . . ,Xn+1] after having performed a randomly

chosen linear change of variables A ∈ GLn+1(Q) on these polynomials.

Remark 2.7. Note that, obviously, if the input variety is already known to have a compact
real counterpart, the only useful step in RoadMap is the step of linear change of variables.
The step of intersecting the variety with the hyperball (X1−a1)

2+. . .+(Xn−an)+X2
n+1−R

should be avoided as soon as it is possible since it multiplies by 2 the degree of the studied
variety by CompactRoadMap.

Proof of correctness of the Algorithm. From Theorem 1.1, it is sufficient to prove that
CompactRoadmap returns the correct result. The proof of correctness is done by induction on
the dimension of the studied variety, following [4]. In the case of 1-dimensional variety, we
are done. Consider now the general case. We partition the X1-axis by intervals containing
a single critical value of Π1 restricted to K(Π2,V). Then, we make use of Proposition 2.1
to construct the roadmap by eventually passing through the slices if necessary following the
proof of [4, Chapter 15, Lemma 15.8]. Since each slice has a dimension lower than the one
of the studied variety, the induction hypothesis can be applied and each recursive call to
CompactRoadmap returns the correct result.

336 Mezzarobba et al. Transgressive Computing

3 Complexity Estimates and Implementation

We estimate the complexity of our algorithm in the case where the input polynomial system
is a complete intersection, i.e. s = n − d. Denote by C(n, d,D) the cost of the procedure
RoadSubRoutine and by H(n, d,D) the number of recursive call to CompactRoadmap at step
5 of this procedure and by T(n, d,D) the total cost of our algorithm where:

• n denotes the number of variables,

• d denotes the dimension of the studied variety,

• D denotes the degree of the input polynomial system.

The cost of our algorithm is:

T(n, d,D) = C(n, d,D) + H(n, d,D)T(n − 1, d− 1,D)

We make use of the results of [19] which shows how to use Lagrange’s system in con-
junction with Lecerf’s results [16] to improve the complexity of computing critical points
and [16] which bounds the complexity of computing a lifted curve as a parametrized ge-
ometric resolution of 1-dimensional variety defined by polynomials of degree D by DO(n).
One deduces that computing a rational parametrization encoding a curve has a cost which
is DO(n) also. Using Remark 2.3, one deduces that C(n, d,D) = DO(n).

Remark now that in worst cases, H(n, d,D) is also bounded byDO(n). Since at each step,
the dimension decreases, one deduces that our algorithm has a complexity within DO(nd)

arithmetic operations in Q which improves the one of [3]. Nevertheless, note that while
the algorithm of [3] is deterministic, ours is probabilistic: it relies on assumptions on the
genericity of the initial linear change of variables (nevertheless note that the assumptions
(H1) and (H2) can be checked using tools such as Gröbner bases) and our complexity
analysis relies on the use of an algorithm which is itsself probabilistic. Such comparisons are
only relevant since the first choice of generic projections is, in practice, correct; this partially
explains why our implementations are efficient. Providing a deterministic algorithm to
compute roadmaps in d-dimensional algebraic varieties having a complexity within DO(nd)

arithmetic operations seems to remain an open problem.
Nevertheless, remark that the number of recursive call H(n, d,D) is strongly related to

the geometry of V ∩Rn and is hopefully often less than the Bézout bound. If h denotes the
maximum of {H(n− i, d− i,D), i = 0, . . . , d− 1} on an instance, our complexity, expressed
in terms of h becomes hdDO(n) which is more realistic in regard of the practical behavior
of our algorithm.

Moreover, the results of Lecerf allow to precise the complexity constant which is here
as an exponent. This will be done in a longer version of a paper presenting this work.

A very preliminary implementation of CompactRoadmap has been done in Maple using
Gröbner bases (FGb software, written in C by J.C. Faugère) and Rational Univariate Repre-
sentation (RS written in C by F. Rouillier) and the interface of these softwares with Maple.
For the moment the output is a set of 1-dimensional Gröbner bases. Up to our knowledge,

Computing Roadmaps in Smooth Real Algebraic Sets 337

it is the first implementation computing roadmaps of real algebraic sets which is not based
on Cylindrical Algebraic Decomposition. It already allows to compute roadmaps in smooth
algebraic sets lying in C6 of dimension 5 which seems to be out of the domain reachable by
Cylindrical Algebraic Decomposition. Timings obviously show the practical impact of the
quantity h. This implementation will be integrated in the Maple Library RAGLib which is
available at http://www-calfor.lip6.fr/ s̃afey.

References

[1] P. Aubry, F. Rouillier, and M. Safey El Din. Real solving for positive dimensional
systems. Journal of Symbolic Computation, 34(6):543–560, 2002.

[2] B. Bank, M. Giusti, J. Heintz, L.-M. Pardo, Generalized polar varieties: Geometry and
algorithms, Journal of Complexity, 21 (4) 377-412, 2005.

[3] S. Basu, R. Pollack, M.-F. Roy, Computing roadmaps of semi-algebraic sets on a variety,
Journal of the AMS, 3 (1) 55-82, 1999.

[4] S. Basu, R. Pollack, M.-F. Roy, Algorithms in real algebraic geometry, Springer-Verlag,
2003.

[5] J. Canny, The complexity of robot motion planning, MIT Press, 1987.

[6] J. Canny, Computing roadmaps in general semi-algebraic sets, The computer Journal,
1993.

[7] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4).-. Journal
of Pure and Applied Algebra, 139(1–3):61–88, 1999.

[8] J.-C. Faugère. A new efficient algorithm for computing Gröbner without reduction to
zero (F5). In Proceedings of ISSAC 2002, pages 75 – 83. ACM Press, 2002.

[9] M. Giusti, K. Hägele, J. Heintz, J.-E Morais, J.-L. Montaña, and L.-M. Pardo. Lower
bounds for Diophantine approximation. In Proceedings of MEGA’96, number 117, 118
in Journal of Pure and Applied Algebra, pages 277–317, 1997.

[10] M. Giusti, J. Heintz, J.-E. Morais, J. Morgenstern, and L.-M. Pardo. Straight-line pro-
grams in geometric elimination theory. Journal of Pure and Applied Algebra, 124:101–
146, 1998.

[11] M. Giusti, J. Heintz, J.-E. Morais, and L.-M. Pardo. When polynomial equation
systems can be solved fast? In Proceedings of AAECC-11, volume 948 of LNCS, pages
205–231. Springer, 1995.

[12] M. Giusti, G. Lecerf, and B. Salvy. A Gröbner free alternative for polynomial system
solving. Journal of Complexity, 17(1):154–211, 2001.

338 Mezzarobba et al. Transgressive Computing

[13] L. Gournay and J.-J. Risler. Construction of roadmaps in semi-algebraic sets. Appl.
Alg. Eng. Comm. Comp., 4(4):239–252, 1993.

[14] D. Grigoriev, N. Vorobjov Counting connected component of a semi-algebraic set in
subexponential time. Comput. Complexity, 2(2):133–186, 1992.

[15] J. Heintz, M.-F. Roy, P. Solerno. Single exponential path finding in semi-algebraic sets
II: The general case. Algebraic geometry and its applications, collections of papers from
Abhyankar’s 60-th birthday conference, Purdue University, West-Lafayette, 1994.

[16] G. Lecerf. Computing the equidimensional decomposition of an algebraic closed set by
means of lifting fibers. Journal of Complexity, 19(4):564–596, 2003.

[17] F. Rouillier. Solving zero-dimensional systems through the rational univariate represen-
tation. Journal of Applicable Algebra in Engineering, Communication and Computing,
9(5):433–461, 1999.

[18] M. Safey El Din, É. Schost, Polar varieties and computation of one point in each
connected component of a smooth real algebraic set, Proceedings of ISSAC 2003, 2003.

[19] M. Safey El Din, P. Trébuchet, Strong bi-homogeneous Bézout theorem and its use in
effective real algebraic geometry, in preparation, 2005.

[20] J. Schwarz, M. Sharir, On the piano mover’s problem II: General techniques for com-
puting topological properties of real algebraic manifolds, Adv. Appl. Math., 4 298-351,
1983.

Marc MEZZAROBBA
Ecole Normale Supérieure de Paris

Marc.Mezzarobba@ens.fr

http://www.eleves.ens.fr/home/mezzarob/

Mohab SAFEY EL DIN
LIP6 CalFor, INRIA/LIP6 SALSA Project

University Pierre et Marie Curie
Mohab.Safey@lip6.fr

http://www-calfor.lip6.fr/ s̃afey

Notation Selection in Mathematical Computing Environments 339

Notation Selection in Mathematical Computing Environments

Elena Smirnova Stephen M. Watt

Abstract

We examine the problem of notation selection in mathematical computing environ-
ments. Users of mathematical software may require different notations for the same
expression in a variety of settings. How this can be managed in a general way is the
subject of this paper. We describe a software tool that can be configured to allow
mathematical packages to provide output according to specified notation preferences.
We explore how the choice of a set of notations can be used to disambiguate mathe-
matical input and output in a variety of settings, including mathematical handwriting
recognition, mathematical knowledge management and computer algebra systems.

1 Introduction

One of the problems for natural use of mathematical expressions with a computer is the
absence of unique relationship between the syntactic presentation of mathematical objects
and their semantic meaning. On one hand, the same notation can denote several different

mathematical objects. For example, tan−1 in tan2(x)+ tan−1(x) may mean “cotangent” or
“arctangent”. On the other hand the same mathematical object can be written using several

different notations: for instance, inner product has several notations, including: 〈p, q〉, p · q
and p L q.

Notational ambiguity leads to possible misinterpretation of mathematical content not
only by human reader, but also by automated tools, such as computer algebra systems,
theorem provers, mathematical data format converters and pen-based applications. Misun-
derstanding of a mathematical notation will lead to unexpected or incorrect results, which
in the case of automated environments can be hard to track down. All of this suggests
the utility of additional tools to allow selection of default and preferred notations for use
within mathematical software environments and in human-computer interfaces. This paper
presents our approach to this problem.

Previous work on notation selection in mathematical context were reported in [5], [6],
[11] and [17]. In this paper we elaborate on an approach to mathematical notation selection
based on the idea of using meta-stylesheets for the conversion of mathematical documents
[14]. We present an implementation in the form of a Notation Selection Tool for the XML-
based mathematical data formats MathML[2] and OpenMath[3].

340 Smirnova et al. Transgressive Computing

The rest of the paper is organized as follows: Section 2 gives some examples of com-
mon notational ambiguities and their origins. Section 3 describes our implementation of
a Notation Selection Tool. In Section 4 we go on to consider domains of application for
the notation selection technique and suggest how mathematical notation can be used for
mathematical context management within various environments. The final section presents
our conclusions.

2 Mathematical Notation

2.1 Types of ambiguity and their origin

When we deal with written mathematics in various domains, there are often situations
where one notation is used to represent completely different mathematical ideas. For ex-
ample the expression u′ can mean “derivative”, “minute”, “logical not”, “group inverse”,
“transformation of u”, or have any one of several other interpretations. Usually the meaning
can be determined from the context, but when several domains of mathematical science are
used together, the meaning can be unclear and alternative notations may be required.

Equally well, one mathematical idea often will have several different notations. For
example, the partial derivatives of a function may be presented in any of several ways,
including: fx, f

′
x, ∂xf , ▽xf , ∂f

∂x or Dxf . Furthermore, it is not only the different symbols
and structures that may cause ambiguity: in many cases the spatial layout of an expression
is vital. For example, in various settings C(n, k), nC

k, nCk, nCk, C
k
n and Cnk will be used for

the same value – the binomial coefficient “n choose k”,
(n
k

)
. While the first four notations

can be easily understood, the pair Ckn and Cnk present a serious ambiguity.

Multiple notations for the same mathematical concept may exist for a number of reasons:

• The mathematical context often affects the usual appearance of a formula, e.g. the
fractional power of an expression can be denoted as n

√
f or as f1/n.

• The area of application may imply a default notation, for example i for
√
−1 in com-

plex analysis vs. j for the same value in electrical engineering. Likewise mathemati-
cians commonly write integration as

∫
f(t)dt, while in physics the notation

∫
dtf(t)

is often preferred.

• Sometimes national and cultural conventions apply. For example, the tangent function
is presented by “tan” in Western Europe and North America but by “tg” in Eastern
Europe and China. The open interval, usually denoted as (a, b) in North America,
would be written as]a, b[in France and some other countries.

• The historical period also leads to different notations. For instance, the older use of
lines for grouping, e.g. 3a+ b, versus the modern use of parentheses, e.g. 3(a+ b).

• The level of mathematical sophistication may influence the preferred representation

of expressions. For example, a ÷ b and b
)
a, are usually used in elementary school

arithmetic, while a/b and a
b are used at higher levels.

Notation Selection in Mathematical Computing Environments 341

Figure 1: Rendering of mathematical objects in different notations

2.2 Notation decisions

To render a document that contains the semantics of mathematical objects, software tools
typically use some specific set of given notations. This is the approach typically used in
stylesheets for displaying conceptually-oriented Content MathML and OpenMath. Default
notions are also used by mathematical software in a “pretty-printing” of computation results
and in exporting output to presentational formats, such as LATEX or Presentation MathML.

While this approach is often satisfactory, users from different scientific and cultural
backgrounds may find the choice notation inconvenient. For example, for rendering an
expression for “the third derivative of the cube root of the expression x cubed plus one,”
several notations for each operation can be used (see Figure 1). Depending on the choices
for these notations and their combination, the displayed formula may either look crisp and
clear or appear to be crowded and unaesthetic. In the worst case, a human reader or
software package that is not familiar with a notation may not be able to determine the
meaning of an expression. Unless carefully designed and maintained, software that uses
fixed default notations can easily use the same notation to render different mathematical
concepts. This introduces ambiguities for any later use of the output by human readers or
other mathematical software.

Software with custom rendering rules can be used to avoid these ambiguities. Let us

consider the ambiguous use of parentheses in the notations
(
m
n

)
, (a, b) and

(
n
p

)
. The first

could be interpreted as a binomial coefficient or column vector. The second could be an
ordered pair, an inner product, a row vector, a greatest common divisor or an interval. The
third could be a Legendre symbol or a parenthesized fraction. In an output where multiple
uses of the same notation would occur, these could be disambiguated by specifying the use
of alternatives, e.g. Cnm or gcd(a, b).

The other common situation is a mathematical concept with many notations. In this
case, users may wish to choose certain specific notation for input and output of mathe-
matical expressions. In most cases, however, only one pre-defined syntax will be accepted

342 Smirnova et al. Transgressive Computing

Figure 2: Stand-alone Notation Selection
Tool application

Figure 3: On-line Notation Selection Tool
interface

by mathematical software packages. For instance, the notation acos(x) used by Fortran to
denote “inverse of the cosine function” will not be recognized by Maple. Having the pos-
sibility to advise a mathematical software system on a set of preferred notations can serve
both to disambiguate input and to produce more useful output. The collection of selected
notations defines a target space of mathematical concepts. We conclude that introducing a
technique to select notation for use in mathematical software would help to overcome some
difficulties we have described.

3 A Notation Selection Tool

In this section we describe a software tool that allows applications to be configured to employ
user-selected notations. Our Notation Selection Tool is designed to drive the conversion
from XML-based conceptually-oriented mathematical documents into notationally-oriented
formats. The Notation Selection Tool does this by generating rules to translate between
mathematical expressions in different XML formats. One feature of the Notation Selection
Tool is in its extensibility: an application may define the scope of mathematical concepts
that tool can handle, as well as the set of alternative notations allowed for each concept.

Our implementation presents a graphical user interface that is used to generate an
XSLT stylesheet. This stylesheet may then by used to convert from Content MathML
to Presentation MathML. The interface allows the user to select notational conventions
for a variety of concepts, organized by mathematical area. The software is deployed in
two configurations: a stand-alone Java application (Figure 2) and an on-line service at
http://ptibonum.scl.csd.uwo.ca:16661/NotationSelectionTool (Figure 3). The core of the
Notation Selection Tool is written in Java. The stand-alone version uses the Swing library[9]
and the on-line version is implemented with Java Server Pages [8]. The package includes a
base XSLT stylesheet for Content MathML to Presentation MathML transformation [7][16],
a library of images to present possible notations, and a configuration file.

Notation Selection in Mathematical Computing Environments 343

3.1 Target mathematical domains

To test the feasibility of our approach, we have considered a basic set of mathematical
concepts and their presentations to be handled by the notation selection tool in its default
configuration. To systematize the scope of the mathematical choices, we have organized
them into categories, usually corresponding to major domains of mathematics of their large
subsets. We have defined the following categories: Arithmetic, Combinatorics, Calculus,
Linear Algebra, Set Theory, Trigonometry. We populated each of these categories with
mathematical concepts. In the category “Arithmetic” we placed operations for “multiplica-
tion”, “division” and “continued fractions”. The category “Calculus” originally contained
operations for ordinary and partial differentiation and integration. Later as we have added
more special cases for integration (limit positions, term order, etc), we decided to split this
category into Derivatives and Integrals. We also split Intervals and Logarithms into two
separate categories and created one for Power and Root. Each of the items within a category
was then given a set of alternative notations.

Another way of systematizing mathematical domains would be to take a set of currently
existing OpenMath Content Dictionaries (CDs) and create categories for each of them. Then
the set of OMS symbols within each CD would define the content of each category. In the
experimental design for our tool we decided to stay with our simplified set of mathematical
operations.

3.2 The configuration file

Even though we tried to include a number of popular mathematical concepts in the initial
configuration of our Notation Selection Tool, we could not guarantee that default settings
will satisfy an average user. We therefore organized our software in a such a way that the
end user can introduce other mathematical objects and their own notations. This is done
by updating the configuration file that is used to initialize the Notation Selection Tool.

The configuration file contains a database of concepts, organized by category, and speci-
fies alternative notations. We found an XML format suitable to store this file. (In particular
this simplified storing template XSLT rules.) In this way the structure of the configuration
file can naturally represent the classification introduced in previous section. The top-level
organization of the configuration file is illustrated by the excerpt shown in Figure 4.

Each mathematical category is represented in the configuration file by the element
catalog. Supported concepts and operations from each category have item elements nested
inside of catalog. Each item is given by an OpenMath expression and is assigned a list
of notation choices given within choicelist element. For instance, the operation of dif-
ferentiation may be encoded as the OpenMath symbol diff from the Content Dictionary
weylalgebra1 and can be given the notation choices: fx, f

′
x,

df
dx or Dxf , etc.

Each notation choice, in turn, binds an example of the notation appearance (presented
by a reference to an image file) to a set of converters (given by their XSLT templates). Each
template defines the rules for transformation of mathematical content to its presentation
according to the notational choice. Figure 5 provides an example of such rules to generate
notations for the inverse sine function.

344 Smirnova et al. Transgressive Computing

<catalog>

<name> LINEAR ALGEBRA </name>

<itemlist>

<item>

<keyword> INNER PRODUCT </keyword>

<content>

<!-- OpenMath encoding for mathematical concept INNER PRODUCT -->

</content>

<choicelist>

<choice>

<!-- The first notation choice for INNER PRODUCT -->

<image src = "inn_prod1.gif"/>

<keyvalue> 1 </keyvalue>

<presentation>

<converter input = "Content MathML" output="Presentation MathML">

... <!-- XSLT template for Content MathML to Presentation MathML -->

</converter>

<converter input = "OpenMath" output="LaTeX">

... <!-- XSLT template for OpenMath to LaTeX for this notation -->

</converter>

... <!-- other possible converters -->

</presentation>

</choice>

... <!-- Other notation choices for INNER PRODUCT -->

</choicelist>

</item>

... <!-- Other items within LINEAR ALGEBRA -->

</itemlist>

</catalog>

Figure 4: Configuration file excerpt

3.3 Stylesheet generation

After the user of the Notation Selection Tool selects a set of preferred notations, XSLT
templates associated with each of the chosen notations are inserted into a new stylesheet.
This new stylesheet combines the selected rules with the initial stylesheet supplied with our
software.

The XSLT templates output by the Notation Selection Tool override the rules for the
same input patterns in the base stylesheet. This is ensured by assigning higher priorities
to the XSLT templates than to the corresponding templates in general stylesheet. These
priorities are given by a value of the priority attribute appearing in each template. The
generated stylesheet can then be further used within the tool or used independently for
conversion of XML objects from encoding mathematical content to a presentational form
(see Figure 6). We note specifically that the generated stylesheet may be used to translate
to presentation form alone or it can be used in a “content-faithful” manner to produce
output that retains the original semantics.

By default, the Notation Selection Tool produces a stylesheet to convert from Content
MathML to Presentation MathML. The configuration file also may define templates for

Notation Selection in Mathematical Computing Environments 345

<item>

<title> Inverse sine of x </title>

<keyword> ARCSINE </keyword>

<content>

<om:OMS cd="transc1" name="arcsin"/>

</content>

<choicelist>

<!-- ******** ARCSINE CHOICE 1 ************************ -->

<choice>

<image src = "arcsin1.gif"/>

<keyvalue> 1 </keyvalue>

<presentation input="CMathML" output = "PMathML">

<xsl:template match = "mml:arcsin" mode = "trigonometry" priority="100">

<msup>

<mo>sin</mo>

<mn>-1</mn>

</msup>

</xsl:template>

</presentation>

<presentation input="OpenMath" output = "LaTeX">

<xsl:template match = "om:OMS[@cd=’transc1’ and @name=’arcsin’]" priority="100">

\sin^{-1}

</xsl:template>

</presentation>

</choice>

<!-- ******** ARCSINE CHOICE 2 ************************ -->

<choice>

<image src = "arcsin2.gif"/>

<keyvalue> 2 </keyvalue>

<presentation input="CMathML" output = "PMathML">

<xsl:template match = "mml:arcsin" mode = "trigonometry" priority="100">

<mo>arcsin</mo>

</xsl:template>

</presentation>

<presentation input="OpenMath" output = "LaTeX">

<xsl:template match = "om:OMS[@cd=’transc1’ and @name=’arcsin’]" priority="100">

\mathop{arcsin}

</xsl:template>

</presentation>

</choice>

<!-- ******** ARCSINE CHOICE 3 ************************ -->

<choice>

<image src = "arcsin3.gif"/>

<keyvalue> 3 </keyvalue>

<presentation input="CMathML" output = "PMathML">

<xsl:template match = "mml:arcsin" mode = "trigonometry" priority="100">

<mo>asin</mo>

</xsl:template>

</presentation>

<presentation input="OpenMath" output = "LaTeX">

<xsl:template match = "om:OMS[@cd=’transc1’ and @name=’arcsin’]" priority="100">

\asin

</xsl:template>

</presentation>

</choice>

</choicelist>

</item>

Figure 5: Example of rules to generate notations for the inverse sine function

346 Smirnova et al. Transgressive Computing

Figure 6: Notation Selection Tool in action

other types of conversion. This is indicated by the values of attributes input and output.
If another type of translation is chosen, an appropriate base stylesheet must be used. The
initial software kit for the Notation Selection Tool provides a base stylesheet and configu-
ration file only for Content MathML to Presentation MathML translation. We address the
question of supporting other types of conversion in Section 3.5

3.4 Extensible design

A common problem with software packages it that once they are released they do not
allow users sufficient control over their behaviour. In particular, mathematical software
packages often have many built-in underlying assumptions that permeate their handling of
mathematical expressions. In contrast, the whole point of providing notation selection is to
allows users flexibility. Ensuring flexibility and extensibility of our Notation Selection Tool
has therefore been been one of our guiding principles.

To provide the desired flexibility we have used the idea of an editable configuration file.
This allows the user to introduce new notations for existing math concepts by adding to
this file. In particular, the set of catalogs and their mathematical content may be changed.

In the same way, new mathematical concepts can be created in existing settings. Doing
this entails introducing notational choices, backed by stylesheet tools, to act as targets of
those choices. For example, binomial coefficients and continued fractions are defined neither
in Content MathML nor in Presentation MathML. They can be presented, however, through
the use of annotated <csymbol> elements or by stylesheet templates for newly-defined el-
ements. Annotated <csymbol> elements use a definitionURL attribute to reference some
agreed-upon definition. (There is not necessarily any data at the URL location.)

<apply>

<csymbol definitionURL="http://orcca.on.ca/MathML/newelement.html#binom">

<ci> n </ci>

<ci> m </ci>

</apply>

Notation Selection in Mathematical Computing Environments 347

To introduce new elements in Presentation MathML we can define new XML structures
as extensions of MathML. The elements of this extended MathML may be identified using
a specific namespace. Thus, different notations for binomial coefficients in Presentation
MathML can be defined using an XML Schema or DTD:

<!ELEMENT mmlx:binom(math:mi, math:mi)>

<!ELEMENT mmlx:choose(math:mi, math:mi)>

To define the rendering for these new elements, one can define the following XSLT trans-
formation rules:

<xsl:template match = "apply/mmlx:binom[position()=1][count(child::*)=2]">

<msupsub>

<mfrac thickness="0ex">

<mo> C </mo>

<xsl:for-each select = ’mmlx:binom/child::*’>

<xsl:copy-of select=’.’/>

</xsl:for-each>

</mfrac>

</msupsub>

</xsl:template>

<xsl:template match = "apply/mmlx:choose[position()=1][count(child::*)=2]">

<mfenced>

<mfrac thickness="0ex">

<xsl:for-each select = ’mmlx:binom/child::*’>

<xsl:copy-of select=’.’/>

</xsl:for-each>

</mfrac>

</mfenced>

</xsl:template>

The first template provides the extended Presentation MathML element mmlx:binom with

the notation Carg1arg2 . The second generates the presentation
(
arg1
arg2

)
for the element mmlx:choose.

The same approach allows one to set preferred renderings for OpenMath CDs with
Presentation MathML, as not every OpenMath symbol has corresponding elements in Pre-
sentation MathML. We can apply this technique to introduce new elements to Presentation
MathML. The new elements may then be used in XSLT templates within the notation
configuration file. In this way, OpenMath symbols can be mapped directly to the set of
extended MathML elements. This is beneficial in two ways: First it makes the correspon-
dence between OpenMath entities and their presentation more natural. Second this ease
the creation of XSLT templates for the configuration file and allows a more compact format
for the configuration file itself.

3.5 Notation selection in combination with additional transformations

So far, we have concentrated on the use of our Notation Selection Tool to build MathML
transformation stylesheets. The tool is designed, however, to drive transformations between
a wider range of data formats, as shown in Figure 7. The common characteristics of these

348 Smirnova et al. Transgressive Computing

Figure 7: Mathematical data format translations implemented

conversions is that they typically take objects from high-level semantic views to lower-level
renderings.

One way to enable these transformations is to introduce new entries in the configuration
file. This can be done by placing additional XSLT templates within the <presentation>

element and specifying values of the input and output attributes to indicate the type of
translation. A second approach is to keep the variety of XSLT templates in the configuration
file to the minimum possible, i.e. to support only one type of conversion, for instance
Content MathML to Presentation MathML. For the other formats, external conversion tools
can be used. Our group at the Ontario Research Centre for Computer Algebra has developed
various data format translation techniques supporting conversion1, shown in Figure 7.

OpenMath ↔ Content MathML The conversion between these two XML-based for-
mats is performed natively by XSLT stylesheet transformations. We have designed the
stylesheets for a 2-step transformation in both directions. Conversion from OpenMath
to Content MathML may either elect to generate the built-in MathML operations, when
appropriate, or to give everything in a general format using csymbols. In this direction
our converter supports arbitrary OpenMath CDs. Conversion in the other direction, from
Content MathML to OpenMath, understands the standard OpenMath CDs.

OpenMath ↔Maple The translator between Maple objects and OpenMath expressions
is organized as an engine driven by a set of mapping files. These files describe the corre-
spondence between patterns of mathematical structures represented by both formats. The
scope of the mathematical content that the converter can handle is determined by the set
of mapping files it has loaded. This allows us to configure the converter vocabulary, which

1The conversions {Maple, Mathematica} → Content MathML and Axiom → OpenMath are internally
supported in the corresponding systems. The conversions {Maple,Mathematica} → Presentation MathML
and {Maple,Mathematica,Axiom} → LATEX are also supported internally, but these conversions use only
default notation, defined by the systems.

Notation Selection in Mathematical Computing Environments 349

Figure 8: Using notation selection to produce web pages with mathematical content

is necessary to support OpenMath’s extensible nature. It is convenient for every mapping
file to correspond to one OpenMath Content Dictionary. It is used to drive both directions
of the translation. The translator engine itself is implemented in Maple, which makes the
conversion tool native to the environment of the computer algebra system, while remaining
configurable by the user.

Presentation MathML ↔ LATEX Even though the most common approach to convert
from MathML to TEX is, again, to use XSLT stylesheets, we chose not to use this method.
The reason is that we wanted our converter to be symmetric to our TEX to MathML
converter and for both of them to be configured by one set of bidirectional mappings. Since
TEX is not an XML-based format, we could not use XSLT to translate from TEX to MathML.
Therefore, we have developed two Java packages, one for each direction of conversion to and
from TEX. Both programs use the same mapping file to set the correspondence between
MathML and LATEX syntactic patterns. This mapping file is similar to the configuration file
used by the Notation Selection Tool and can be edited by the users of the converter. This
approach allows flexibility and extensibility of the tools for these conversions. The other
benefit of using mapping files is preserving high-level semantics in transforming between
TEX macros and MathML extension elements. The on-line version of the LATEX↔MathML
translator is available at http://www.orcca.on.ca/MathML/texmml. More details on the
MathML to LATEX converter are given in [21].

4 Applications of Notation Selection

One of the most common applications for the Notation Selection Tool is support for multiple
formats in mathematical documents. One can imagine a likely scenario in which a user may
wish to export the computation results from a computer algebra system and to place them
on a web page within lecture notes or on-line publication. The rendering of mathematical
content then may be specified by a choice of notation set trough the Notation Selection
Tool (see Figure 8).

350 Smirnova et al. Transgressive Computing

Another area of application for our Notation Selection Tool is that of mathematical
education, where students require a high degree of notational consistency within a syllabus.
Notation selection facilities can allow an instructor to re-use material with different nota-
tional conventions from one course to another. In distance learning, students might prefer
to see mathematical expressions in the format of their locality, so our tool could be used to
choose these preferences.

We describe below a few of our on-going investigations which involve our Notation
Selection Tool.

4.1 From syntax to semantics

We have discussed how, at a syntactic level, mathematical notation can be highly ambigu-
ous. This may not be apparent to most mathematical readers, as they will be using a great
deal of semantic contextual information and moreover any particular document will make
use of only a few areas of mathematics. We suggest, therefore, that the general semantic
attribution of pure syntactic mathematical expressions is a suitable well-defined problem in
the area of artificial intelligence.

From the point of view of mathematical software, however, we do not necessarily require
handling of general expressions in every possible context. It may be perfectly acceptable to
require the user, or application, to specify explicitly the mathematical context in which the
expressions occur. In this case, with the mathematical domain suitably narrowed, semantic
attribution of expressions becomes much more tractable.

We anticipate that the use of tools, such as our Notation Selection Tool, will be useful in
this setting. By selecting a set of notational preferences, the user defines a space of admis-
sible expressions together with their interpretation. Clearly, not all possible combinations
of selected notations will lead to unique interpretation of all expressions. However, once
a selection of preferences is made, it is possible to determine in advance the areas where
ambiguities will arise (see Figure 9).

Figure 9: Notation selection in syntax disambiguation

Notation Selection in Mathematical Computing Environments 351

4.2 Notation selection in mathematical handwriting recognition

Input to mathematical software comes in the form of expressions in various parsed linear
syntaxes, expressions built using interactive expression editors, in MathML or TEX. We are
currently engaged in a project that attempts to add handwritten mathematics as an input
method[18]. Handwritten input presents an interesting and difficult case, because it relies
both on accurate single character recognition within a large set of mathematical symbols
and on structural analysis of 2-dimensional layout. We see an opportunity for the Notation
Selection Tool to assist in this process, both for handwritten input to computer algebra
systems (see Figure 10) and other applications (Figure 11).

As a high-level design objective, our expression recognizer must support various nota-
tions in handwritten input. This leads to problems, however, when notations are ambiguous
or very similar. Attempting to disambiguate between many such choices would be both time
consuming and reduce recognizer accuracy. To narrow down the set of expression models
without forcing the user’s choice of notation, we can ask the user to use our Notation
Selection Tool to specify preferred notations.

Eliminating un-used notations has a first benefit of reducing the set of candidates in
single character analysis. For example, if a user has selected ∼ instead of ∝ for propor-
tionality, then ∝ can be eliminated from character candidate lists. This will lead to more
accurate recognition of similar characters, such as α and ∞.

Once character candidates have been generated and ranked, it is necessary to select the
most likely choice while taking into account expression context analysis. Notation selection
can be used here to activate or deactivate various rules in the structural recognition process.
For example, if French-style interval notation is selected, then parentheses and brackets do
not have to match.

At present, our recognizer uses a combination of single character analysis and charac-
ter prediction. The prediction is based on writing order Markov chains compiled from the
analysis of some 20,000 mathematical documents. The source for these mathematical doc-
uments, however, is in TEX form and there is no distinction made in the analysis between
different meanings for the same notation [19][20]. We have not yet explored whether nota-
tion selection applied to the document database would lead to more better prediction. A
second use of notation selection that we have not yet explored for mathematical handwrit-
ing recognition is the use of correlated notations. For example, if the notation

∫
dtf(t) is

selected for integration, then it would be reasonable to assign higher likelihoods to other
notations from physics.

4.3 Notation selection in mathematical knowledge management

One of the areas in mathematical knowledge management is to organize or classify entries in
mathematical knowledge bases. Such categories are well defined and supported by a number
of systems and databases including Mizar [13], MBase [10], the NIST Digital Library of
Mathematical Functions [12], OpenMath Content Dictionaries [3], to name a few. The
work [15] is also interesting in this regard.

352 Smirnova et al. Transgressive Computing

Figure 10: Pen-Enabled input in Maple Figure 11: Pen-Enabled input in Word

A goal with these categorizing tools is to avoid storing duplicated information. Each
knowledge base will choose its representations for particular functions, and organize in-
formation about them accordingly. For example, if information about the hyperbolic sine
function uses the function sinh(z) then users from Eastern Europe will find nothing about
sh(z) because there is no such entry.

One possible solution is to include multiple function names in the database, but this is
fraught with problems. If, for example, rules are modified for arcsin(z) but not for sin−1(z),
is this an intentional subtle distinction between inverse functions with different branch cuts
or is it a bug? Should arcsin(x) − sin−1(z) simplify to zero? It is clearly preferable to use
a notation selection tool as a component to the front end to such mathematical knowledge
bases.

4.4 Notation selection in computer algebra systems

Most of the issues we have raised so far is directly applicable to the input and output of
computer algebra systems. The ability adapt the interpretation of input forms and to select
the possible forms of output has obvious value in making these systems more accessible to
different communities.

There are certain practical considerations, however, that impact the successful adoption
of this strategy in current systems. The most widely used mathematical software packages
are designed with the input and output systems separate from one another. In this situation,
to support proper notation selection, it is necessary to apply transformations to both the
input and output expressions. Difficulties arise when the input and output transformations
are inconsistent. This makes it difficult to effectively modify most existing computer algebra
systems to support notation selection coherently: both the input and output systems are
typically sizable, complex software subsystems, and obtaining consistency between them
is challenging. We have experienced this situation with our suite of transformation tools
to convert between various mathematical formats, and in particular converting between
TEX and MathML[2]. In this situation we have found a useful approach is to specify a
set of bi-directional transformation rules, used independently by the translators for both
directions.

Notation Selection in Mathematical Computing Environments 353

Beyond the question of consistent handling of input and output notation selection,
computer algebra systems present an additional problem: They generate new mathematical
expressions as part of their operation and these expressions may contain functions or other
symbols not anticipated by the user. For example, in the solution of differential equations
a wide variety of special functions may be generated, some of which might be unknown to
the user of the system. It is unreasonable to disallow the user to employ notations that
denote standard functions. There are so many that could occur, but only a few actually
will in any particular setting. On the other hand, always using non-standard names for
standard functions (e.g. BesselJ[0](z) instead of J0(z)) leads to bulky expressions that
may not be used directly in other settings. It is therefore necessary to properly manage the
interactions between notations deliberately set by the user and names that may occur in
generated expressions.

5 Conclusion

We have observed that a wide range of software, including document processors and com-
puter algebra systems confuse mathematics with notation. By forcing too early the choice
of notation, flexibility is lost and work is restricted to a too narrow context. We have shown
how software tools can be used to translate meaningful mathematical constructs both to
and from a wide range of notations. This can be used to allow mathematical documents
and computational worksheets to be deployed in a wide range of settings, with notation
customized by country, mathematical field, level of sophistication, or other criterion.

We have described the rationale, design and implementation of a Notation Selection Tool
that allows the interactive construction of stylesheets to convert between mathematical for-
mats. The current state of the art is presently implemented for transforming mathematical
data encoded in Content MathML to Presentation MathML. When used in conjunction with
additional conversion tools the following translations are also available: {Content MathML,
OpenMath, Maple, Axiom, Mathematica} → {Presentation MathML, LATEX}.

We have discussed a number of settings where notation selection tools can be useful in
defining a restricted domain of discourse. This disambiguation can be useful in settings that
require some semantic treatment of a wide range of mathematical subjects. In particularly,
we have discussed notation selection in the context of computer algebra, in improving
accuracy in pen-based mathematical interfaces and in mathematical knowledge management
applications.

We see an interesting future project in incorporating a flexible Notation Selection Tool
in major computer algebra systems, such as Maple. For maximum utility, this must work
bi-directionally: to select notations to be used for both input and output. Mathemati-
cal structure editors can allow us to avoid the technical parsing problems that would be
introduced through user-defined linear input syntax.

354 Smirnova et al. Transgressive Computing

References

[1] M. Abramowitz and A. Stegun: Handbook of Mathematical Functions with Formulas,
Graphs and Mathematical Tables.

[2] R. Ausbrooks at al. Mathematical Markup Language (MathML) Version 2.0 (Sec-
ond Edition), World Wide Web Consortium Recommendation 21 October 2003.
http://www.w3.org/TR/2003/REC-MathML2-20031021

[3] S. Buswell et al., The OpenMath Standard 2.0. 2004 http://www.openmath.org/co-
coon/openmath/standard/om20/index.html

[4] James Clark, World Wide Web Consortium Recommendation, XSL Transformations
(XSLT), December 1999. http://www.w3.org/TR/XSLT

[5] James H. Davenport, Mathematical Knowledge Representation, Electronic Proceedings
of the First International Workshop on Mathematical Knowledge Management: MKM
2001 RISC, A-4232 Schloss Hagenberg, September 24-26, 2001.

[6] Jason Harris, Advanced Notations in Mathematica, Proceedings of the International
Symposium on Symbolic and Algebraic Computation, 2000.

[7] Sandy Huerter, Igor Rodionov and Stephen M. Watt, Content-Faithful Transforma-
tions for MathML, Proc. International Conference on MathML and Math on the Web,
(MathML 2002), http://www.mathmlconference.org/2002, June 28-30 2002, Chicago
USA.

[8] Java Server Pages, http://java.sun.com/products/jsp/

[9] Java Swing, Robert Eckstein, Marc Loy and Dave Wood, 1998, O’Reilly.

[10] M. Kohlhase, A. Franke. MBase: Representing Knowledge and Context for the In-
tegration of Mathematical Software Systems. Journal of Symbolic Computation 23:4
(2001), pp. 365 - 402.

[11] Dicheng Liu, A Notation Selection Tools for MathML stylesheets, MSc Project Uni-
versity of Western Ontario, 2001

[12] D.W. Lozier, NIST Digital Library of Mathematical Functions. In Annals of Mathe-
matics and Artifcial Intelligence, vol. 38, No. 1-3, May 2003. Eds. B. Buchberger, G.
Gonnet, M. Hazewinkel. Kluwer Adacemic Publishers, ISSN 1012-2443.

[13] The Mizar System, http://mizar.uwb.edu.pl/system/

[14] W.A. Naylor and Stephen M. Watt, Meta-Stylesheets for the Conversion of Mathemat-
ical Documents into Multiple Forms, Annals of Mathematics and Artificial Intelligence,
Vol. 38, pp. 3-25, 2003.

Notation Selection in Mathematical Computing Environments 355

[15] Florina Piroi and Bruno Buchberger, An Environment for Building Mathematical
Knowledge Libraries. Proc. Fourth International Conference on Mathematical Knowl-
edge Management, (MKM 2005), July 15-17 2005, Bremen Germany, Springer Verlag

[16] Igor Rodionov and Stephen M. Watt, Content-Faithful Stylesheets for MathML, On-
tario Research Centre for Computer Algebra, University of Western Ontario, Research
Report TR-00-14, 2000.

[17] Elena Smirnova and Stephen M. Watt, An Approach to Mathematical Notation Selec-
tion, North American Mathematical Knowledge Management Workshop , (NA-MKM
2004), 2004, Phoenix Arizona.

[18] Elena Smirnova and Stephen M. Watt, A Context for Pen-Based Computing, pp. 409-
422, Proc. Maple Conference 2005, July 17-21 2005, Waterloo Canada, Maplesoft.

[19] Clare M. So and Stephen M. Watt, Determining Empirical Properties of Mathematical
Expression Use , Proc. Fourth International Conference on Mathematical Knowledge
Management, (MKM 2005), July 15-17 2005, Bremen Germany, Springer Verlag

[20] Clare M. So, An Analysis of Mathematical Expressions Used in Practice, MSc Thesis,
University of Western Ontario, 2005

[21] Stephen M. Watt, Exploiting Implicit Mathematical Semantics in Conversion between
TEX and MathML, Proc. Internet Accessible Mathematical Communication, (IAMC
2002)

[22] XML specification: http://www.w3.org/XML.

Elena Smirnova
Ontario Research Centre for Computer Algebra

University of Western Ontario
elena@orcca.on.ca

www.orcca.on.ca/MathML/elena.html

Stephen M. Watt
Ontario Research Centre for Computer Algebra

University of Western Ontario
watt@orcca.on.ca

http://www.orcca.on.ca/˜watt

356 Smirnova et al. Transgressive Computing

Computing the Algebraic Counterpart of a Tropical Plane Geometric ... 357

Computing the Algebraic Counterpart of a Tropical Plane

Geometric Construction

Luis Felipe Tabera

February 16, 2006

Abstract

Here, the notion (from [6]) of tropical plane geometric construction is extended to the
non linear case. The possibility of lifting a construction to an algebraic setting will be
studied, requiring the lifting to be compatible both with tropicalization and with the
construction itself. Given a tropical geometric construction, we present a method to
compute sufficient conditions for the lifting of the input elements to verify the mentioned
compatibilities. These conditions are expressed as a constructible set on the residue field
of the valued field the tropicalization is based on.

Introduction

An increasing interest in tropical geometry has arisen during the last years (see [3], [4])
One of the reasons for this interest lies on Mikhalkin’s correspondence theorem (cf. [4]).
It relates Gromov-Witten and Welschinger invariants between the tropical and algebraic
setting. Thus, Mikhalkin presents an algorithm to compute all tropical curves with fixed
genus and degree going through a special set of points in the plane. He also shows that this
number equals the number of algebraic curves passing through a generic configuration of
points. Moreover, using this correspondence, in [3], a nontrivial lower bound to the number
of real algebraic nodal rational curves passing through a generic configuration of real points
is provided.

The key for the success of applications like these consists in translating a given algebraic
problem to a tropical context. Here, the polyhedral nature of tropical geometry usually
allows an easier –and even algorithmic– manipulation of the geometric objects and hence,
it facilitates to solve the algebraic problem we started with. On the other hand, it is well
known that there is a loss of information when passing from the algebraic to the tropical
world. For instance, not every configuration of tropical points and lines in Pappus position
is the projection, over the tropical plane, of an algebraic configuration verifying the same
incidence conditions (cf. [5]). These considerations yield quite naturally to consider the
following question: When does a set of tropical curves, with some specific incidence relations

among them, come from a set of algebraic curves verifying the same incidence relations?

358 Tabera Transgressive Computing

In this extended abstract we generalize the approach of [6], where some conclusions for
the linear case have already been presented. Our main result (Theorem 2.1) establishes that
for configurations of tropical curves and points arising from a construction (see Definition
1.2), there is a set of algebraic elements verifying the same incidence relations if there is
an algebrization of the input tropical elements in the construction (see 1.2) such that their
principal coefficients (see next section) belong to a certain definable set S ⊆ Cn, explicitly
described in Section 3. The important matter is not the existence of S, but the fact that
our algorithm finds a sufficiently big S in many cases. We remark that this result gives a
sufficient condition for an affirmative answer to the question above. Moreover, our approach
is constructive, since we give an algorithm to compute S from the construction data. Thus, it
could be useful as a tool for providing constructible proofs of algebraic statements that have
been obtained via tropical geometry. At this moment we will neither consider complexity
issues nor other geometric characteristics of the curves, such as the genus.

1 Elementary definitions and properties in tropical geometry

As we are interested in constructive results, we choose, without loss of generality [7], to

work with the field K = Q(t)alg, the algebraic closure of the field of rational functions in
one variable over Q. Every element of this field can be written as a Puiseux power series
over the field of algebraic numbers Qa,

ã =

∞∑

i=k

αit
i
q , k ∈ Z, q ∈ N∗, αi ∈ Qa.

The order of a non zero series is o(ã) = min{i | αi 6= 0} ∈ Q, o(0) = ∞. This order is
a valuation on the field K, with valuation group Q and residue field Qa. The principal
coefficient of an element ã ∈ K is Pc(ã) = αo(ea) ∈ Qa. An element will usually be written

as ã = αo(ea)t
o(ea) +O(to(ea)+ǫ) to emphasize the principal term of a series.

Regarding the conversion between algebraic and tropical varieties, the crucial map is the
tropicalization or projection map T : K −→ T = Q∪{−∞}, T (x) = −o(x), T (0) = −∞ (in
the current literature a parallel approach can be found, which considers o(x) instead of−o(x)
in this definition). Then, by definition, a tropical variety is the image T (V) ⊆ (T∗)n = Qn

of an algebraic variety V ⊆ (K∗)n.
Conversely, given a tropical variety C, we will talk about a lift of C as an algebraic

variety C̃ such that T (C̃) = C
On the other hand, we may consider our valuation group Q as an idempotent semifield

[5] provided with the tropical sum “a+ b” = max{a, b} and product “ab” = a+ b. Remark
that operations between quotes are tropical and the symbols do not represent the standard
sum and product. In this mood, a tropical polynomial f will be defined as a standard
(Laurent) polynomial in the variables x = (x1, . . . , xn), but with tropical operations and
tropical coefficients (ie. in T∗ = Q):

f = “
∑

i∈Λ⊆Zn

aix
i ” = max

i∈Λ⊆Zn
{ai + ix}

Computing the Algebraic Counterpart of a Tropical Plane Geometric ... 359

for a suitable set Λ ⊆ Zn, where i = (i1, . . . , in) and ix = i1x1 + . . . + inxn. Let ∆ be the
convex hull of Λ, that is, the Newton polytope of f . Notice that, by a suitable election of
some ai’s negative enough, we can have the following equality

“
∑

i∈Λ⊆Zn

aix
i ” = “

∑

i∈∆∩Zn

aix
i ”

as piecewise affine continuous function Qn −→ Q.

Remark 1.1. So, without loss of generality, in the rest of the paper we will restrict to
polynomials whose support Λ equals the set of all the integer points of its Newton polytope.

With this notation, we can define the tropical hypersurface associated to the polynomial
f as the set of points of Tn such that the piecewise continuous affine function maxi∈∆∩Zn{ai+
ix} achieves its maximum in at least two different indices.

It is well known (cf. [2]) that both definitions of tropical hypersurfaces are equivalent.
In fact, let us associate to a polynomial f̃ =

∑
i∈∆∩Zn ãix

i in K[x], the tropical polynomial

f = “
∑

i∈∆∩Zn T (ãi)x
i ”. Then, the tropicalization of the algebraic variety defined by f̃

equals the tropical hypersurface associated to f . One advantage of this equivalence is that
it allows to work with tropical curves on their own, without defining them as a projection
of an algebraic curve.

A basic problem working with planar tropical curves is appropriately defining its in-
tersection, since two different irreducible tropical curves may share an infinite number of
points. This problem is avoided considering the so called stable intersection of curves [5].
Roughly speaking, this notion is built as follows: first, it is observed that given two tropical
curves with an infinite intersection, this intersection becomes finite under a small generic
translation of one of the curves. Second, the limit set of this collection of intersection points,
as the translation becomes smaller, is a well defined finite set contained in the intersection
of the original curves. This set has reasonable properties and is called the stable intersection
of the two curves.

We may define analogously the notion of stable curve (of given Newton polygon ∆)
containing a given number of points. For that purpose, consider the set of all curves with
Newton polygon ∆ passing through a configuration of #(∆ ∩ Z2)− 1 points. Notice that,
if the configuration of points is general enough, there will be only one such a curve. Else,
it may happen that there is an infinite number of curves. In this case, we can perturb the
configuration of points to a generic situation. As the perturbation tends to zero, the limit
set of the curves going through the perturbed configuration, is a precise tropical curve that
passes through the original configuration of points.

Another tool we will use in the presentation of the main theorem is the notion of resultant
of two tropical polynomials f and g with respect to one variable x. It is analogous to the
definition of resultant in the algebraic case, merely translating to the tropical framework
the corresponding operations.

Finally, we present the notion of geometric construction, that appears as an essential
hypothesis in Theorem 2.1.

360 Tabera Transgressive Computing

Definition 1.2. A planar (tropical) geometric construction is an abstract procedure con-
sisting of

• Input data: A finite set of points pi and curves Cj with prescribed Newton polygon
∆j.

• A finite sequence of allowable steps, namely, computing either

– the (stable) intersection of two (already given) curves, or

– the (stable) curve with Newton polygon ∆ passing through #(∆∩Z2)−1 (already
given) points.

• Output: A finite set of points and curves (having some incidence relations among
them).

Notice that it is intended this definition to be applicable both to the tropical and the
classical case. This notion of geometric construction is general enough to be interesting on
its own, since many cases of incidence relations between curves and points can be presented
through a geometric construction, as in the next example.

For instance, let us consider the converse of Desargues’ theorem (cf. [1]). Take ten
points A, B, C, A′, B′, C ′, P , Q, R, O and nine lines1 LABP , LA′B′P , LACQ, LA′C′Q,
LBCR, LB′C′R, LPQR, LAA′O, LBB′O. Impose the following incidence relations: for every
line LXY Z , it holds that X ∈ LXY Z , Y ∈ LXY Z , Z ∈ LXY Z .

These twenty seven incidence conditions mean, in the algebraic case, that the triangles
ABC and A′B′C ′ are perspective with respect to line LPQR, because this line contains the
three intersection points of pairs of homologous sides of these triangles.

If Desargues converse statement holds –for instance, for points in PK2 (but it can be
shown that it does not hold in general for points in PT2, see Example 2.5)– then these
hypotheses imply that the triangles are, as well, perspective regarding point O, ie. that the
three lines defined by pairs of homologous vertices meet at that point; or, to put this thesis
in some more convenient way, that there exists a line LCC′O such that C,C ′, O belong to
it.

Next, we can turn this theorem into a construction, in the following way. First, we
view the whole theorem as a configuration of points and lines verifying certain incidence
relations. Then, we intend to reproduce such configuration, starting, for instance, with six2

arbitrarily given points A,B,C,A′, B′,X as input. Then proceed with the following steps:

1The reader is recalled that he/she should be careful about interpreting the following names of these
lines: in principle they are just names without any intuitive meaning whatsoever, and these lines verify
just the conditions imposed by the hypotheses below. In the tropical case, saying that there exists a line
such that A, B, P belong to it, is not equivalent to saying that point P belongs to line AB, since we are
always considering the stable line through A and B. It may happen that point P belongs to AB, but A does
not belong to BP . So, to state in general terms (both for the classical and tropical cases) this converse of
Desargues theorem, we have to be very careful.

2It seems that, with the above construction rules, this configuration can not be built up with a smaller
number of points.

Computing the Algebraic Counterpart of a Tropical Plane Geometric ... 361

First, construct line AB, line AC, line BC, line AA′, line BB′ and line A′B′. Second, define
the intersection points O = AA′ ∩ BB′ and P = AB ∩ A′B′. Then, construct3 line PX.
Follow with the intersection points Q = AC ∩PX, and R = BC ∩PX. Construct the lines
B′R, and A′Q and, finally, take C ′ = B′R ∩A′Q.

By construction, it happens that PQR are on a line. So, triangles ABC and A′B′C ′ are
perspective with respect to line PQR. Thus, this construction “represents” the hypotheses
of the converse of Desargues’. Hence, if Desargues converse statement holds (but it could
be the case that this does not happen in the tropical case for some concrete input data),
points C,C ′, O should be collinear.

2 Main result and examples

As stated in the introduction, given a tropical geometric construction with input elements
{C1, . . . , Cn, p1, . . . , pm}, we want to compute sufficient conditions for some given lifts of
the curves Ci and points pj, to be coherent with the construction, in the sense of verifying
the same incidence relations.

Notice that every curve Ci has associated its Newton polygon ∆i and hence, it may be
written (Remark 1.1) by a polynomial f̃i =

∑
(k,l)∈∆i∩Z2 ãi

(k,l)x
kyl. Also, every lift of an

input point may be given by its coordinates p̃j = (̃bj1, b̃
j
2). Take N =

∑n
j=1 #{∆j∩Z2}+2m.

KN can be considered as a configuration space (for the lifts of the input elements) which
contains the coefficients of the defining polynomials of the lifted curves and the coordinates
of the lifted points. Consider the map KN −→ (Qa)N such that, coordinate-wise, maps the
element ã = αrt

r +O(tr+ǫ) 7→ αr into its principal coefficient.
In this situation the main theorem is the following:

Theorem 2.1. Consider a concrete instance of a tropical plane geometric construction

G with input elements {C1, . . . , Cn, p1, . . . , pm}, curve Ci defined by a tropical polynomial

fi = “
∑

(k,l)∈∆j∩Z2 ai
(k,l)x

kyl ”, point pj = (bj1, b
j
2) ∈ (T∗)2. Then we can compute a con-

structible set S in (Qa∗)N such that, if the vector (Pc(ã1
(k,l)), . . ., Pc(ã

n
(k,l)), P c(̃b

1
1), . . . ,

P c(̃bm2)) of principal coefficients of a given lift of the input lies in S, then the same geomet-

ric construction G can be carried on the algebraic setting; moreover, its elements project

onto the corresponding elements in the tropical construction.

Notice we do not claim that there always exists such a well behaved lift for every
construction. In fact, it is well possible that the computed S is empty, and, in this case,
the theorem above does not give any information about the lifts. On the other hand, the
theorem (as an existential statement) trivially holds, by taking S empty in every case. So
the interest of the result lies in the concrete algorithm we develop to produce S, as we can
show that it yields a sufficiently big S in many situations.

3This is a trick, in order to consider “an arbitrary line passing through P”, which is not, strictly speaking,
an allowable step, according to the very restrictive set of rules we have given above.

362 Tabera Transgressive Computing

Example 2.2. Consider again the converse Desargues construction, with input elements
A = (13, 2), B = (26, 21), C = (−14, 3), A′ = (6, 9), B′ = (4,−16) X = (1,−23). Then we
find out (see next section for a summary description of the algorithm) that S = (Qa∗)12.
This means that for any collection of six points Ã = (α1

1t
−13 +O(t−13+ǫ), α1

2t
−2 +O(t−2+ǫ)),

Ã′ = (α4
1t

−6 + O(t−6+ǫ), α4
2t

−9 + O(t−9+ǫ)), etc. in (K∗)12, without any restriction on the
αj

i , we can repeat the construction scheme of converse Desargues for these new algebraic

input points, obtaining the corresponding algebraic points Õ, P̃ , Q̃, R̃ and C̃ ′ and lines
ÃB̃, ÃC̃, B̃C̃, ÃÃ′, B̃B̃′ Ã′B̃′, P̃ X̃, B̃′R̃ and Ã′Q̃. Moreover, it will happen that for all
the involved points or lines, say Z̃, T (Z̃) = Z.

We do not claim –as part of our main result– that it happens that the triangles ÃB̃C̃
and Ã′B̃′C̃ ′ are perspective with respect to Õ, but in this concrete case it will be true, In
fact, since the converse Desargues theorem holds in the algebraic case, it will hold for the
lifted tropical elements, so they will form a configuration of triangles in perspective with
respect to point Õ. Then, since the projection of triangles in perspective with respect to a
point yields triangles with the same property in the tropical setting, we conclude that for
this particular instance, converse Desargues holds.

Example 2.3. For different input points, we may find that the obtained set S can be
quite diverse. Eg. take now as input points A = (1, 0), B′ = (−15,−4), C = (−10,−8),
A′ = (−18,−19), B′ = (14,−25), X = (−15, 2). In this case we obtain that (with the same
notation as above for the principal coefficients of the lift) S = {α1

1α
4
2−α1

2α
4
1 6= 0} in (K∗)12.

The theorem does not give information for the case that the principal coefficients do not lie
in S. But a careful look into this concrete example shows that if the principal coefficients
of the input are not in S, then the line Ã′Q̃ will not tropicalize onto A′Q, but onto another
tropical line. So the computed set S is, in this case, maximal with respect to the property
of lifting compatibility with the construction.

Example 2.4. As a totally negative example to the existence of a lift, consider A = (7, 21),
B = (−24,−13), C = (6, 3), A′ = (12, 8), B′ = (25,−4), X = (−17,−23). In this case the
computed S is empty. A more detailed analysis shows here that a lift never exists, since
line Ã′Q̃ will never project onto the tropical line A′Q. So, again, our algorithm computes
a maximal S in this case, too. However, the conclusion of converse Desargues’ theorem
(points C, C ′, O are collinear) holds for this input.

Example 2.5. Finally, consider the set of input points A = (−24,−11), B = (23, 24),
C = (−14,−2), A′ = (−7, 9), B′ = (25, 24), X = (−5, 1). Now we find out again that
S = ∅, but here the thesis of converse Desargues does not hold. That is, points C, C ′ and
O do not lie on a tropical line. From this we deduce immediately that there cannot be a
lift for the construction (and, thus, our computed set S is, again, maximal).

3 Summary description of the proposed method

We will summarily describe now the computation of the set S ⊆ (Qa)N involved in Theorem
2.1.

Computing the Algebraic Counterpart of a Tropical Plane Geometric ... 363

Assume it is given a tropical geometric construction G with input elements {C1, . . . , Cn,
p1, . . . , pm}, curve Ci with Newton polygon ∆i, defined by

fi = “
∑

k=(k1,k2)∈∆i∩Z2

ai
kx

k1yk2 ”, pj = (bj1, b
j
2).

Set f̃i =
∑

k=(k1,k2)∈∆i∩Z2 αi
kt

−ai
kxk1yk2, p̃j = (βj

1t
−bj

1 , βj
2t

−bj
2), with {αi

k, β
j
k} variables. This

is a kind of generic lift, so that S will be defined in terms of {αi
k, β

j
k}. Let us start towards

the computing S with the auxiliar constructible set Z in (Qa)N defined by {αi
k 6= 0, βj

k 6= 0}.
For each step of the construction G do the following:

If we are in the case of computing the curve C̃i of Newton polygon ∆i passing through
q̃1, . . . , q̃j, j = #(∆i∩Z2), this step is just solving a linear equation system. The unknowns

of the system are the coordinates of a defining polynomial f̃i and the linear restrictions
are those induced by the condition of passing through the points. The coefficients of f̃i are
rational functions in the coefficients of the points. We provide, in [6], sufficient conditions for
linear equation systems to be compatible with tropicalization. These conditions imposed
to the principal coefficients are inequalities of the form h̃i 6= 0, 1 ≤ i ≤ M , where the
h̃i are the pseudodeterminants associated to the linear system (cf. [6] for definitions and
computations). These pseudodeterminants are polynomials in the principal coefficients of
the coordinates of the points and basically ensure that the order of the principal coefficients
of f̃i does not increase. Append to the definition of Z the inequalities {h̃1 6= 0, . . . , h̃j+1 6= 0}
and set C̃i as the solution to the linear system.

For the other construction step, the intersection of two curves C̃i1, C̃i2 with Newton
polygon ∆i1, ∆i2, represented by f̃i1, f̃i2, set M =M(∆i1 ,∆i2), the Minkowski sum of the
polygons (this is the number of intersection points in (K∗)2 of two generic polynomials with
Newton polygon ∆i1, ∆i2). Compute the two tropical resultants H(y) = Resx(fi1 , fi2) =
“
∑R1

r=0 hry
r ”, P (x) = Resy(fi1 , fi2) = “

∑R2
r=0 prx

r ”, and the intersection set W of these
resultants with the tropical curves. Compute a natural number a such that x − ay is
injective in W . Make now the change of variables x = zya and compute the resultant
Q(x, y) = Resy(fi1(zya, y), fi2(zya, y)) = “

∑R3
r=0 qrz

r ” = “
∑R3

r=0 qrx
ry−ar ”. These three

resultants determine uniquely the stable intersection of the given curves.
Compute (b11, b

2
1), . . . , (b1M , b

2
M), the tropical stable intersection of Ci1, Ci2 with multi-

plicities. Compute the algebraic resultants H̃(y) = Resx(f̃i1 , f̃i2) =
∑R1

r=0 h̃ry
r, P̃ (x) =

Resy(f̃i1, f̃i2) =
∑R2

r=0 p̃rx
r and, after the same change of coordinates x = zya, the resul-

tant Q̃(x, y) = Resy(f̃i1(zya, y), f̃i2(zya, y)) =
∑R3

r=0 q̃rz
r =

∑R3
r=0 q̃r(xy

−a)r. Write h̃r =
hrt

−hr +O(t−hr+ǫ), p̃r = prt
−pr +O(t−pr+ǫ), q̃r = qrt

−qr +O(t−qr+ǫ). hr, pr, qr are polyno-
mials in the principal coefficients of f̃i1, f̃i2. Take 2M new variables {γ1

1 , γ
1
2 , . . . , γ

1
M , γ

2
M}.

Add to the definition of Z the restrictions γj
i 6= 0, 1 ≤ i ≤ M , 1 ≤ j ≤ 2 and the restric-

tions hr 6= 0, pr 6= 0, qr 6= 0, the principal coefficients of the coordinates of the computed
resultants. With these restrictions, the algebraic resultants H̃, P̃ , Q̃ will tropicalize onto
the tropical resultants H, P , Q and the intersection points of the lifts that verify this re-
strictions will tropicalize onto the corresponding stable intersection. For every point (b1i , b

2
i)

364 Tabera Transgressive Computing

write H̃(yt−bi
2) = H i(y)t−H(bi

2) +O(t−H(bi
2)+ǫ), P̃ (xt−bi

1) = P i(x)t−P (bi
1) +O(t−P (bi

1)+ǫ) and
Q̃(xt−bi

1 , yt−bi
2) = Qi(x, y)t−Q(bi

1,bi
2) + O(t−Q(bi

1,bi
2)+ǫ). Add to Z the restrictions needed to

assure that the γi
j are the principal coefficients of the intersection points of the curves.

Namely, add H i(γ
i
2) = 0, P i(γ

i
1) = 0 and Qi(γ

i
1, γ

i
2) = 0, i ≤ i ≤ M . Add also the fol-

lowing condition in order to avoid the case of multiple roots,
∧

i6=j(γ
1
i 6= γ1

j ∨ γ2
i 6= γ2

j).

Set q̃1 = (γ1
1t

−b1, γ2
1t

−b2), . . . , qM = (γ1
M t−b1, γ2

M t−b2) and proceed with the next step. This
points q̃i do not need to be the intersection points of the algebraic curves, but they will
have the same principal coefficient.

We have built up a constructible set Z in (Qa)L. This corresponds with principal
coefficient points of some possible lifts of the whole construction. Finally, our goal, the set
S is defined as the projection of Z over the variables {αi

k, β
j
k}. For more details concerning

this method and its correctness we refer to [7].

References

[1] Berger, M. Geometry, Vol. 1 and 2. Springer, 1987

[2] Einsiedler, M. Kapranov, M. Lind, D. Non-archimedean amoebas and tropical varieties.
Preprint AIM 24 -31, http://arxiv.org/abs/math/0408311, 2000.

[3] Itenberg, I. Kharlamov, V. Shustin, E. Welschinger invariant and enumeration of real
rational curves, Int. Math. Res. Not. 2003, no. 49, 2639-2653, 2003

[4] Mikhalkin, G. Enumerative tropical algebraic geometry in R2, J. Amer. Math. Soc.
no.2, 313-377, 2005.

[5] Richter-Gebert, J. Sturmfels, B. Theobald, T. First steps in tropical geometry. Idem-
potent mathematics and mathematical physics, 289-317, Contemp. Math., 377, Amer.
Math. Soc., Providence, RI, 2005

[6] Tabera, L. F. Tropical Pappus’ theorem, Int. Math. Res. Not. 2005 no. 39 2373-2389,
2005.

[7] Tabera, L. F. Tropical plane geometric constructions, submitted 2005,
http://arxiv.org/abs/math/0511713

Luis Felipe Tabera
Departamento de Matemáticas, Estad́ıstica y Computación

Universidad de Cantabria, Spain
luisfelipe.tabera@unican.es

http://personales.unican.es/taberalf

The author is supported by the European Research Training Network RAAG (HPRN-
CT-2001-00271), a FPU research grant and the project MTM2005-08690-C02-02 from the
Spanish Ministerio de Educación y Ciencia.

A Bus-Based Semi-Completely-Connected Network for High-Performance ... 365

A Bus-Based Semi-Completely-Connected Network for

High-Performance On-Chip Systems

Masaru Takesue

Abstract

This paper proposes a network, called BSK-cube, to alleviate the long-wire and
pin-neck problems against high-performance on-chip systems through a small diam-
eter and dynamic clustering. We derive a 2n-node recursive semi-complete graph,
SKγ

n(v1, . . . , vγ , wγ) (
∑γ

i=1 vi + wγ = n), from the relationship between the Hamming
code-based partitions [3]. The BSKγ

n-cube has the SKγ
n topology whose constituent

SK’s links incident to a node are replaced by a single bus for the node; so each node is
connected to γ levels of buses. The diameter of BSKγ-cube equals γ. The bus length is
O(
√

2nγ) (nγ = vγ + wγ) for the level-γ (i.e., the local) bus, and it is O(
√

2n) for the
level-1 (i.e., the global) bus. We show by analysis that a few basic operations such as
simultaneous distance-d exchange (1 ≤ d ≤ n) are performed in γ bus-steps without bus
congestion. The dynamic clustering of memory requests reduces the delay of off-chip
memory requests, as compared with the static clusters fixed in hardware.

Key words: On-chip networks, Hamming codes, partitions, semi-complete graphs.

Introduction

Future LSI technologies will allow billions of transistors to be located on a single chip, so
that a large portion of an on-chip multiprocessor (CMP) will be accommodated in the chip.
However, the signal delay due to long wires will dominate the clock cycle time of the CMP
if the feature size of wires will scale with the same pace as for the transistors [1]. Moreover,
the CMP design may be restricted by the number of I/O pins on the chip periphery. The
number of pins is currently of the order of 1k, e.g., equal to about 1400 for the UltraSPARC
III chip [2], and this number will not increase as the same rate as the transistor size will
decrease. Then with the limited number of pins, we have to maintain a high traffic rate
required between the on-chip caches and (probable) off-chip memory.

To cope with the long-wire and pin-neck problems against high-performance on-chip
systems, we have proposed three networks [3]-[5]. The scheme underlying those networks is
the sets of partitions produced with multiple suits of codewords of the extended Hamming
code [3]. The ideas behind our approach are to alleviate the long-wire problem with a
small diameter, and the pin-neck problem through dynamic clustering. We expect a small
diameter to be effectively equivalent to short wires.

In the dynamic clustering, a set of clusters is produced for each off-chip target such as
a memory block when the requests are sent to the leaders (i.e., the representative nodes) of

366 Takesue Transgressive Computing

the partitions to which the requesting nodes belong; each leader then sends a single request
for the sake of the received requests to the target. So the traffic on the chip boundary
reduces in the same way as with the static clusters fixed in hardware. Moreover, the sets
of clusters, and hence, the leaders for a specific node are generally different for separate
targets, so that the traffic to a leader reduces as compared with in the static cluster.

The psi-cube [5] is a bus-based extended hypercube. A problem of the 2n-node psi-cube
is its rather large diameter, ⌊n/2⌋, as a bus-based network. Another problem is that given
an n, the suit and partition sizes, 2k and 2p, are fixed, so the network organization and its
layout are restricted, where p and k (= n − p) are the parity and information sizes of the
n-bit address; the other Hamming code-based networks [3]-[4] have the same problems.

To further mitigate the long-wire problem with a much smaller diameter, this paper
proposes a network, called BSK-cube. This network has the topology of semi-complete
(SK) graph of which point-to-point links incident to a node are replaced by a single bus
owned by the node. We derive the SK graph from the relationship among the suits of
codewords and the sets of partitions produced with the all suits. The 2n-node SK graph
has 2p suits each of 2k nodes. The nodes in each suit are configured into the complete (K)
graph, every node of which is connected to the 2p − 1 nodes in the other K graphs.

To remove the restrictions of the Hamming code-based networks mentioned above, we
modify the SK graph so that we can choose any values for k and p as long as k + p = n.
Moreover, to reduce the length, especially of the local buses as mapped on the BSK-cube,
we recursively convert the K components of the SK into smaller-sized SK graphs, leading
to a recursive SK graph, SKγ(v1, . . . , vγ , wγ), where γ ≥ 1 and

∑γ
i=1 vi + wγ = n.

The diameter of the BSKγ-cube is equal to γ (note: γ = 1 for the non-recursive BSK-
cube), and the length of local buses equals 2vγ + 2wγ . Although the length of global buses
is O(2n/2), we can use a larger feature size for global buses than for local ones [14] since
the layout patterns for the buses are very regular. Then the signal delay along a long bus
will be not so large as reported in [1].

To show the BSKγ-cube’s potential, we analyze a few basic communication operations
such as simultaneous distance-d exchange (1 ≤ d ≤ n) and data streaming, and show that
those are performed in γ bus-steps without bus contention. With the dynamic clustering
as applied to a memory hierarchy in a CMP, the traffic to leaders of clusters reduces by a
factor of at most 2p, compared with the traffic in the static clusters.

It should be noted that based on the original SK graph, we can also obtain a BSK-cube
and its recursive version: Then its diameter and performance are the same as those of the
networks based on the modified SK graph, though the aspect ratio (i.e., the ratio of the
width to the height) of the layout is restricted and the layout complexity increases.

Related work: Commercial multiprocessors, STiNG [6] and SGI Origin [7], adopt the
clusters connected by the ring and the fat bristled hypercube, respectively. A research CMP,
Hydra [8], has 4 processors and exploits two buses to connect their level-1 and level-2 caches
with each other, while another CMP, Piranha [9], uses a crossbar between the level-1 and
level-2 caches for 8 processors. A reconfigurable chip includes 64 simple processing nodes
interconnected by the mesh [10]. No dynamic clusters are found in those systems.

For the networks on a chip (NoCs), tree-type [11] and mesh-type [12] networks are

A Bus-Based Semi-Completely-Connected Network for High-Performance ... 367

generally desirable because of their short wires and easy layout. Another such topology is a
recursive ring network where a recursive level is an extended ring of 8 nodes with extra links
between the nodes located at the opposite locations on the ring [13]. A hierarchical bus
network [14] is also attractive since it reduces local communication overhead but also allows
us to use a standard cache coherence protocol implemented with buses. Our BSKγ-cube is
a recursive bus network where each node is connected to multiple buses.

From the viewpoint of network modeling, the group-theoretical model [15] organizes a
network so that given a set of generator for a finite group G, there is an edge from an element
a to an element b if and only if there is a generator g such that ag = b in the group G. The
model can represent most symmetric networks. The n-dimensional linear recursive networks
[16] are associated with a linear recurrence of the formXn = a1Xn−1+a2Xn−2+· · ·+akXn−k,
that is interpreted such that an n-dimensional network Xn is organized with ai number of
(n− i)-dimensional subnetworks Xn−i (i = 1, 2, . . . , k). Our model for organizing the BSK-
cube and the previous networks [3]-[5] is primarily for designing novel networks based on
the partitions and can represent the mesh [4], hypercube [5], and so on.

In the rest of paper, Section 1 introduces the SKγ , after summarizing the Hamming code-
based partitioning. Section 2 presents the structure, layout, and routing of the BSKγ-cube.
Section 3 discusses on the properties of the network preferable for parallel computation.
Section 4 summarizes the paper and discusses future research. Appendix A shows a BSK-
cube obtained with the original SK, for reference.

1 Semi-Complete Graphs

This section summarizes the Hamming code-based partitioning, and defines the SK graph,
modified SK graph, and its recursive version, SKγ .

1.1 The partitioning

A codeword w of the n-bit Hamming code ψ(n, k) has p-bit parity (p = n − k) for k-bit
information, where p is the smallest integer satisfying (2p − 1) ≥ n. The p× n parity-check
matrix Hn is required for encoding codewords and decoding received words. When received
a word w′, we calculate the p-bit syndrome ε = w′ · Ht

n (where Ht
n is the transpose of

Hn) and decode it into the n-bit error vector eε. The syndrome ε indicates the erroneous
bit-position if the word w′ has a single-bit error, so its error vector eε has then a single bit
of 1 in the erroneous position. The codeword w for the received word w′ with a single-bit
or no error is obtained by w′ ⊕ eε, where ⊕ is the bitwise exclusive-OR operation.

We assume that all errors are single-bit or double-bit ones, and exploit both of them
in the partitioning. Generally, a double-bit error cannot be corrected since the pair (d, f)
(f > d) of erroneous bit positions is not unique for an ε = d ⊕ f . As far as used in the
partitioning, this problem can be resolved by fixing position f equal to 2p−1; then position
d is obtained by ε⊕ f . Let Pw denote the partition represented by the codeword w.

In the partitioning, we put a word w′ whose syndrome equals ε into the partition Pw
such that w = w′⊕eε. Then 2k partitions each of 2p words are produced. More importantly,

368 Takesue Transgressive Computing

we produce another set of partitions, called suits S = {S0, S1, . . . , S2p−1} of codewords, by
S0⊕eε for all error vectors eε ∈ E, where E = {0, 1, . . . , 2p−1} is the set of all error vectors.
In this case, we obtain 2p suits each of 2k codewords.

In the rest of the paper, we discuss on the node space, so we use term nodes instead
of words and leaders in place of codewords. For instance, we restate so that partition Pℓ
represented by leader ℓ consists of nodes ℓ⊕ E, S is the suits of leaders, and so forth.

In this paper, we use the following interesting relationships between the suits of leaders
and the partitions produced with the all suits: The first relationship is used to obtain a
semi-complete (SK) graph, and the second one in the routing for the dynamic clustering.

1) The 2p members of one partition are located in the different (2p) suits.

2) Leader ℓ of the partition Pℓ to which a node s belongs when partitioned with the suit S∋t
that includes a node t is obtained by ℓ = s⊕ eε, where ε is the syndrome for s⊕ t.

For example, the first relationship in the 3-bit address space is shown in Fig. 1. The lines
incident to a node mean that it is the leader of the partition of which members (excluding
the leader) are at the other ends of the lines. Since p = 2 and k = 1 in this case, there are
4 (= 2p) sets of partitions produced respectively with 4 suits, Si (i = 0, 1, 2, 3), of leaders.
One set has 2 (= 2k) partitions each of 4 (= 2p) members. Notice that the members of each
partition, for instance P000 = {000, 100, 010, 001}, are distributed in the all suits.

S0
000 111• •
�
 �	�
�

�
�

�
�

�
�

�
�

�

@
@

@
@
@

@
@

@
@

@
@

S3

110

001
•
•
�

�
	

S1

100

011
•
•

�

�
	

S2 010 101
• •�
 �	@

@
@

@
@

@

@
@

@
@

@

�
�

�
�
�

�
�

�
�

�
�

Fig. 1. The suits and partitions in the 3-bit address space.

1.2 SK graphs

Although the completely-connected network (i.e., the K-graph) has the diameter equal to 1,
it needs the most complex layout due to the greatest number of links of the direct-connect
networks such as the hypercube and mesh; the 2n-node K-graph, Kn, has 2n − 1 links per
node. To reduce the number of links, preserving the diameter as small as possible, we
introduce an SK graph. The 2n-node SK graphs, SKn, has the same topology as the one
represented by the first relationship described in Section 1.1, except that each suit of leaders
is configured into a complete graph Kk as defined below.

A Bus-Based Semi-Completely-Connected Network for High-Performance ... 369

Definition 1.1. An SKn graph has 2p number of Kk-graphs, and each node in every Kk

has one link to a node in each of the other Kk-graphs.

The SKn has (2p + 2k − 2) links per node, and hence, a total of 2n(2p + 2k − 2)/2 links,
leading us to an easier layout as compared with the Kn that has 2n(2n − 1)/2 links. For
example, Fig. 2 shows the SK3 obtained from the relationship shown in Fig. 1 by connecting
the nodes in every suit with each other to produce a K1.

K1
000 111• •
�
 �	�
�

�
�

�
�

�
�

�
�

�

@
@

@
@
@

@
@

@
@

@
@

K1

110

001
•
•
�

�
	

K1

100

011
•
•

�

�
	

K1 010 101
• •�
 �	@

@
@

@
@

@

@
@

@
@

@

�
�

�
�
�

�
�

�
�

�
�

Fig. 2. The SK3 derived from the relationship shown in Fig. 1.

We will present the layout of a bus-based SK network, i.e., the BSK-cube, in which the
nodes are arranged into an array in Section 2. Concerning the layout, a remarkable weak
point of the SK described above is the difficulty in putting the members of each partition
in one row (or one column), leading to longer buses. For shorter buses, we introduce simple
partitions as defined below and remap the node addresses onto the SK topology so that the
members are arranged in one row or column of the array. Let v and w be the upper v bits
and the lower w (w = n − v) bits of the n-bit node address, and s and ℓ be their values.
We denote the node address by 〈s, ℓ〉. Then the simple partitions are defined as follows.

Definition 1.2. The suit Ss (0 ≤ s ≤ 2v − 1) consists of the 2w leaders 〈s, ∗〉 (∗ =
0, 1, . . . , 2w − 1), and the partition P〈s,ℓ〉 has the members 〈∗, ℓ〉 (∗ = 0, 1, . . . , 2v − 1).

It is clear from Definition 1.2 that the set of suits Ss (s = 0, 1, . . . , 2v − 1), as well as
the set of partitions P〈s,∗〉 represented by the leaders 〈s, ∗〉 in one suit Ss, organizes the
partitions of the n-bit address space, and that the members 〈∗, ℓ〉 of one partition P〈s,ℓ〉
are distributed to the all suits. Thus the simple partitions preserve these properties from
the Hamming code-based partitions, and hence, we can produce an SK graph based on the
simple partitions. Let SKn(v,w) (v + w = n) denote the SKn consisting of 2v suits each of
2w leaders; then the size of a partition is equal to 2v .

For instance, the SK3(2, 1) with the simple partitions is shown in Fig. 3. The node
address 〈a0a1, a2〉 is denoted by a0a1a2, for space. The nodes in each suit Ss (0 ≤ s ≤
2v − 1 = 3) are each organized into a K1 graph. The suits are S00 = {〈00, 0〉, 〈00, 1〉},
S01 = {〈01, 0〉, 〈01, 1〉}, S10 = {〈10, 0〉, 〈10, 1〉}, and S11 = {〈11, 0〉, 〈11, 1〉}. The partitions

370 Takesue Transgressive Computing

P〈01,∗〉 = {P〈01,0〉, P〈01,1〉} represented by the leaders 〈01, ∗〉 in, for example, suit S01 organize
a set of partitions in the 3-bit space. Notice that the members 〈11, 0〉, 〈00, 0〉, 〈01, 0〉, and
〈10, 0〉 of, for example, partition P〈11,0〉 are scattered to the all suits.

K1 (S00) 000 001• •
�
 �	�
�

�
�

�
�

�
�

�
�

�

\
\

\
\

\
\

c
c

c
c

c
c

K1 (S11)
110

111
•
•
�

�
	

K1 (S01)
010

011
•
•

�

�
	

K1 (S10) 100 101
• •�
 �	c

c
c

c
c

c

\
\

\
\

\
\

�
�

�
�
�

�
�

�
�

�
�

Fig. 3. The SK3(2, 1) based on the simple partitions.

We next present a remarkable property of the SK with the simple partitions that con-
tributes to a performance improvement as well as an easy layout, as compared with the SK
with the Hamming code-based partitions.

Theorem 1.3. In the SKn(v,w) graph, the members of each partition organize a Kv.

Proof. Let M = {〈0, ℓ〉, 〈1, ℓ〉, · · · , 〈2v − 1, ℓ〉} be the members of a partition P〈s,ℓ〉. Then
the partition P〈s′,ℓ〉 represented by a member 〈s′, ℓ〉 ∈ M has the same members M . Thus
the members M of P〈s,ℓ〉 are connected to each other, and hence, organize a Kv.

For example (see Fig. 3), partitions P〈11,0〉, P〈00,0〉, P〈01,0〉, and P〈10,0〉 that are repre-
sented respectively by the members M = {〈11, 0〉, 〈00, 0〉, 〈01, 0〉, 〈10, 0〉} of partition P〈00,0〉
have the same members M , that configure a K2.

Theorem 1.3 does not hold for the original SK derived from the Hamming code-based
partitions. It has the same number of links but increases its layout complexity as compared
with the SK with the simple partitions. Owing to Theorem 1.3, we can arrange the leaders
〈s, ∗〉 in suit Ss on the row s of a 2v × 2w array, and the members 〈∗, ℓ〉 of partition P〈s,ℓ〉
on the column ℓ of the array as presented in Section 2.

Moreover, we can choose the v and w values for an n, while given an n, the sizes p and
k are fixed in the Hamming code-based partitions. So the aspect ratio of the layout for
SKn(v,w) can be adjustable. In the rest of the paper, the SK stands for the one based on
the simple partitions if not mentioned otherwise.

1.3 Recursive SK graphs

For a large n, the size 2w of the Kw component of an SKn(v,w) may be too large to achieve
an easy layout. To reduce the layout complexity, we convert the Kw into an SK: Let n1 = n,
v1 = v, w1 = w, vi+wi = ni = wi−1, and

∑γ
i=1 vi+wγ = n. Then we can generally produce

a γ-level recursive SKn, denoted by SKγ
n(v1, . . . , vγ , wγ), in the following way.

A Bus-Based Semi-Completely-Connected Network for High-Performance ... 371

Definition 1.4. The SKγ
n(v1, . . . , vγ , wγ) is produced from SK1

n(v1, w1) = SKn(v,w) by
repeating the next procedure for i = 2, . . . , γ: Convert each Kwi−1 component of the
SKi−1

n (v1, . . . , vi−1, wi−1) into the SKni(vi, wi) graph to obtain the SKi
n(v1, . . . , vi, wi).

For instance, the SK2
5(2, 2, 1) (see Fig. 4) is produced by converting each of the K3

components of SK1
5(2, 3) into the SK3(2, 1) shown in the large oval, where γ = 2, v1 = v2 = 2,

and wγ = w2 = 1, so that
∑2

i=1 vi + w2 = 5 = n.

••

••••

••

�
�

�
�

��

�
�

�
�

��

Z
Z

Z
Z

ZZ

Z
Z

Z
Z

ZZ
�

�
�

�
��

�
�

�
�

��

Z
Z

Z
Z

ZZ

Z
Z

Z
Z

ZZ

�
�

�
�

��

�
�

�
�

��

Z
Z

Z
Z

ZZ

Z
Z

Z
Z

ZZ
�

�
�

�
��

�
�

�
�

��

Z
Z

Z
Z

ZZ

Z
Z

Z
Z

ZZ

SK3(2, 1)'

&

$

%

J
JJ

J
J

J
J

J
JJ

�� ���� ���� ���� �� ••

••••

••

SK3(2, 1)'

&

$

%

J
JJ

J
J

J
J

J
JJ

�� ���� ���� ���� ��
••

••••

••

SK3(2, 1)'

&

$

%

J
JJ

J
J

J
J

J
JJ

�� ���� ���� ���� �� ••

••••

••

Z
Z

Z
Z

ZZ

Z
Z

Z
Z

ZZ

�
�

�
�

��

�
�

�
�

��

Z
Z

Z
Z

ZZ

Z
Z

Z
Z

ZZ

�
�

�
�

��

�
�

�
�

��

Z
Z

Z
Z

ZZ

Z
Z

Z
Z

ZZ

�
�

�
�

��

�
�

�
�

��

Z
Z

Z
Z

ZZ

Z
Z

Z
Z

ZZ

�
�

�
�

��

�
�

�
�

��

SK3(2, 1)

'

&

$

%

J
JJ

J
J

J
J

J
JJ

�� ���� ���� ���� ��
Fig. 4. The SK2

5(2, 2, 1) of which components are SK3(2, 1)’s.

The SKγ
n has

∑γ
i=1(2

vi − 1) + (2wγ − 1) links per node, so when vi = vj = wγ (i 6= j),
the total number of links equals (γ+1)(2(γ+2)n/(γ+1)−2n−1), that is O(2n) when γ is large.
As compared with the complete graph Kn, the SKγ

n reduces the number of links by a factor
of about 2n with the increased diameter of γ + 1.

2 The BSK-Cube

This section first describes the structure, layout, and routing of the bus-based SK and SKγ

networks, respectively called BSK-cube and BSKγ-cube, and next analyzes the performance
of a few basic communication operations preferable for efficient parallel computations to
show the potential of the networks. The effect of dynamic clustering as applied to a memory
hierarchy is also analyzed.

2.1 Structure of the BSK-cube

In organizing the BSKn-cube from the SKn in the way defined below, we use bus connections
for the BSK-cube instead of the SK’s point-to-point links to reduce the number of routing
steps required in the BSK-cube to one half of the SK’s, as well as the number of wires
to O(23n/2), with the penalty of a decreased bandwidth and an increased latency. So the
BSKn-cube has the diameter equal to 1 bus-step. The BSKn-cube is organized as follows:

372 Takesue Transgressive Computing

Definition 2.1. The BSKn(v,w)-cube is obtained if we replace all links that are incident
to a node by a single bus for the node, for all nodes in the SKn(v,w) graph.

From Definition 2.1, the bus for node ℓ connects not only the members of partition Pℓ
but also the nodes in the Kw ∋ ℓ to each other. We lay out the BSKn-cube as defined below,
for as small a maximum bus length and as regular a layout as possible.

Definition 2.2. We configure the nodes of the BSKn(v,w)-cube into a 2v × 2w array and
put node 〈s, ℓ〉 at the position of array index (s, ℓ).

The layout of BSK6(3, 3)-cube is shown in Fig. 5; for reference, the layout of BSK6-cube
based on the original SK graph derived from the Hamming code-based partitions is shown
in Fig. A1 in Appendix A. The BSK6(3, 3)-cube has 64 buses, one per node. The two-digit
integer sℓ in the box stands for the node address 〈s, ℓ〉.

S0

S1

S2

S3

S4

S5

S6

S7

0 0 0 0 0 0 0 02 2 2 2 2 2 2 24 4 4 4 4 4 4 46 6 6 6 6 6 6 6

0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6

0 0 0 0 0 0 0 02 2 2 2 2 2 2 24 4 4 4 4 4 4 46 6 6 6 6 6 6 6

0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6

0 0 0 0 0 0 0 02 2 2 2 2 2 2 24 4 4 4 4 4 4 46 6 6 6 6 6 6 6

0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6

0 0 0 0 0 0 0 02 2 2 2 2 2 2 24 4 4 4 4 4 4 46 6 6 6 6 6 6 6

0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6

0 0 0 0 0 0 0 02 2 2 2 2 2 2 24 4 4 4 4 4 4 46 6 6 6 6 6 6 6

0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6

0 0 0 0 0 0 0 02 2 2 2 2 2 2 24 4 4 4 4 4 4 46 6 6 6 6 6 6 6

0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6

0 0 0 0 0 0 0 02 2 2 2 2 2 2 24 4 4 4 4 4 4 46 6 6 6 6 6 6 6

0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6

0 0 0 0 0 0 0 02 2 2 2 2 2 2 24 4 4 4 4 4 4 46 6 6 6 6 6 6 6

0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6

· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·

· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·

· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·

· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·

· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·

· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·

· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·

· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

00 01 02 03 04 05 06 07

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37

40 41 42 43 44 45 46 47

50 51 52 53 54 55 56 57

60 61 62 63 64 65 66 67

70 71 72 73 74 75 76 77

Fig. 5. The layout of the BSK6(3, 3)-cube.

A Bus-Based Semi-Completely-Connected Network for High-Performance ... 373

Each node has two sets of ports; one set for vertical lines, and the other for horizontal
lines; for space, only even-numbered ports are shown. The bus for node 〈s, ℓ〉 consists of a
horizontal line along row s and a vertical line along column ℓ; for convenience, the diamond
at the cross point of the horizontal line and the stub to node 〈s, ℓ〉 shows that the node is
the owner of the bus. The bus of node, for instance, 〈2, 3〉 runs along row 2 and column 3
as shown by the bold line. The K3 for suit Ss are organized by the 8 buses along row s,
while the K3 for partitions P〈∗,ℓ〉 is configured by the 8 buses along column ℓ.

2.2 Routing on the BSKn-cube

Let S-ports (for choosing a suit) and L-ports (for selecting a leader in a suit) denote the
ports connected to the vertical and horizontal lines of the buses, respectively, and 〈s, ℓ〉 and
〈st, ℓt〉 be the source and target addresses in a routing. Then the routing on the BSK-cube
is performed in the following way, and its diameter is given by the next theorem.

Definition 2.3. To send a packet to the target node 〈st, ℓt〉, the source node 〈s, ℓ〉 puts the
packet on its S-port st if s 6= st, or on its L-port ℓt otherwise.

Theorem 2.4. The diameter of the BSKn-cube is equal to one, independent of n.

Proof. With the routing method of Definition 2.3, the packet is sent from the source to the
target in 1 bus-step, because the S-port st of source 〈s, ℓ〉 is connected to the bus of node
〈st, ℓ〉 and that bus is connected with the target 〈st, ℓt〉 if s 6= st, or because the L-port ℓt
of source 〈s, ℓ〉 is connected to the bus of the target 〈st, ℓt〉 otherwise.

For example, suppose that the source and target are nodes 〈2, 3〉 and 〈7, 6〉 in Fig. 5.
Then the source node 〈2, 3〉 outputs the packet to S-port 7. The port is connected to the
bus of node 〈7, 3〉, and the bus is connected with the target 〈7, 6〉. When the target is 〈2, 7〉
for the same source, the packet is sent via the source’s L-port 7 that is connected to the
target. In both cases, the packet is routed to the target in 1 bus-step.

Let the unit length of the bus equal the distance between the adjacent nodes on the
BSKn-cube layout, and the bus length be defined as the maximum of the distances for a
signal to traverse for all buses. Then the distance is largest when the source and target are
located at, for instance, the top-left and bottom-right corners of the array. Thus,

Theorem 2.5. The bus length of the BSKn(v,w)-cube equals 2v+2w, that reduces to 2·2n/2
when v = w.

2.3 Recursive BSKn-cube

We organize a γ-level recursive BSK-cube, BSKγ
n, from the SKγ

n(v1, . . . , vγ , wγ) so that it
has short and long buses for local and global communications, respectively. The BSKγ has
γ buses per node as described below:

Definition 2.6. We first produce one BSKnγ (vγ , wγ) from each SKnγ(vγ , wγ) as described
in Definition 2.1, and lay out it into a 2vγ × 2wγ array applying Definition 2.2. Next, for i

374 Takesue Transgressive Computing

from γ − 1 to 1, we obtain one BSKγ−i+1
ni (vi, . . . , vγ , wγ) from each SKγ−i+1

ni
(vi, . . . , vγ , wγ)

by replacing its links remaining incident to a node with a single bus and lay out the 2vi

number of BSKγ−i
ni+1 cubes organizing one BSKγ−i+1

ni in one row or column.

For example, a skeletal layout of BSK3
10(2, 2, 3, 3)-cube produced from the SK3

10(2, 2, 3, 3)
is shown in Fig. 6. Each box stands for the BSK6(3, 3) that is the same as the one shown
in Fig. 5, and the BSK6’s in the oval organize a BSK2

8(2, 3, 3). The line segments incident
to the left and at the top of a node (shown by the •) symbolize the level-3 (local) bus, i.e.,
the S-ports and L-ports of the BSK6. The horizontal line is the level-2 (intermediate) bus
to which the 2v2 = 4 nodes from the member-BSK6’s of a BSK8 are connected, while the
vertical line is the level-1 (global) bus for connecting the 2v1 = 4 nodes in the constituent
BSK8’s to each other. So each node has three buses for levels 1 to 3; for space, only
the level-1 buses for nodes 〈0, ℓ〉 (ℓ = 0, 64, 128, 192) and the level-2 buses for nodes 〈s, 0〉
(s = 0, 1, 2, 3) are depicted; note that the address notation for the BSK10 is used.

· · · ·

· · · ·

· · · ·

· · · ·

· · · ·

· · · ·

· · · ·

· · · ·

• • • •〈0,0〉 〈0,64〉 〈0,128〉 〈0,192〉

• • • •〈1,0〉 〈1,64〉 〈1,128〉 〈1,192〉

• • • •〈2,0〉 〈2,64〉 〈2,128〉 〈2,192〉

• • • •〈3,0〉 〈3,64〉 〈3,128〉 〈3,192〉

'
&

$
%'

&
$
%'

&
$
%'

&
$
%

BSK2
8(2, 3, 3)

BSK6(3, 3)

Fig. 6. A skeletal layout of the BSK3
10(2, 2, 3, 3)-cube.

Let nodes 〈s1, . . . , sγ , ℓγ〉 and 〈st,1, . . . , st,γ , ℓt,γ〉 be the source and target in a routing on
the BSKγ

n(v1, . . . , vγ , wγ). Then we send the packet from node 〈st,1, . . . , st,i−1, si, . . . , sγ , ℓγ〉
to node 〈st,1, . . . , st,i−1, st,i, . . . , sγ , ℓγ〉 via the bus of the receiving node in the routing step
i (1 ≤ i < γ) if st,i 6= si. In the last step (i.e., step γ), the packet is sent to the target node
according to the routing method described in Definition 2.3. The diameter equals γ since
the packet reaches the target at most in γ bus-steps.

For example, on the BSK3
10(2, 2, 3, 3)-cube (see Fig. 6), suppose the routing from node

〈0, 0, 0, 0〉 (= 〈0, 0〉 in Fig. 6) in the top-left box to node 〈3, 3, 7, 6〉 (= 〈3, 254〉) in the
bottom-right box. Then the packet is sent along the path of nodes 〈0, 0, 0, 0〉, 〈3, 0, 0, 0〉 (=

A Bus-Based Semi-Completely-Connected Network for High-Performance ... 375

〈3, 0〉), 〈3, 3, 0, 0〉 (= 〈3, 192〉), and 〈3, 3, 7, 6〉), via the buses of nodes 〈3, 0, 0, 0〉, 〈3, 3, 0, 0〉,
and 〈3, 3, 7, 0〉 (= 〈7, 0〉; this node in not shown in Fig. 6), respectively, in 3 bus-steps.

Last, let’s analyze the bus length of BSKγ
n(v1, . . . , vγ , wγ): Assume that γ is odd, v2j−1 =

v2j (1 ≤ j ≤ (γ−1)/2), and vγ = wγ . Then the bus length is equal to 2vγ +2wγ in the level γ.

Otherwise, the buses in the levels (2j−1) and 2j have the same length Π
(γ+1)/2−j
k=0 2vγ−2k . So

the level-1 and level-2 (i.e., the global) buses have the length equal to 2vγ 2vγ−2 · · · 2v32v1 =
2n/2. For example, the BSK3

10 layout (see Fig. 6) satisfies the assumption mentioned above,
so that the bus length of the level-3 (local) bus equals 23 + 23 = 16 units, and the length of
the global buses (in the levels 1 and 2) are equal to 210/2 = 32 units.

3 Properties of the BSK-cube

This section analyzes the exchange, streaming, and dynamic clustering operations on the
non-recursive BSK-cube and obtains the number Bs of bus-steps required for executing
them to show the potential of the network. The routing method described in Definition 2.3
is assumed for the all operations. Note that the number of bus-steps for the BSKγ-cube
(γ > 1) to execute each of the operations is equal to γBs.

The BSK-cube cannot generally perform a permutation without bus contention. It is well
known that a special type of permutation, the simultaneous distance-d exchange operation,
is effectively used in a large number of parallel algorithms [17]. In the operation on the
2n-node system, 2n−1 pairs, each of a node 〈s, ℓ〉 and its partner 〈s′, ℓ′〉 whose addresses are
different from each other at specified d bit-positions, exchange data at the same time.

For a node 〈s, ℓ〉, let S-members be the nodes 〈s, ∗〉 in suit Ss, P-members 〈∗, ℓ〉 be the
members of partition P〈s,ℓ〉, and B-members be S-members ∪ P-members; so the B-members
are the nodes that are connected to the bus of node 〈s, ℓ〉. Then,

Theorem 3.1. On the BSKn(v,w), the simultaneous distance-d exchange operation is per-
formed in 1 bus-step with no bus congestion for any d (1 ≤ d ≤ n) and its positions.

Proof. Depending on the positions of d bits, the partner 〈s′, ℓ′〉 of a node 〈s, ℓ〉 is its P-
member if s 6= s′ and ℓ = ℓ′ or its S-member if s = s′ and ℓ 6= ℓ′. In both cases, the datum
is sent via the partner’s bus. Otherwise (s 6= s′ and ℓ 6= ℓ′), it is sent along the bus of node
〈s′, ℓ〉, that is a P-member of node 〈s, ℓ〉. So in the all cases and for any d and its positions,
the datum is sent through the bus of the P- or S-member (referred to as the agent) of node
〈s, ℓ〉. Because the S-members and the P-members of a node are connected to the node’s
bus, this operation is performed in one bus-step. No bus congestion is induced since the
agents, and hence, their buses are different for different nodes.

Assume a sequence (〈s0(j), ℓj〉, 〈s1(j), ℓj〉, . . . , 〈s2v−1(j), ℓj〉) in each P-members 〈∗, ℓj〉,
where si(j) ∈ {0, 1, . . . , 2v−1} (sp(j) 6= sq(j) if p 6= q) depends on j and ℓj ∈ {0, 1, . . . , 2w−1}.
Let (〈∗, ℓ0〉, 〈∗, ℓ1〉, . . . , 〈∗, ℓ2w−1〉) be an order of the sets of P-members. Suppose that
the nodes 〈si(j), ℓj〉 (i 6= 2v − 1) send their packets to nodes 〈si+1(j), ℓj〉, but also nodes
〈s2v−1(j), ℓj〉 at the last positions of the sequences send the data to the nodes 〈s0(j+1), ℓj+1〉
at the first positions of the next sequences, all simultaneously. We call this operation data

376 Takesue Transgressive Computing

streaming on the network, that will be effectively used for the streaming of, for instance,
multimedia data [18] among the nodes. Then,

Theorem 3.2. The data streaming operation is performed in one bus-step with no bus
congestion on the BSKn(v,w)-cube.

Proof. The data are sent via the buses of receiving nodes, i.e., nodes 〈si+1(j), ℓj〉 if the
streaming is within each P-members 〈∗, ℓj〉 or nodes 〈s0(j+1), ℓj+1〉 otherwise. Since the
receiving nodes are different from each other, the streaming completes in one bus-step with
no bus congestion.

Last, we present an operation for supporting memory systems. Suppose that a CMP
consists of a number of on-chip processing nodes and off-chip memory, and that the pro-
cessing node has a processor, a level-1 (L1) cache, and a level-2 (L2) cache. Then one of the
problems against the CMP is how to reduce not only the number of long-distance memory
requests but also the traffic to off-chip memory. A memory hierarchy will be effective if it
can confine most memory requests in a local cluster where the requesting node is located.
Memory requests satisfied in the local clusters can alleviate the long-wire problem, while a
reduced traffic to off-chip memory can mitigate the pin-neck problem.

A memory hierarchy of private L1 and L2 caches and memory could be organized with
the static clusters that are fixed in hardware. However, if the rate of memory requests
is high in the cluster, the traffic to the per-cluster units, such as the directory for cache
coherence and network interface, increases, leading to a large latency for the requests.

Let Ms denote the memory unit consisting of memory blocks Bs∗ whose addresses s∗
equal s in the upper v bits. We associate one off-chip shared memory unit Ms with suit
Ss to save the pin count required for the memory interface, but also combine the requests
for memory units (as described below) to reduce the traffic crossing the chip boundary.
Moreover, let the L2 caches in each cluster be shared in the cluster to localize the requests
and to reduce the number of requests that have to cross the chip boundary.

To reduce the traffic to per-cluster units, a dynamic clustering will be effective. Dynamic
clustering refers to the dynamic partitioning only of the nodes requesting for, as applied to
the memory system, a specific memory block. So the size of a cluster is no more than the
partition size 2v, i.e., the number of nodes in the P-members. We refer to the leader ℓ of a
partition Pℓ in which a cluster is produced also as the leader ℓ of the cluster Cℓ.

When no copy of a memory block Btα is in the L2 cache of a node 〈s, ℓ〉, we organize a
set of clusters for block Btα as follows:

Definition 3.3. In the dynamic clustering of the requests for a memory block Btα, a node
〈s, ℓ〉 sends the request to the L2 cache of the leader 〈t, ℓ〉 in suit St. The L2 cache returns
the copy of block Btα if it has the copy, or produces a single request for the sake of the
requests for block Btα received in the cluster and sends it to the memory unit Mt crossing
the chip boundary otherwise.

Block Btα read from unit Mt returns to node 〈s, ℓ〉 via the reverse path. The next
theorem shows the effect of the dynamic clusters, as compared with the static clusters.

A Bus-Based Semi-Completely-Connected Network for High-Performance ... 377

Theorem 3.4. The traffic to the leaders of clusters for memory requests is smaller than
the traffic to the per-cluster units in the static clusters by a factor of at most 2v.

Proof. Assume that the memory requests are uniformly distributed for all memory units.
Then in the static clusters, the requests not satisfied in the L2 cache concentrate on a single
per-cluster unit. On the other hand, with the dynamic clusters, the requests are sent to
one of the 2v leaders depending on the requested memory-block address, so that the traffic
to one leader reduces to one 2vth of the traffic to the per-cluster unit.

4 Conclusions

We have presented the BSK-cube and its recursive version, BSKγ-cube, to alleviate the long-
wire and pin-neck problems against high-performance NoCs. The topology of the BSK-cube
is a semi-complete (SK) graph derived from the relationship between the suits of codewords
and the partitions produced with the all suits; the suits and partitions are obtained using the
extended Hamming code [3]. Simple partitions are introduced to increase the performance
and design flexibility, but also to decrease the layout complexity of the BSK-cube.

The 2n-node SK graph, SKn(v,w), consists of 2v number of 2w-node complete graphs,
Kw’s, and each node in every Kw is connected to a node in each of the other Kw graphs;
then the 2v nodes in different Kw graphs organize another complete graph Kv. For the
SKn graph with a large n, we have recursively convert its Kw components into SKn′ graphs
with a smaller size n′ to obtain the γ-level recursive SKn graph, SKγ

n(v1, . . . , vγ , wγ), where∑γ
i=1 vi+wγ = n. The BSKγ

n-cube is produced from the SKγ
n by replacing the links in each

constituent SK that are incident to a node by a single bus for the node.
The BSKγ

n is laid out on a 2v1 × 2v2 array of BSKγ−2
n cubes and has γ buses per node.

The diameter equals γ. The buses of a node run along the same row and the same column
as the node is located, so that the buses have very regular wiring patterns. The bus length
is O(2n/2) and O(2vγ) for the level-1 and level-γ buses, respectively. We can mitigate the
long-wire problem if we can map computations so that they are almost locally performed
since dominant communications are then performed via the short length level-γ bus in one
bus-step, or if we implement the lower levels of buses with larger feature sizes.

We have shown by analysis that simultaneous distance-d exchange (1 ≤ d ≤ n) and
data streaming operations are performed in γ bus-steps with no bus congestion. Another
operation, dynamic clustering, reduces the traffic to the per-cluster units such as the cache
coherence directory by a factor of up to 2v as compared with static clustering. This will
reduce the delay for off-chip memory requests, as well as alleviate the pin-neck problem.

We are evaluating the effects of dynamic clustering of memory requests; the results will
be presented in a future paper. Streaming of video data in a memory hierarchy is also
attractive; we are developing a cache protocol to support data streaming.

Acknowledgments

We thank the anonymous reviewers for the constructive comments for refining the paper.

378 Takesue Transgressive Computing

A A Hamming code-based BSK-Cube

This appendix shows an example of the BSK-cube, BSK6-cube, that is organized from the
Hamming code-based partitions (see Fig. A1).

S0 S1 S2 S3 S4 S5 S6 S7

⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄2 2 2 2 2 2 2 24 4 4 4 4 4 4 46 6 6 6 6 6 6 6

2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6

⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄2 2 2 2 2 2 2 24 4 4 4 4 4 4 46 6 6 6 6 6 6 6

2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6

⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄2 2 2 2 2 2 2 24 4 4 4 4 4 4 46 6 6 6 6 6 6 6

2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6

⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄2 2 2 2 2 2 2 24 4 4 4 4 4 4 46 6 6 6 6 6 6 6

2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6

⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄2 2 2 2 2 2 2 24 4 4 4 4 4 4 46 6 6 6 6 6 6 6

2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6

⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄2 2 2 2 2 2 2 24 4 4 4 4 4 4 46 6 6 6 6 6 6 6

2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6

⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄2 2 2 2 2 2 2 24 4 4 4 4 4 4 46 6 6 6 6 6 6 6

2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6

⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄2 2 2 2 2 2 2 24 4 4 4 4 4 4 46 6 6 6 6 6 6 6

2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

00

· ·

· ·

·

·

64

· ·

· ·

·

·

52

· ·

· ·

·

·

36

· ·

· ·

·

·

31

· ·

· ·

·

·

55

· ·

· ·

·

·

63

· ·

· ·

·

·

07

· ·

· ·

·

·

10

· ·

· ·

·

·

74

· ·

· ·

·

·

42

· ·

· ·

·

·

26

· ·

· ·

·

·

21

· ·

· ·

·

·

45

· ·

· ·

·

·

73

· ·

· ·

·

·

17

· ·

· ·

·

·

20

· ·

· ·

·

·

44

· ·

· ·

·

·

72

· ·

· ·

·

·

16

· ·

· ·

·

·

11

· ·

· ·

·

·

75

· ·

· ·

·

·

43

· ·

· ·

·

·

27

· ·

· ·

·

·

30

··

· ·

·

·

54

··

· ·

·

·

62

··

· ·

·

·

06

··

· ·

·

·

01

··

· ·

·

·

65

··

· ·

·

·

53

··

· ·

·

·

37

··

· ·

·

·

40

· ·

··

·

·

24

· ·

··

·

·

12

· ·

··

·

·

76

· ·

··

·

·

71

· ·

··

·

·

15

· ·

··

·

·

23

· ·

··

·

·

47

· ·

··

·

·

50

··

··

·

·

34

··

··

·

·

02

··

··

·

·

66

··

··

·

·

61

··

··

·

·

05

··

··

·

·

33

··

··

·

·

57

··

··

·

·

60

··

··

·

·

04

··

··

·

·

32

··

··

·

·

56

··

··

·

·

51

··

··

·

·

35

··

··

·

·

03

··

··

·

·

67

··

··

·

·

70

·· ·

··

·

·

14

·· ·

··

·

·

22

·· ·

··

·

·

46

·· ·

··

·

·

41

·· ·

··

·

·

25

·· ·

··

·

·

13

·· ·

··

·

·

77

·· ·

··

·

·

Fig. A1. The BSK6-cube organized from the
Hamming code-based partitions.

Let p and k be the sizes of parity and information parts, and ρ and ι denote the values
of the parts. Then nodes of the BSK6-cube are arranged into the 2k × 2p array (k = p = 3

A Bus-Based Semi-Completely-Connected Network for High-Performance ... 379

when n = 6). The node address 〈ρ, ι〉 is shown by ρι for space in each node box. The nodes
in each suit Sc (0 ≤ c ≤ 7) are mapped on the positions with indices (PS−1(k, ι), c); for the
perfect shuffle (PS) code, see [5]. For instance, node 〈1, 3〉 ∈ S7 is mapped on the position
of index (r, c) = (6, 7) since r = PS−1(k, ι) = PS−1(3, 3) = 6 and c = 7.

The bus of node 〈ρ, ι〉 on the position with index (r, c) is connected to all nodes in
column c (i.e., in Sc) and to the members of partition P〈ρ,ι〉 that are distributed to 4 rows.
The ports (0, 1, . . . , 7) (port 0 is symbolized by ⋄) of node 〈ρ, ι〉 for connecting the members
of P〈ρ,ι〉 are shown at the bottom in the node, and those for connecting the nodes in S∋〈ρ,ι〉
are along the right side in the node.

The patterns of bus wiring are more complex than those in the layout of the BSK6 based
on the simple partitions (see Fig. 5), since the members of a partition have to be mapped
on k+1 = 4 rows when n = 6. The wiring is, however, regular in the sense that the patterns
along the rows and those along the columns are the same, respectively. The bus length is
O(2p+2k) that happens to be equal to the length in the layout shown in Fig. 5 since n = 6;
in general, this is not the case. Over all, the properties of the BSK-cubes obtained with the
Hamming code-based and the simple partitions are almost the same, except of the layout
complexity, and hence, the bus length; this leads to a performance difference.

Let n0 = n and ni = ki−1 (= pi + ki). Then the BSKγ (γ > 1) is organized by the
recursive partitioning of the nodes in each suit in the ni−1-bit space because the information
parts of their addresses cover the ni-bit space. The diameter equals γ, and the bus length
is O(2L) in the level 1, where L =

∑γ
i=1 ℓi and ℓi is pi or ki that makes L smallest.

References

[1] D. Matzke, “Will Physical Scalability Sabotage Performance Gains?,” IEEE Computer,
Vol. 30, No. 9, Sep. 1997, pp. 37-39.

[2] J. L. Hennessy and D. A. Patterson, “Computer Architecture: A Qualitative Ap-
proach,” Third Edition, Morgan Kaufmann Publishers, 2003.

[3] M. Takesue, “Ψ-Cubes: Recursive Bused Fat-Hypercubes for Multilevel Snoopy
Caches,” Proc. Int. Symp. on Parallel Architectures, Algorithms, and Networks (I-
SPAN), June 1999, pp. 62-67.

[4] M. Takesue, “DC-Mesh: A Contracted High-Dimensional Mesh for Dynamic Cluster-
ing,” Proc. 2004 IFIP Int. Conf. on Network and Parallel Computing, Springer LNCS
3222, Oct. 2004, pp. 382-389.

[5] M. Takesue, “The Psi-Cube: A Bus-Based Cube-Type Network for High-Performance
On-Chip Networks,” Proc. 2005 Int. Conf. on Parallel Processing (ICPP) Workshops,
pp. 539-546, June 2005.

[6] T. Lovett and R. Clapp, “STiNG: A ccNUMA Computer System for the Commercial
Marketplace,” Proc. 23th Int. Symp. on Computer Architectures, May 1996, pp. 308-
317.

380 Takesue Transgressive Computing

[7] J. Laudon and D. Lenoski, “The SGI Origin: A ccNUMA Highly Scalable Server,”
Proc. 24th Int. Symp. on Computer Architectures, Jun. 1997, pp. 241-251.

[8] K. Olukotun et al., “The Case for a Single Chip Multiprocessor,” Proc. 7th Int. Conf.
on Architectural Support for Programming Languages and Operating Systems, 1996,
pp. 2-11.

[9] L. A. Barroso et al, “Piranha: A Scalable Architecture Based on Single-Chip Multipro-
cessors,” Proc. 27th Int. Symp. on Computer Architectures, Jun. 2000, pp. 282-293.

[10] K. Sankaralingam et al., “Exploiting ILP, TLP, and DLP with the Polymorphous
Architecture,” Proc. 30th Int. Symp. on Computer Architectures, June 2003, pp. 422-
433.

[11] P. Guerrier and A. Greiner, “A Generic Architecture for On-Chip Packet-Switched
Interconnections,” Proc. Design and Test in Europe (DATE), pp. 250-256, Mar. 2000.

[12] W. J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip Interconnection
Networks,” Proc. Design Automation Conf. (DAC), pp. 683-689, 2001.

[13] F. Karim et al., “An Interconnect Architecture for Networking Systems on Chips,”
IEEE Micro, Vol. 22, No. 5, pp. 36-45, Sep./Oct. 2002.

[14] R. Kumar, V. Zyuban, and D. M. Tullsen, “Interconnection in Multi-Core Architec-
tures: Understanding Mechanisms, Overhead and Scaling,” Proc. 32nd Int. Symp. on
Computer Architectures, pp. 408-419, June 2005.

[15] S. B. Akers and B. Krishnamurthy, “A Group-Theoretic Model for Symmetric Inter-
connection Networks,” IEEE Trans. on Computer, Vol. C-38, No. 4, Apr. 1989, pp.
555-566.

[16] W.-J. Hsu, M. J. Chung, and A. Das, “Linear Recursive Networks and Their Applica-
tion in Distributed Systems,” IEEE Trans. on Parallel and Distributed Systems Vol.
8, No. 7, July 1997, pp. 673-680.

[17] V. Kumar, A. Grama, A. Gupta, and G. Karypis, “Introduction to Parallel Comput-
ing: Design and Analysis of Algorithms,” Reading, Benjamin/Cummings Publishing
Company, Inc., 1994.

[18] U. J. Kapasi, S. Rixner, W. J. Dally, B. Kbailany, J. H. Abn, P. Mattson, and J. H.
Owens, “Programmable Stream Processors,” IEEE Computer, Vol. 36, No. 8, Aug.
2003, pp. 54-62.

Masaru Takesue
Dept. Electronics and Information Engr.
Hosei University, Tokyo 184-8584 Japan

takesue@ami.ei.hosei.ac.jp

On the numerical simulation of nonlinear integrate-and-fire neurons 381

On the numerical simulation of nonlinear integrate-and-fire

neurons

Arnaud Tonnelier

Abstract

Studies in computational neuroscience rely on the simulation of neural models. We
review here some methods for the numerical integration of integrate-and-fire neuron
models and we present a new integration scheme based on a voltage-stepping approxi-
mation. We illustrate this method on the numerical simulation of quadratic integrate-
and-fire model.

Introduction

Neurons communicate by spikes and there is an increasing number of experiments that show
that spike timing contains most of the relevant information. In some behavioral experiments,
reaction times are very short so that only one spike from each neuron is involved per
processing step [15]. Synaptic plasticity depends on the relative timing of postsynaptic and
presynaptic spikes [11]. The resulting change is thought to be involved in learning processes.
The theoretical understanding of the dynamics of neuronal systems needs the simulation of
spiking neurons. Biophysically realistic spiking neuron models do not allow for analytical
studies and are highly time consuming. Simplified models of integrate-and-fire (IF) type
have retained an increasing attention [5]. In IF models, the spike event is reduced to a
discrete event, the so-called firing time. Two simulation strategies have been developed.
Exact methods where spike time is calculated exactly can be applied to a restricted class
of non realistic neural models. Time-stepping methods can be applied to any model but do
not allow for a reliable approximation of the firing times. We review both and propose an
hybrid method based on a mixture of exact and numerical calculations that overcomes the
main disadvantages of previous integration schemes.
Estimation of the firing time is crucial and fixed time-stepping methods do not provide an
accurate approximation when the firing time is estimated at the boundaries of the time
steps. Adaptive time-stepping methods are required for an accurate determination of the
firing times. We show that an implicit adaptive time-stepping method could be defined
using a voltage-stepping scheme. This numerical method is well suited for the simulation
of IF models.

382 Tonnelier Transgressive Computing

1 Exact method

One of the simplest model that describes spiking neurons is the leaky IF model [8], [16].
Only the passive membrane properties are described and the membrane potential evolves
below the firing threshold ϑ according to

C
dv

dt
= gl(vl − v) + I0 + Isyn(t) (1)

where gl is the conductance, vl the reversal potential, I0 is a constant external current and
Isyn is a synaptic current due to the action of other neurons. The membrane capacitance
C is set at 1µFcm−2. The form of an action potential is not described explicitly and spikes
are formal events characterized by a firing time tf defined by a threshold criterion

v(tf) = ϑ (2)

Immediately after tf , the potential is reset to a subthreshold value vr < ϑ,

lim
t→tf ,t>tf

v(t) = vr (3)

The neural model (1)-(3) is a differential equation with state-dependent impulses. Such
equations were considered at the beginning in nonlinear mechanics [14] and have attracted
in recent years the attention of the computational neuroscience community.
Since the subthreshold regime is linear eq. (1) can be integrated exactly. Let us suppose
that a spike has occurred at t̂. The reset value vr can be treated as an initial condition and
the integration of (1) gives for t > t̂

v(t) = vre
−gl(t−t̂) + (I0 + glvl)(1 − e−gl(t−t̂) +

∫ t

t̂
e−gl(t−y)Isyn(y)dy (4)

up to the moment of the next threshold crossing. The synaptic currents are generated by
the presynaptic spikes tfpre and the total synaptic current is given by

Isyn = gsyn
∑

tfpre

α(t− tfpre)

where

α(t) =
1

τ1 − τ2
(e

− t
τ1 − e−

t
τ2) (5)

for t > 0 and 0 otherwise. Parameters τ1 and τ2 are the synaptic time constants. The
integral in (4) can be evaluated analytically and the time at which the neurons fires is
obtained as the solution of a transcendental equation. Event-driven simulations with the
synaptic currents (5) or instantaneous interactions have been developed [10], [13]. More
realistic currents, i.e. synaptic conductances, have been used leading to exact calculations

On the numerical simulation of nonlinear integrate-and-fire neurons 383

but involving tricky calculations [1].
It is known that leaky IF models do not correctly reproduce the neuronal dynamics close to
the firing threshold. Nonlinear IF models provide a more accurate description of the neural
activity. The membrane potential of nonlinear IF models evolves according to the equation:

C
dv

dt
= f(v) + I0 + Isyn(t) (6)

where f is a nonlinear function that models the spike-generating current. Special cases
are the quadratic IF model where f(v) = gl(vl − v)2 [3], or the exponential IF model
where f(v) = gle

v−vl [4]. The strict voltage threshold (2) is replaced by a more realistic
smooth spike initiation. In general it is no longer possible to calculate analytically the
membrane potential and exact simulation methods can not be extended to non linear IF.
For this reason, approximation methods using steps are required to simulate realistic neuron
models.

2 Time-stepping Schemes

Time-stepping methods such as Euler, Runge-Kutta or Crank-Nicolson are the most pop-
ular numerical methods. They have been extensively used for the numerical integration
of nonlinear neuronal models [12]. However the IF dynamics present discontinuities of the
membrane potential which may cause some numerical problems. These methods fail to be
efficient when accuracy is required on the firing time and not on the membrane potential.
A naive implementation where the spike is assumed to be fired at a fixed time step leads
to a global error that is dominated by the error due to the discontinuity of the dynamics
limiting the algorithm to first order in time. Modified time-stepping methods can increase
the accuracy of the numerical integration leading to second-order schemes [7], [9]. Finding
explicit adaptive time steps can be sophisticated leading to algorithms where the accuracy
and efficiency are difficult to assess.

3 Voltage-stepping Schemes

The neural modeling involves the coexistence of continuous differential equations with dis-
crete events and methods coming from hybrid systems theory [2], [6] could improve the
numerical integration of neural models. An integration method based on a voltage dis-
cretization seems to be well suited to capture the non smooth nature of the neural dynamics.
Let us consider that the membrane potential is in the interval v ∈ Vk = [k∆v, (k + 1)∆v]
where ∆v be the voltage step. In a voltage-stepping method the non linear part of the
differential equation, f(v), is approximated on Vk by a linear function yielding the differ-
ential equation: C dv

dt = gkl (v
k
l − v) + I0 + Isyn(t) for v ∈ Vk. When v reaches the threshold

interval a spike is fired and v restarts in the resetting interval. Locally, the non linear IF is
approximated by a leaky IF models that allows for the use of the exact methods previously
developed. The voltage discretization implicitly defines a corresponding time discretization

384 Tonnelier Transgressive Computing

where the time steps are the times at which v leaves the intervals (Vk). The major ad-
vantage is to define an implicit time step leading to short time steps when the membrane
potential varies quickly. This method is reminiscent to the piecewise linear reduction of
smooth neural models [17].
Let us illustrate this numerical scheme using the quadratic integrate-and-fire (QIF) model.
The QIF is a canonical type I neural model which is widely used to model the neural activity.
For f(v) = gl(vl − v)2 we choose the linear approximation on Vk given by the interpolation
at k∆v and (k + 1)∆v. It is straightforward to calculate

gkl = gl(2vl − (2k + 1)∆v),

vkl = (v2
l − k(k + 1)∆v2)/(2vl − (2k + 1)∆v).

For clarity we take Isyn = 0 and we consider the neuron under a positive constant external
drive that makes the neurons fire periodically. One of the fundamental properties of neuron
is the input-output transformation classically characterized by its frequency current (f-I)
relationship. The f-I curve of the QIF can be computed analytically yielding to a precise
evaluation of the accuracy of the numerical integration method. The frequency of the QIF
under an external drive I0 > 0 is

f =

√
glI0

arctan
√
gl(ϑ−vl)√

I0
− arctan

√
gl(vr−vl)√

I0

(7)

Moreover, we compare the voltage-stepping method with the corresponding time-stepping
scheme i.e. the standard Euler algorithm where the membrane potential is calculated ac-
cording to v(t + ∆t) = v(t) + ∆t(gl(vl − v)2 + I0) where ∆t is the time step. When
v(t+ ∆t) > ϑ, a spike is assumed to be fired at time t+ ∆t and the membrane potential is
reset to vr.
In our simulations we take a leak conductance gl = 0.1mS/cm2 that leads to a passive mem-
brane time constant τ = C/gl = 10ms. Other values are vl = −60mV , vr = −70mV and
ϑ = −40mV . Figure 1 displays the f-I curve of the QIF computed with the exact expression
(7), the Euler method and the proposed voltage-stepping scheme using two different step
sizes for both ∆t and ∆v. A small step size is required to accurately reproduce the f-I curve
using an Euler method. Numerical artifacts due to the discontinuity of the dynamic appear
using the time-stepping method. The voltage-stepping scheme gives a good accuracy and
the convergence is very fast. Note that the time step from fig.1 A to fig.1 B is divided by
10 whereas the voltage step is only divided by 2.

4 Discussion

It is known that standard integration algorithms give reliable results only for very small
integration steps. To improve the integration efficiency adaptive time-stepping methods
are desirable. We have shown that a voltage-stepping scheme defines an implicit adaptive
time-stepping method that greatly improves the numerical integration.

On the numerical simulation of nonlinear integrate-and-fire neurons 385

0 2 4 6 8 10
0

100

200

300

400

500

600

I
0

f

Voltage step
Time step
Exact

0 2 4 6 8 10
0

100

200

300

400

500

600

I
0

f

Voltage step
Time step
Exact

A B

Figure 1: Graph of the f-I curve of the quadratic integrate-and-fire neuron obtained with
the voltage-stepping method (dashed line), a time-stepping scheme (dotted line) and the
exact value (solid line). Parameters are (A) ∆v = 5mV , ∆t = 1ms and (B) ∆v = 2.5mV ,
∆t = 0.1ms.

We evaluate the numerical accuracy of the voltage step method using a constant input
scenario. More realistic inputs, random current injection and conductance injection, have
to be used to analyze more closely the efficiency of the method. Finally, efforts should be
made to extend the method to the simulation of networks of interacting neurons.
In other fields of science similar numerical simulation issues have occurred: when to use
time-stepping or event-driven schemes? We expect that time-stepping methods will be
efficient when the number of events is high, i.e. in network with high conductance state
dynamics, whereas event-based simulations will be better at low firing rate activity.

References

[1] R. Brette. Exact simulation of integrate-and-fire models with synaptic conductances,
submitted. 2005.

[2] J. Della Dora, A. Maignan, M. Mirica-Ruse and S. Yovine. Hybrid computation. Proc.
International Symposium of Symbolic and Algebraic Computation, 691-704, 2001.

[3] B. Ermentrout. Type I, phase resetting curves, and synchrony. Neural Comp. 8, 979-
1001, 1996.

386 Tonnelier Transgressive Computing

[4] N. Fourcaud-Tromé, D. Hansel, C. van Vreeswijk and N. Brunel. How spike generation
mechanisms determine the neuronal response to fluctuating input. J. Neurosci 23,
11628-11640, 2003.

[5] W. Gerstner and W.M. Kistler. Spiking neuron models. Cambridge University Press,
2002.

[6] A. Girard. Analyse algorithmique des systèmes hybrides. Thèse de doctorat, INP
Grenoble, 2004.

[7] D. Hansel, G. Mato, C. Meunier and L. Neltner. On the numerical simulations of
integrate-and-fire neural networks. Neural Comput. 10, 2, 1998.

[8] L. Lapicque. Recherches quantitatives sur l’excitation électrique des nerfs traitée
comme une polarisation. J. Physiol. Pathol. Gen. 9,620-635, 1907.

[9] W.W. Lytton. Independent variable time-step integration of individual neurons for
network simulations. Neural Comput. 17, 903-921, 2005.

[10] T. Makino. A discrete-event neural network simulator for general neuron models. Neu-
ral. Comput. and Applic. 11, 210-223, 2005.

[11] H. Markram, J. Lubke, M. Frotscher and B. Sakmann. Regulation of synaptic efficacy
by coincidence of postsynaptic APs and EPSPs. Science 275, 213-215, 1997.

[12] M.V. Mascagni and A. Sherman. Numerical methods for neuronal modeling. In Meth-
ods in Neuronal Modeling. From Ions to Networks, C. Koch, and I. Segev, second
edition. MIT Press, Cambridge, MA. 1998.

[13] M. Mattia and P. Del Giudice. Efficient event-driven simulation of large networks of
spiking neurons and dynamical synapses. Neural Comput. 12, 10, 2000.

[14] A.M. Samoilenko and N.A. Prerstyuk, Impulsive differential equations. World scientific
series on nonlinear science, Series A, vol. 14, 1995.

[15] S. Thorpe, D. Fize and C. Marlot. Speed of processing in the human visual system.
Nature 381, 520-522, 1996.

[16] H.C. Tuckwell. Introduction to theoretical neurobiology. Cambridge University Press,
Cambridge, 1988.

[17] A. Tonnelier and W. Gerstner. Piecewise linear differential equations and integrate-
and-fire neurons : Insigth from two dimensional membrane models. Phys. Rev. E 67,
2004.

A. Tonnelier
LORIA & LMC-IMAG

Arnaud.Tonnelier@loria.fr
www.loria.fr/∼tonnelia

Markov Chains, Iterated System of Functions and Coupling time for ... 387

Markov Chains, Iterated System of Functions and Coupling

time for Perfect Simulation ∗

Jean-Marc Vincent

Abstract

Simulation of Markov chains are usually based on an algorithmic representation of
the chain. This corresponds to stochastic recurrent equation and could be interpreted
as random iterated systems of functions (RIFS). In particular, for perfect simulation
of Markov chains, the RIFS structure has a deep impact on execution time of the
simulation. Links between the structure of the RIFS and coupling time of algorithm
are detailed in this paper. Conditions for coupling and upper bound for simulation time
are given for Doeblin matrices. Finally, it is shown that aliasing techniques build an
RIFS with a particular binary structure.

1 Introduction

Markov chains are basic tools to study random dynamical systems. They play the central
role of linear part of the dynamic and capture most of the dynamic characteristics. When the
system is finite, the Markov chain is described by its transition kernel (stochastic matrix).
When the system is homogeneous in time, irreducible and aperiodic, the left eigenvector π
associated to the eigenvalue 1 captures most of informations needed in practical applications.
Difficulties arise when the size of the system is too large so that traditional linear algebra
tools could not be used.

For a large state space, simulation provides methods based on an algorithmic represen-
tation of the chain and offers new possibilities for the statistical estimation of π. Unfortu-
nately, these methods are empirical and the management of errors is very difficult. Perfect
simulation techniques [9] have been developed in the last 10 years. These methods guaran-
tee the convergence to steady-state in a finite number of steps and help for the simulation
control.

In fact, the algorithmic representation of the Markov chain could be interpreted as a
random iterated systems of functions. The aim of this article is to investigate relations
between the Markov chain and its representations as RISF. It is shown that the RISF
impacts deeply the simulation time for perfect simulation.

In the second section the RISF formalism is introduced and properties of Markov chains
from a RISF are deduced. Then forward simulation and its drawbacks is presented. Section

∗This work was partially supported by ACI SurePath and ANR SMS

388 Vincent Transgressive Computing

5 introduces the perfect simulation algorithm and the convergence criteria in a finite number
of steps. Relations between the RISF and coupling time are given in section 6 and applied
for Doeblin matrice (section 7). Finally the alias technique is described and the uniform-
binary decomposition is proposed.

2 Random Iterated System of Functions

Consider a finite state space identified to the set X = {1, · · · ,K} and consider a finite
family of m functions F = {fθ : θ ∈ Θ} that maps X onto itself. Denote by Fθ the matrix
of the operator fθ with K rows and m columns,

Fθ(i, j) =

{
1 if fθ(i) = j;
0 if not.

A probability distribution P = {pθ : θ ∈ Θ} is given on the set Θ of functions and the
dynamic of the system is defined by

X0 = xo, X1 = fθ1(X1),

Xn+1 = fθn+1(Xn) = fθn+1 ◦ fθn ◦ · · · fθ1(X0), (1)

where {θn}n∈N is a random sequence of elements of Θ chosen independently according to
distribution P. It is clear that the stochastic process {Xn}n∈N is a homogeneous discrete
time Markov chain, because the conditional distribution of the future does not depend on
the past.

In the domain of probability such stochastic recurrence equations have been widely
studied when the state space is continuous [5] or from an ergodicity point of view [2, 1, 10].
More general results are developed in [8] and [4].

Because the state space is finite, the dynamic of the process is given by the transition
matrix P of the Markov chain. It is obtained by

pi,j
∆
= P(Xn+1 = j|Xn = i) =

∑

θ∈Θ

pθ.11fθ(i)=j .

This transition matrix is non-negative and the sum of elements on a row equals 1.
The irreducibility of the Markov chain is related to pattern properties of functions.

Proposition 2.1 (Irreducibility). Suppose that for each couple (i, j) of states there exists
a finite pattern (θ1, · · · , θl) such that the probability of the pattern is positive pθ1 · · · pθl

> 0
and

j = fθl
◦ fθl−1

◦ · · · fθ1(i),
then the Markov chain associated to the RISF is irreducible.

Moreover, aperiodicity of the chain is deduced from the support of functions fθ.

Markov Chains, Iterated System of Functions and Coupling time for ... 389

Proposition 2.2 (Aperiodicity). The irreducible Markov chain is aperiodic if for each
couple (i, j) there exist some n0 such that for every n ≥ n0 there is a sequence (θ1, · · · , θn)
such that for each couple (i, j) of states,

j = fθn ◦ fθn−1 ◦ · · · fθ1(i).

One should note that if the Markov chain is irreducible and aperiodic there exists n0 such
that Pn0 is positive. Then the central convergence theorem from Kolmogorov, extension of
the Perron-Froebenius in the finite case, could now be reformulated using random iterated
system of functions:

Theorem 2.3 (Kolmogorov). If the RISF is aperiodic and irreducible (recurrent positive),
then there exist a unique probability measure π = (π1, · · · , πK) (line vector) satisfying

π = πP =
∑

θ

pθπFθ, (2)

and for all (i, j)
lim

n→+∞
P(fθn ◦ fθn−1 ◦ · · · fθ1(i) = j) = πj.

Intuitively, when we stop a RIFS after a long period, the probability that the observed
value is j is approximatively πj. Moreover, if we compute the proportion of steps spent
state j, this proportion converges to πj (ergodic theorem).

Theorem 2.4 (Ergodic theorem). When the RISF is recurrent positive, then the Cesaro
limit converges :

lim
n→+∞

1

n

n∑

k=1

11fθn◦fθn−1
◦···fθ1

(i)=j = πj almost surely.

Theorem 2.3 guarantees that sampling independent sufficiently long trajectories gives
an estimate of the stationary distribution. The ergodic theorem 2.4allows sampling on only
on a single trajectory because the probability that the Cesaro limit does not converge is 0.

3 Estimation of π

When the size of the system is sufficiently small, formal or numerical computations provide
the eigenvector π of the transition matrix P . If the size of the state space is too large, a
simulation builds an estimate of π. The first technique called forward simulation is based
on theorem 2.3 and leads to algorithm 3.1.

Algorithm 3.1. Forward simulation (independent sample generation)

n = 0;
x = x0;
{choice of the initial state at time n=0}

390 Vincent Transgressive Computing

repeat
n = n+ 1;
fθ = Random function();
{Random function chosen according to the distribution {pθ : θ ∈ Θ}}
x = fθ(x);
{computation of the next state Xn+1}

until n = simulation length
return x

This algorithm returns a state and we hope that, for a sufficiently long simulation run,
the returned state distribution is a good approximation of π. So repeating the algorithm,
we get a sample of independent realizations of π distributed random variables.

The problem of this approach is first the estimation of the simulation length (stabi-
lization time or burn-in time). In usual softwares, this value is fixed empirically by the
user. Moreover, because we generate a sample of independent variables the convergence of
estimates of π converges very slowly to the limit value, in the order of O(1√

n
).

This algorithm could be extended by making sampling directly on the trajectory (er-
godic sampling). In that case, samples are not independent and we should assume mixing
properties of the process to justify the speed of convergence. Moreover, it has been shown
that the convergence to steady-state depends on the spectral gap of the matrix P (module
of the difference between 1 the first eigenvalue and the second eigenvalue).

Suppose now given a transition matrix P , the problem is to compute or estimate the
steady state distribution π. The classical method consists in three steps :
(1) Build a set of functions F = {fθ : θ ∈ Θ} and the corresponding probabilities P = {pθ :
θ ∈ Θ} such that P =

∑
θ pθFθ;

(2) Simulate a sample by algorithm 3.1;
(3) Estimate statistics on the sample.

Proposition 3.2. The convergence of the forward algorithm does not depend on the set of
function F and P.

This is clear because the construction of F does not modify the matrix P and so con-
vergence to steady state. Usually, the construction of the family of functions F and P are
based on randomized algorithms. Because the set of states is finite, usual algorithms are
like the following 3.3 (inverse probability distribution function):

Algorithm 3.3. Next state generation

{Current state is i}
s = 0; j = 1;
u = Random(0, 1);
while u > s do
s = s+ P [i, j]; j = j + 1;

end while
return j

Markov Chains, Iterated System of Functions and Coupling time for ... 391

This representation leads to set F with cardinality at most m− (K − 1) where m is the
number of positive elements of P . This algorithm could be improved, by tree structures or
hash tables, the main idea is to consider an appropriate segmentation of the interval [0, 1[
as shown in section 8.

4 Forward coupling

An intuitive idea (not so good as shown in example 1), to stop simulation is to consider all
possible initial values, observe their trajectories and stop the simulation when they are all
in a same state. We say that all trajectories have coupled. The coupling time is the first
time when the trajectories are all in the same state, after the coupling time, the trajectories
do not depend on the initial state. The recurrent equation (1) is applied to each state of X
and we denote by y(x) the current value of the trajectory issued from state x.

Algorithm 4.1. Forward-coupling simulation

for all x ∈ X do
y(x) = x;
{choice of the initial value of the vector y, n = 0}

end for
repeat
n = n+ 1;
fθ = Random function();
{Random function chosen according to the distribution {pθ : θ ∈ Θ}}
for all x ∈ X do
y(x) = fθ(y(x));
{computation of the next state of the trajectory issued from x at time 0}

end for
until All y(x) are equal
return y(x)

An example of a forward-coupling simulation is illustrated by figure 1.

0000

0001

0010

0011

0100

0101

1000

1001

1010

1100

State

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Time

Trajectories and forward coupling

Global coupling

0110

Figure 1: All trajectories have coupled before time τ∗ = 16

392 Vincent Transgressive Computing

When the forward coupling algorithm stops all trajectories have coupled, unfortunately
the generated state does not follows the stationary distribution. This is clearly illustrated
in the example 1.
Example 1 : Coupling in a same state

1

0

1/2

1

1/2

On the example to the left, it is clear that coupling does

not depend of the representation and that coupling time is

almost surely finite, geometrically distributed with parame-

ter 1
2 . When 2 trajectories couple, at the preceding step the

corresponding states were 0 and 1. But, because the tran-

sition probability from 1 to 1 is zero, the trajectories can

only couple in 0. Then the generated state is always 0, and

is not distributed according to the stationary distribution

π = [23 ,
1
3].

5 Backward Simulation Scheme

To make this algorithm “exact”, [9] propose to shift the process in the past. This is equiva-
lent to [7] monotone scheme used to prove the law convergence of the workload of a queuing
system.

Provided that the representation of the Markov chain ensures coupling, we modify the
algorithm (4.1) by reversing time leading to algorithm 5.1:

Algorithm 5.1. Backward-coupling simulation

for all x ∈ X do
y(x) ← x {choice of the initial value of the vector y, n = 0}

end for
repeat

u ← Random; {generation of fθ−n}
for all x ∈ X do
y(x) ← y(fθ−n(x)); {computation of the state at time 0 of the trajectory issued
from x at time −n}

end for
until All y(x) are equal
return y(x)

We illustrate the behavior in figure (2).
To understand this algorithm and find conditions for termination, we consider the se-

quence of subsets of the state space X , {Zn}n∈N defined by

Zn = fθ−1 ◦ fθ−2 ◦ · · · fθ−n(X). (3)

Because fθ−n(X) ⊂ X , we deduce that the sequence {Zn}n∈N is non-increasing. Using the
finiteness of X and monotonicity, we obtain that {Zn}n∈N converges almost surely to a set
Z∞. The system is coupling if Z∞ is reduced to one point.

The next theorem, [9, 12], states the fundamental result of the method:

Markov Chains, Iterated System of Functions and Coupling time for ... 393

0001

0101

0110

1000

1001

1010

1100

Time −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1

States

0000

0010

0011

0100

Figure 2: All trajectories collapsed in state 0000 after 9 steps

Theorem 5.2. Suppose that the algorithm terminates, then the generated value y(x) by
algorithm 5.1 is distributed according to the stationary distribution.

The difficulty is now to obtain conditions under which the coupling time is finite almost
surely. An example which illustrate this difficulty is given in section 6 and construction of
RIFS ensuring that the algorithm terminates are detailed in section 7 and 8.

6 Coupling time

It was shown in proposition3.2 that the choice of the RIFS implementing the Markov chain
did not affect the convergence of the process. In the backward coupling scheme the situation
is clearly different. Consider the following example of a two states Markov chain, in which
we suppose that the{Un} are uniformly distributed on [0, 1].
Example 2 : Three representations of a same Markov chain

This example, as example 1 before, is derived from the course of [6, chap. 10].
Consider the simple two states Markov chain :

1/2 1/2

1/2

1/2

0 1

Its transition matrix is

P =

[
1
2

1
2

1
2

1
2

]
,

the chain has a unique sta-
tionary distribution

π = (
1

2
,
1

2
).

The three following RISF f = (f1, f2) with probability pf = (1
2 ,

1
2), g =

(g1, g2) with probability pg = (1
2 ,

1
2), and h = (h1, h2, h3, h4) with probability

ph = (1
4 ,

1
4 ,

1
4 ,

1
4) whose values are given by

{
f1(0) = f1(1) = 0,
f2(0) = f2(1) = 1;

{
g1(0) = g2(1) = 0,
g1(1) = g2(0) = 1;

and

394 Vincent Transgressive Computing

{
h1(0) = h1(1) = h2(0) = h3(1) = 0,
h2(0) = h3(0) = h4(0) = h4(1) = 1,

represent the same transition matrix P . The coupling time for the first repre-
sentation equals 1, for the second representation the algorithm never terminates
and the coupling time is geometrically distributed with mean 2 for the last case.

This example shows that the construction of the RISF is of crucial importance on the
coupling time. We observe that the behavior of the system could exhibit mean coupling
time arbitrarily large and in some cases the coupling time is infinite.

7 Doeblin matrices

Consequently, to avoid this problem, the idea is to build the RISF in order to ensure
coupling. Constant functions are of great interest as :

Proposition 7.1. If there exist a constant functionfθ ∈ F then the coupling time is almost
surely finite and stochastically bounded above by a geometric distribution with parameter pθ.

When the function fθ is picked, all trajectories collapse in one state and coupling occurs.
The coupling time is dominated by the first occurrence time of fθ in the independent process
of {fθn} which is geometrically distributed.

When the transition matrix is positive (Doeblin matrix), it is possible to build a RIFS
which could couple in each state in just one step. Denote by

αj = min
i
pi,j.

The Doeblin condition is simply
min
j
αj > 0. (4)

Consequently the the algorithm 7.2 compute the next step of the chain and ensures coupling.

Algorithm 7.2. Next states generation (Doeblin matrices)

u = Random(0, 1);
s = 0; j = 1;
while u > s do
s = s+ α[j], j = j + 1

end while
for i = 1 to n do
t = s; j = 1;
while u > s do
s = s+ P [i, j] − α[j]; j = j + 1;

end while
NextState(i) = j

end for

Markov Chains, Iterated System of Functions and Coupling time for ... 395

Proposition 7.3. The RIFS represented by algorithm 7.2 couples in finite time and the
mean coupling time is less than

1
∑K

i=1 αi

In fact this proposition is still valid and the algorithm still works if there is a column of
positive elements, so inequality 4 is replaced by the weaker inequality:

max
i

{
min
j
pi,j

}
> 0.

This condition implies that there exists a state that is accessible from every other state in
X . But, usually this condition is too strong for classical Markovian models for which the
transition matrix is sparse.

8 Uniform-Binary decomposition

The aliasing technique, designed by [13], provides an efficient method to build the set of
functions F , that simulates the next state following i according to the transition probability
{pi,j}j∈X . Compared to classical methods [3] such as inverse of probability distribution func-
tion (algorithm 3.3), rejection, or composition methods, the complexity of the computation
of the next state is in O(1), and so does not depend on the problem size.

Consider a typical distribution q = (q1, · · · , qK) on K states. The idea is to build a set
of K thresholds {s1, · · · , sK} 0 ≤ si ≤ 1, and K couples of states {(i1, i′1), · · · , (iK , i′K)}
with (ij , i

′
j) ∈ X 2, i′j is called the alias value of ij . This construction should verify the

following constraints :

∀i ∈ {1, · · · ,K}, qi =

K∑

j=1

(
sj11ij=i + (1− sj)11i′j=i

)
. (5)

Such a decomposition is built by a simple algorithm requiring O(K) steps. The imple-
mentation structure is described in [3]. From this structure the simulation runs as follows
:

Algorithm 8.1. Aliasing generation

{ The values of s, and couples (il, i
′
l) are preliminary stored in arrays of size K : S, I and

I ′.}
u = Random(0, 1);
v = Random(0, 1);
l = int(u ∗ k); { discrimination among K, int means the integer part }
if v < S[l] then

return I[i] { the standard value}
else

return I ′[i] { the alias value}

396 Vincent Transgressive Computing

end if

One should notice that this representation is not unique and, according remarks on the
impact of representation on coupling time, we should use heuristics to build a “better”
representation. In particular very interesting property of such a construction is that any
permutation of two couples (sj , (ij , i

′
j)) and (sl, (il, i

′
l)) provide another random variable

with exactly the same distribution. Moreover, if we replace some threshold sj by 1− sj and
exchange the values (ij , i

′
j) to (i′j , ij), the distribution of the result is also preserved.

Consequently, we have two steps in the computation of the simulation kernel. A first
step compute for each state x the corresponding arrays Si, Ii, and I ′i (cf algorithm 8.1).
The second step modify these arrays to guarantee termination in a finite number of steps.
To simplify this step, we suppose that there exist some state i0 such that the transition
probability from i0 to i0 is strictly positive. This condition is stronger than aperiodicity
and is generally verified in practical situations. If not, the matrix 1

2(Id + P) exhibits the
same stationary distribution as P and could be used instead of P .

Because the Markov chain is irreducible there exist a spanning tree of the state space
graph such that a path of positive probability exists in the tree from each state i to i0.
Because each state has an out-degree of 1 in the tree, it is always possible to place the
next state of i in the tree (on the path to i0) in the place Ii[0]. Let α = mini

Si[0]
di

, with di
the out-degree of state x in the graph. α is strictly positive and with probability α all the
transitions occur on the arrows of the tree. Repeating this transition K times leads to a
global coupling in state i0. The algorithm terminates almost surely. Moreover, if we denote
by D the depth of the tree, the coupling time is upper bounded by a geometric distribution
with parameter αD, probability that a burst of D sequential transitions occur on the tree.

The aliasing technique remains valid if some probability are 0 in the distribution q, the
corresponding threshold equals 0. Consider that all the alias computations are done on
{1, · · · ,K} and denote by S and A the threshold and the alias matrices.

Algorithm 8.2. Next states generation (Alias matrices)

u = Random(0, 1);
k = int(u ∗K) + 1;{ choice of the column}
v = Random(0, 1);
for i = 1 to n do

if v < S[i, k] then
NextState(i) = k { the standard value}

else
NextState(i) = A[i, k] { the alias value}

end if
end for

For this situation, it appears that the transition matrix have been decomposed in a sum
of K stochastic matrices

P =
1

K
(P1 + · · ·+ PK) ,

Markov Chains, Iterated System of Functions and Coupling time for ... 397

where the stochastic matrix Pi have at most two non null elements per row. It corresponds
to very simple structures which need further research. The number of matrices in the
decomposition could easily be reduced to the maximum out degree of the chain dmax, which
is useful for sparse matrices. In that case the cardinal of F is at most (K + 1).dmax.

Moreover using permutations of columns or thresholds could improve the coupling time.
The problem of finding the best Uniform-binary RIFS minimizing the mean coupling time
seems to be very complex. Some heuristics have been developed but are not yet published.

9 Conclusion

In practical examples, the RIFS representation of a Markov chain is crucial for simulation.
Several methods have been implemented in a software PSI 1 in order to test and compare
heuristics. All results show that the problem is very difficult and needs further fundamental
research.

Experiments on practical performance evaluation problems [12] and [11] shows that
Markov chains with up to one million of states could be simulated by this technique. The
amount of memory used by the algorithm (alias tables, threshold) is about 2 times the
number of positive elements of the transition matrix. Then simulation time is sufficient
to estimate parameters on the model typically scala products of a reward vector and the
stationary distribution.

When the system is monotone, and that is the case in many practical situations of
performance evaluation [11] or in interacting systems of particles [9], the method could
be adapted by driving simulation from maximal and minimal states. The coupling time
estimation still remains open.

References

[1] A.A. Borovkov and S. Foss. Stochastically recursive sequences and their generalizations.
Siberian Advances in Mathematics, 2(1), 1992.

[2] A.A. Borovkov and S. Foss. Two ergodicity criteria for stochastically recursive se-
quences. Acta Appl. Math., 34, 1994.

[3] P. Bratley, B.L. Fox, and L.E. Schrage. A Guide to Simulation. Springer-Verlag, 1983.

[4] P. Brémaud. Markov Chains: Gibbs fields, Monte Carlo Simulation and Queues.
Springer-Verlag, 1999.

[5] P. Diaconis and D. Freedman. Iterated random functions. SIAM Review, 41(1):45–76,
1999.

[6] O. Häggström. Finite markov chains and algorithmic applications. Cambridge Univer-
sity Press, 2002.

1http://www-id.imag.fr/Logiciels/psi/

398 Vincent Transgressive Computing

[7] R.M. Loynes. The stability of queues with non independent inter-arrival and service
times. Proc. Cambridge Ph. Soc., 58:497–520, 1962.

[8] S.P. Meyn and R.L. Tweedie. Markov chains and stochastic stability. Communications
and Control Engineering Series. Springer-Verlag, 1993.

[9] J. Propp and D. Wilson. Exact sampling with coupled Markov chains and applications
to statistical mechanics. Random Structures and Algorithms, 9(1&2):223–252, 1996.

[10] O Stenflo. Ergodic theorems for Iterated Function Systems controlled by stochastic
sequences. Doctoral thesis n. 14, Umea university, 1998.

[11] J.-M. Vincent. Perfect simulation of queueing networks with blocking and rejection.
In Saint, pages 268–271, 2005.

[12] J.-M. Vincent and C. Marchand. On the exact simulation of functionals of stationary
markov chains. Linear Algebra and its Applications, 386:285–310, 2004.

[13] A.J. Walker. An efficient method for generating discrete random variables with general
distributions. ACM Trans. Math. Software, 3:253–256, 1974.

Jean-Marc Vincent
Laboratoire ID-IMAG,
MESCAL Inria project,

51, avenue Jean Kuntzmann, F-38330 Montbonnot, France
Jean-Marc.Vincent@imag.fr

http://www-id.imag.fr/Laboratoire/Membres/Vincent Jean-Marc/

Extended abstracts 399

Chapter 3

Extended abstracts

400 Transgressive Computing

Some numerical analysis problems behind web search 401

Some numerical analysis problems behind web search

Claude Brezinski Michela Redivo Zaglia

Abstract

An important problem in web search is to classify the pages according to their
importance. From the mathematical point of view, Google treats this problem by finding
the left principal eigenvector (the PageRank vector) of a certain matrix. Properties of
this vector will be given. It could be computed by the power method whose iterates will
be characterized. Then several approximations of the PageRank vector, and procedures
for accelerating the power method will be discussed.

Introduction

A query to a web search engine often produces a very long list of answers because of the
enormous number of pages (over 8 billions in Google’s database). To help the surfer, these
pages have to be listed starting from the most relevant ones. Google uses several metrics
and strategies for solving this ranking problem.

The importance of a page is called its PageRank and one of the main ingredients of
Google’s link analysis is the PageRank algorithm [3, 6]. A page is considered to be important
if many other important pages are pointing to it. So, the importance of a page is determined
by the importance of the other pages. This means that the row vector r

T of all PageRanks
is only defined implicitly as the solution of a fixed–point problem, as we will see.

1 The PageRank problem

Let deg(i) ≥ 1 be the outdegree (that is, the number of pages it points to) of the page i.
Let P = (pij) be the matrix which describes the transition from the page i to the page j 6= i
with pij = 1/deg(i), and pii = 0.

The PageRank vector r
T satisfies r

T = r
TP , that is, r = P T r, and it can be computed

recursively by the standard power method

r
(n+1) = P T r(n), n = 0, 1, . . . ,

assuming that all the eigenvectors of P T are present in the spectral decomposition of r
(0).

Unfortunately, this iterative procedure has convergence problems.
For avoiding these drawbacks, the original PageRank algorithm was modified. First,

since some pages have no outlink, P is not stochastic. So, P is replaced by another matrix
P̃ . Let w = (w1, . . . , wp)

T ∈ Rp be a probability vector, that is such that w ≥ 0 and

402 Brezinski et al. Transgressive Computing

e
T
w = 1 with e = (1, . . . , 1)T , and p the total number of pages. Let d = (di) ∈ Rp be the

vector with di = 1 if deg(i) = 0, and 0 otherwise. We set

P̃ = P + dw
T .

The effect of the additional matrix dw
T is to modify the probabilities so that a surfer

visiting a page without outlinks jumps to another page with the probability distribution
defined by w. Thus, P̃ is stochastic, and has 1 as a dominant eigenvalue with e as its
corresponding right eigenvector.

Another problem arises since P̃ is reducible. In that case, P̃ can have several eigenvalues
on the unit circle, thus causing convergence problems to the power method. Moreover, P̃
can have several left eigenvectors corresponding to its dominant eigenvalue 1.

Then, P̃ itself is finally replaced by the matrix

Pc = cP̃ + (1− c)E, E = ev
T ,

with c ∈ [0, 1], and v a probability vector. It corresponds to adding to all pages a new
set of outgoing transitions with small probabilities. The probability distribution given by
the vector v can differ from a uniformly distributed vector, and the resultant PageRank
can be biased to give preference to certain kinds of pages. The matrix Pc is stochastic
and irreducible since v is a positive vector. Pc has an eigenvalue equal to 1 with e as its
corresponding right eigenvector. Indeed

Pce = cP̃e + (1− c)evT e = ce + (1− c)e = e.

The power iterations for the matrix P Tc now converge to a unique vector rc (obviously,
depending on c) which is chosen as the PageRank vector.

2 The power method

Thus, we are faced to the following mathematical problem. For consistency to prior works,
we set Ac = P Tc .

The p×p matrix Ac has eigenvalues |λp| ≤ · · · ≤ |λ2| < λ1 = 1, and we have to compute
rc, its unique right eigenvector corresponding to the eigenvalue λ1 = 1. For that purpose,
we use the power method which consists in the iterations

r
(n+1)
c = Acr

(n)
c , n = 0, 1, . . .

with r
(0)
c given.

The sequence (r
(n)
c) always converges to rc but, if c ≃ 1, the convergence is slow since

the power method converges as cn. So, a balance has to be found between a small value

of c, which insures a fast convergence of (r
(n)
c), but to a vector rc which is not close to the

real PageRank vector r̃ = limc→1 rc, and a value of c close to 1, which leads to a better
approximation rc of r̃, but with a slow convergence. Google usually chooses c = 0.85, which
insures a good rate of convergence.

Some numerical analysis problems behind web search 403

3 Approximation and acceleration

Since computing a PageRank vector can take several days, convergence acceleration or ap-
proximations of the PageRank vector are essential, in particular, for providing continuous
updates to ranking. Moreover, some recent approaches require the computation of sev-
eral PageRank vectors corresponding to different personalization vectors. Recently, several
methods for accelerating the computation of the PageRank vector by the power method
were proposed [5, 4]. The aim of this work is to give a theoretical justification to the meth-
ods of [5], and to put them on a firm theoretical basis. We will interpret them in a different
way, and simplify, unify, and generalize them. In particular, we will explain their connection
with the method of moments of Vorobyev. Other possible acceleration procedures will also
be discussed.

Another problem related to PageRank computations is that, as c approaches 1, the
matrix Ac becomes more and more ill conditioned since its condition number behaves as
(1− c)−1, the conditioning of the eigenproblem becomes poor, and rc cannot be computed
accurately. So, rc can be computed for several values of c far away from 1 by any procedure,
and then these vectors can be extrapolated at the point c = 1 (or at any other point). In
order for an extrapolation procedure to work well, the extrapolating function has to mimic
as closely as possible the behaviour of rc with respect to the parameter c.

Since Pc is stochastic and irreducible, rc is the unique right eigenvector of Ac = P Tc
corresponding to the eigenvalue 1, that is, Acrc = rc. We have rc ≥ 0, and we normalize it
such that it is a probability vector, that is e

T
rc = 1.

So, we will study the properties of this vector, and, in particular, we will give implicit
and explicit expressions for it. Then, we will discuss its computation by the power method.
The iterates given by the power method are, in fact, the partial sum of a power series with
vector coefficients [1]. This discussion will lead us to various procedures for accelerating the
convergence of the power method, and to processes for the approximation of the PageRank
vector. In particular, the iterates of the power method, which are in fact the partial sums
of a vector formal power series, will be used for constructing Padé style approximations of
rc. The convergence of the power method itself will be accelerated by using various vector
sequences transformations, in particular, the ε-algorithms and Aitken’s ∆2 process. The
acceleration processes proposed in [5] will be put on a firm theoretical basis and explained
in the framework of the method of moments. They will also be generalized.

All these results are explained in details in [2].

References

[1] P. Boldi, M. Santini, S. Vigna, PageRank as a function of the damping factor, Poster
Proceedings of the 14th International World Wide Web Conference, May 10-14, 2005,
Chiba, Japan.

[2] C. Brezinski, M. Redivo–Zaglia, The PageRank vector: properties, computation, ap-
proximation, and acceleration, submitted.

404 Brezinski et al. Transgressive Computing

[3] S. Brin, L. Page, The anatomy of a large–scale hypertextual web search engine, Com-
put. Networks ISDN Syst., 30 (1998) 107–117.

[4] S. Kamvar, T. Haveliwala, G. Golub, Adaptive methods for the computation of PageR-
ank, Linear Algebra Appl., 386 (2004) 51–65.

[5] S.D. Kamvar, T.H. Haveliwala, C.D. Manning, G.H. Golub, Extrapolations methods
for accelerating PageRank computations, in Proceedings of the Twelfth International
World Wide Web Conference, ACM Press, 2003, pp. 261-270.

[6] L. Page, S. Brin, R. Motwani, T. Winograd, The PageRank citation rank-
ing: bringing order to the Web, Stanford University Technical Report, 1999,
http://dbpubs.stanford.edu/pub/1999-66

Claude Brezinski
Laboratoire Paul Painlevé, UMR CNRS 8524
UFR de Mathématiques Pures et Appliquées

Université des Sciences et Technologies de Lille
59655 - Villeneuve d’Ascq cedex

France
claude.brezinski@univ-lille1.fr

Michela Redivo Zaglia
Dipartimento di Matematica Pura ed Applicata

Università degli Studi di Padova
Via G.B. Belzoni, 7

35131 - Padova
Italy

Michela.RedivoZaglia@unipd.it

Computational complexity of numerical solution of polynomial systems 405

Computational complexity of numerical solution

of polynomial systems

Robert M. Corless Silvana Ilie Greg Reid

The problem of finding all isolated roots of polynomial systems is of major interest. Our
aim is to compute the cost of finding all isolated roots of a polynomial system. By using the
method presented below, each isolated root can be computed independently, and therefore
sequential computation of all isolated roots is possible (and the cost of computing them is
the sum of each individual cost of computing a root). This can be achieved provided that
all the isolated roots have multiplicity one.

The case of higher multiplicity for an isolated root is not treated here. We mention
that there exist tools to detect multiplicity and methods to remove it (called “deflation
of multiplicity”) e.g., differentiation of the system, see Lecerf [9], Leykin, Verschelde &
Zhao [10], Dayton & Zeng [5].

We focus on finding a low (polynomial) cost algorithm of approximating one isolated
regular root of a polynomial system depending on one parameter, namely the number of
digits of accuracy requested for the residual. The study of the complexity of approximating
all the isolated roots of a generic system of polynomials with respect to other parameters
was considered by, e.g., Shub & Smale [12]. For recent interesting work on location of zeros
for analytic functions we refer the reader to Giusti, Lecerf, Salvy & Yakoubsohn [6].

We use the homotopy continuation method for finding all isolated roots of a polynomial
system. The method consists in finding the numerical solution by continuously deforming
the target system from a starting system with known solutions. A significant accomplish-
ment of homotopy theory has been to give specific forms of the (new) start systems which
guarantee that all isolated roots of the target system can be recovered by tracking the paths
starting from the known solutions (see, e.g., [1, 13, 14]).

The path tracking problem may be obtained by applying Pryce’s method for differen-
tial algebraic equation (DAE) solving [11] directly to the case of polynomial systems or
indirectly, after transforming the problem to an index-1 DAE, to a problem to which the
method applies. We shall choose the second approach and use a new result [8] which showed
that numerical solutions of initial value problems (IVP) for index-1 DAE can be computed
in polynomial time. This result is valid for problems involving piecewise analytic functions.
It extends a recent result by Corless [3] showing that there exist algorithms of polynomial
cost in the number of digits of accuracy to solve IVP for ODE.

The particular choice of the homotopy guarantees with probability one that the system
Jacobian is non-singular along the path. Therefore, we may assume that the path stays
away from the locus corresponding to singular Jacobian and thus Pryce’s method applies.

406 Corless et al. Transgressive Computing

Consequently, by assuming that such a curve exists and the Jacobian does not become
singular along the path, we use the intrinsic smoothness of the problem and we find an al-
gorithm of cost polynomial in the number of bits of accuracy for numerically approximating
one isolated root of the given polynomial system.

Semi-explicit index-1 DAE Consider the following semi-explicit index-1 DAE:

y′(t) = f(y(t), z(t)) (1)

0 = g(y(t), z(t)) (2)

for t ∈ I = (a, b), y : I → Rk, z : I → Rm, f : D ⊂ Rm+k → Rk and g : D ⊂ Rm+k → Rm,
where D is an opened subset of Rm+k. We assume that the solution path lies in D and
that gz is invertible along the solution path. The initial conditions are assumed consistent
with the constraints. We assume that the solution exists, is unique and analytic. We also
assume that f and g are computable with automatic differentiation.

Under some natural regularity conditions it can be shown [8] that:

Theorem 1. For sufficiently small ε, the minimal cost of obtaining the solution with resid-
ual error ε of the initial value problem for (1)-(2) using Pryce’s method is polynomial in
the number of digits of accuracy. The minimum is reached on the equidistributing mesh.

Theorem 1 can be shown to hold also for piecewise analytic functions provided that the
breaking points are asymptotically, as the tolerance becomes small, O(1) appart. Further-
more, the theorem can be extended to complex–valued functions and variables.

Homotopy continuation Consider a system of polynomials (the ‘target system’) which
we want to solve

p = (p1, . . . , pm)T = 0, (3)

where p : Cm → Cm and x = (x1, . . . , xm) ∈ Cm.
Assume there exists a polynomial system (a ‘starting system’) whose solutions are all

isolated and known, q(x) = 0. The following homotopy is considered

H(t, x) = (1− t)q(x) + tp(x) . (4)

The aim is to solve the problem

H(t, x(t)) = 0, t ∈ [0, 1]. (5)

The starting point of the problem (5) is chosen to be a known solution x0 ∈ Cm of the
starting system. At the end of the solution path, the roots of the target system are obtained.

Once the system p is given, one can construct a polynomial system q, such that the
homotopy (4) is a “good homotopy” (see also Verschelde [14], Definition 1.2.4).

Definition 2. A good homotopy H(t, x) should satisfy the following properties:

Computational complexity of numerical solution of polynomial systems 407

1. (triviality) The solutions at t = 0 are known.

2. (smoothness) The solution set of H(t, x(t)) = 0 for all t ∈ [0, 1] consists of a finite
number of smooth paths, each parametrized by t.

3. (accessibility) Every isolated solution of H(1, x) = 0 is reached by some path origi-
nating at a solution of H(0, x) = 0. If r is the multiplicity of an isolated solution x∗,
then there are exactly r path converging to x∗.

For arbitrary target systems p(x), methods for constructing good start systems are
known (see, e.g., [13]).

The basic ideas behind showing that a homotopy is a good homotopy go back to the
breakthrough paper [2], which shows that the number of roots is bounded by the mixed
volume (which may be much lower than the Bèzout number). Since then, there has been
much progress in finding efficient choices for the start systems ([13] and references therein)
based on mixed volumes. Such choices not only find all isolated solutions, but also minimize
and, in many cases, eliminate diverging paths.

The issue of optimal starting polynomial system selections depending on the structure
of the given polynomial system p (such as density, sparsity, etc.) for constructing good
homotopies is not discussed here.

A start system q for which the linear homotopy (4) is a good homotopy is given by, eg.,
Theorem 4.1.13 in [14]. For other examples of classes of start systems and good homotopies
see [13] and its references. We assume below that q is such that (4) is a good homotopy.

Numerical solution The numerical solution of (5) is obtained as values at the points of
the mesh, which can be interpolated so that a continuous extension is obtained, xj(t), with
j = 1, . . . ,m. Consequently, we can define the residual in the computed solution as

δj(t) = Hj(t, x(t)), for all j = 1, . . . ,m and all t ∈ [0, 1]. (6)

Given a small tolerance ε, we require that along the path the residual satisfies the tolerance
‖δ(t)‖ ≤ ε , for all t ∈ [0, 1]. Since the Jacobian Hx is non-singular along solution path, then,
with a smoothness and a compactness argument, there exist M > 0 and a neighborhood
of the exact solution path such that ‖H−1

x (t, y)‖ < M for all (t, y) in that neighborhood.
Therefore, for small enough tolerance ε,

‖x(t)− xe(t)‖ ≤M‖H(t, x(t))‖ ≤Mε

for all t ∈ [0, 1] where xe(t) is the exact solution of (5).
For solving numerically (5), Pryce’s structural analysis [11] is used. Pryce’s method,

which is based on Taylor series, can be extended for complex-valued unknown variables and
unknown functions.

The problem can be written as a semi-explicit autonomous index-1 DAE
{
t′ = 1
0 = H(t, x) .

(7)

408 Corless et al. Transgressive Computing

Note that the system Jacobian in Pryce’s method (i.e. J =

[
1 0
0 Hx

]
) of (7) is non-

singular provided that the Jacobian Hx is non-singular. A crucial aspect of the theoretical
justification of “good” homotopy (see [2, 13]) is to show that all the isolated roots are at
the end of smooth homotopy path with Hx non-singular along the path (0 ≤ t < 1). The
additional requirement that the root is of multiplicity 1 yields that Hx is non-singular for
0 ≤ t ≤ 1. The non-singularity of J implies that Pryce’s structural analysis applies (see [7]).

As a consequence, applying Theorem 1 on (7) gives the following (see also [7]):

Theorem 3. For sufficiently small ε, the minimal cost of numerically solving the problem
(5) with error ε using an algorithm based on Pryce’s structural analysis is polynomial in
the number of bits of accuracy.

Remark 4. We note that variable order of the method is necessary to guarantee polynomial
cost (it is chosen to be (1/2) ln(1/ε)). Also, it can be shown that the number of steps in
the mesh depends weakly on the number of digits of accuracy, through some norm of local
error coefficients.

Remark 5. The polynomial cost method used in this paper applies in its fully generality to
real analytic and complex analytic differential algebraic equations. Consequently, a natural
question is to consider analytic system of equations via homotopy methods. Provided a
“good homotopy” is available, the polynomial computational cost results still apply. How-
ever, theoretically validated “good homotopies” for general analytic systems are not known
and results have to be on a case by case basis (also see [6] for validated analytic solving in
the univariate case).

Conclusions We have shown that there exist algorithms of finding all isolated roots of a
polynomial system which are polynomial in the number of digits of accuracy requested. The
problem of roots finding is solved with homotopy continuation methods. Our result relies
on a new computational complexity result for numerically solving IVP for index-1 DAE.

A more detailed analysis of other parameters affecting the computational cost (e.g. spar-
sity and degrees of the input polynomials, number of unknowns) is an important problem
which should be investigated in future work. It is also interesting to treat the case of higher
multiplicity roots by employing deflation methods. The computational cost of the deflation
should be estimated (see [9] for comments on the exact case).

References

[1] E.L. Allgower and K. Georg, Numerical path following, in: P.G. Ciarlet and J.L. Lions,
eds., Techniques of Scientific Computing (Part 2), Vol. 5 of Handbook of Numerical
Analysis, North-Holland, 1997, 3 – 203.

[2] D.N. Bernstein, The number of roots of a system of equations, Functional Anal. Appl.
9(3) (1975) 183 – 185.

Computational complexity of numerical solution of polynomial systems 409

[3] R.M. Corless, A new view of the computational complexity of IVP for ODE, Numerical
Algorithms 31 (2002) 115 – 124.

[4] R.M. Corless, M.W. Giesbrecht, M. van Hoeij, I.S. Kotsireas, and S.M. Watt, Towards
factoring bivariate approximate polynomials, Proceedings of the 2001 International
Symposium on Symbolic and Algebraic Computation, ACM, New York, 2002, 37 – 45.

[5] B.H. Dayton, Z. Zeng, Computing the multiplicity structure in solving polynomial
systems, Proceedings of the 2005 International Symposium on Symbolic and Algebraic
Computation, ACM, New York, 2005, 116 –123.

[6] M. Giusti, G. Lecerf, B. Salvy, and J.-C. Yakoubsohn, On location and approximation
of clusters of zeros of analytic functions. Found. Comput. Math. 5 (2005), no. 3, 257–
311.

[7] S. Ilie, Computational complexity of numerical solutions of IVP for DAE, PhD. Thesis,
University of Western Ontario, Nov. 2005.

[8] S. Ilie, R.M. Corless, and G. Reid, Numerical solutions of index-1 differential algebraic
equations can be computed in polynomial time, Numerical Algorithms 41(2) (2006)
161 – 171.

[9] G. Lecerf, Quadratic Newton iteration for systems with multiplicity, Found. Comput.
Math., 2, (2002) 247 –293.

[10] A. Leykin, J. Verschelde, A. Zhao, Newton’s method with deflation for isolated singu-
larities of polynomial systems, submitted.

[11] J.D. Pryce, A simple structural analysis method for DAEs, BIT 41(2) (2001) 364 –
394.

[12] M. Shub and S. Smale, Complexity of Bézout’s theorem V: polynomial time, Theoretical
Computer Science 133(1) (1994) 141 – 164.

[13] A.J. Sommese and C.W. Wampler, The numerical solution of systems of polynomials
arising in engineering and science, World Scientific Press, Singapore, 2005.

[14] J. Verschelde, Homotopy continuation methods for solving polynomial systems, Ph.D.
thesis, Katholieke Universiteit Leuven, 1996.

410 Corless et al. Transgressive Computing

Robert M. Corless
Ontario Research Centre for Computer Algebra

University of Western Ontario
E-mail: rcorless@uwo.ca

http://www.apmaths.uwo.ca/˜rcorless/

Silvana Ilie
Ontario Research Centre for Computer Algebra

University of Western Ontario
E-mail: silvana@uwo.ca

http://publish.uwo.ca/˜silvana/

Greg Reid
Ontario Research Centre for Computer Algebra

University of Western Ontario
E-mail: reid@uwo.ca

http://www.orcca.on.ca/˜reid/

On Fredholm property of elliptic PDEs 411

On Fredholm property of elliptic PDEs

Katya Krupchyk Jukka Tuomela

Abstract

Let us consider elliptic boundary value problems in some domain. When studying the
well-posedness of such problems it is convenient to relax the requirement of existence and
uniqueness, and allow a finite dimensional kernel and cokernel to our operators. This
kind of operators are called Fredholm operators. In case of square systems (as many
equations as unknowns) such problems are Fredholm in appropriate Sobolev spaces if
and only if the boundary conditions satisfy the Shapiro–Lopatinskij condition. This
result is valid also for elliptic systems in the generalised sense of Douglis and Nirenberg.
In case of overdetermined systems one needs to construct the compatibility complex
of the boundary value problem operator, and now one asks under which condition the
resulting complex is Fredholm, i.e. when the cohomologies of the complex are finite
dimensional.

To study the overdetermined systems there is an analog of the Shapiro-Lopatinskij
condition which gives sufficient conditions for the compatibility complex to be Fredholm.
It was thought that this generalized Shapiro-Lopatinskij condition is also necessary.
However, we present an example which shows that this is not true. Moreover, we pro-
pose a constructive algebraic criterion for checking the (generalised) Shapiro-Lopatinskij
condition and show how to compute the compatibility complex for operators with con-
stant coefficients.

We study the connection between ellipticity and Fredholm property of the boundary
value problem operators on manifolds with boundary. Ellipticity is classically defined by
using the principal symbol of the operator. We will only consider linear problems which
can be written (in a suitable coordinate system) in the following general form

Ay =
∑

|µ|≤q
aµ(x)∂µy = f

Here aµ are matrices of size k ×m (with k ≥ m) which a priori may depend on the point
x of the domain. However, from now on we will suppose that various properties which we
consider do not depend on x. The principal symbol of this system is then

σA(x, ξ) =
∑

|µ|=q
aµ(x)ξµ.

Here also we will suppress the dependence on x. Now the operator is elliptic, if the principal
symbol is injective for all ξ 6= 0. In order to have a well defined problem we need also a

412 Krupchyk et al. Transgressive Computing

differential operator on the boundary which gives the boundary conditions. This operator
is denoted by B.

We are interested in determining when the boundary value problem defined by A and
B is Fredholm, i.e. has a finite dimensional kernel and conkernel. In the square case the
answer is well-known: the operators should satsify the Shapiro–Lopatinskij condition. This
condition can be formulated algebraically in terms of symbols of both A and B.

Douglis and Nirenberg [3] generalized the notion of ellipticity of operators. They intro-
duced some weights for equations and unknowns so that their symbol contains information
also about derivatives which are not of maximal order. It turns out the theory of Shapiro–
Lopatinskij conditions can be generalised also to this case.

The Fredholm property of elliptic boundary value problems is well-known [1] in the
square case, i.e. we have as many equations as unknowns. In the overdetermined case
the situation is less clear. First in the overdetermined case the cokernel is typically infi-
nite dimensional, so the standard Fredholm property fails. However, when we construct
the compatibility complex to our boundary value problem operator we may inquire if the
resulting complex has finite dimensional cohomologies. If this is the case we say that the
complex is Fredholm and also that the original problem is Fredholm.

Now to analyse overdetermined PDEs in general it is important to check if the system
is involutive, and if not then transform it to the involutive form. The technical definition of
the involutive form is quite complicated (see [8], [9] and [10] and for the actual definition).
The geometrical definition is based on representing the PDE system as subbundle of some
appropriate jet space. However, essentially the involutivity means that one has to find all
integrability conditions (or differential consequences) of the given system up to some order.
Under some appropriate hypothesis one can show that this can be done in a constructive
way; this is sometimes called the Cartan–Kuranishi completion algorithm.

The transformation to the involutive form usually requires the use of symbolic computa-
tion. In practice to complete a system to the involutive form one may use DETools package
[2] in computer algebra system MuPAD [5].

Now when we complete our system to involutive form we see that we no longer need the
weights of Douglis and Nirenberg: in [6] we showed that any system that is elliptic with
respect to the generalised definition becomes elliptic in the standard sense when completed
to the involutive form. So the apparent generality of ellipticity is just the result of restricting
the attention to square systems. Moreover, we gave examples of operators that are not
elliptic (even in the generalised sense) but whose involutive form are elliptic. Hence when
determining ellipticity of the operator one should consider its involutive form and check the
classical ellipticity.

It turns out that for technical reasons it is convenient to further transform the involu-
tive system to a normalised system. Roughly speaking, an operator is normalised if it is
a first order involutive operator and there are no (explicit or implicit) algebraic (i.e., non-
differential) relations between dependent variables. A boundary value problem operator is
normalised if the system is normalised and the boundary conditions contain only differenti-
ation in directions tangent to the boundary. Evidently this transformation is constructive
so there is no loss of generality in assuming the our system is normalised.

On Fredholm property of elliptic PDEs 413

Recall that we are interested in studying if the cohomologies of compatibility complexes
are finite dimensional or not. It is an important fact that when we first compute the invo-
lutive form and then the normalised form, the dimensions of the cohomology spaces remain
invariant, or in the language of homology theory, the resulting complexes are homotopically
equivalent.

Then we have to construct the compatibility complex. Let us first consider the operator
A itself. For simplicity we will only discuss the case when the operators (and later bound-
ary operators) have constant coefficients. In this case we can compute the compatibility
complex by simply computing the free resolution of the module generated by the rows of A.
Incidentally this shows that the length of the compatibility complex is at most the number
of independent variables. However, to study boundary value problems we need to compute
the compatibility operators involving the boundary operators. This is not as straightforward
as the simple free resolution, and in fact here we need the notion of normalised operator
to perform this task. Anyway the problem can be formulated again with modules, and
choosing suitable module orderings we can compute the necessary information by Gröbner
basis techniques.

Having all the above information available one can generalize the Shapiro-Lopatinskij
condition to the overdetermined case. It turns out that to check this condition we can
propose a similar criterion as in the standard case. The most difficult part in using the
criterion is that we need to factorise the characteristic polynomial of the system (in the
standard square case this is the determinant of the symbol). Note that this difficulty is
already present in the square case. In our criterion we need to check ranks of some matrices
which are obtained from symbols of A, B and relevant compatibility operators. Moreover,
in case of two independent variables we propose also a computer code (written in computer
algebra system Singular) for checking our criterion. Note that this case is already important
in PDEs theory.

Now it is known that (under some appropriate technical hypothesis) if a boundary value
problem operator satisfies the generalised Shapiro-Lopatinskij condition then its compati-
bility complex is Fredholm [4] (for example in appropriate Sobolev spaces). It was thought
that this generalized Shapiro-Lopatinskij condition is also necessary. However, we recently
found that this is not true and in fact, the familiar (stationary) Stokes problem provides us
with a counterexample. Note that this is not a rare phenomenon: now that we understand
what goes wrong with the Stokes system we can easily construct other examples. By the
same techniques we can also show that if a nonelliptic system has an elliptic involutive form
then the original problem is in fact Fredholm.

This work is a continuation to our paper [7].

References

[1] M.S. Agranovich, Elliptic Boundary Problems, Partial Differential Equations IX,
Springer-Verlag, (ed. M.S. Agranovich and Yu.V. Egorov and M.A. Shubin), 1997,
Encyclopaedia of Mathematical Sciences 79, Berlin/Heidelberg, pp. 1–144.

414 Krupchyk et al. Transgressive Computing

[2] J. Belanger and M. Hausdorf and W. Seiler, A MuPAD Library for Differential
Equations, Computer Algebra in Scientific Computing — CASC 2001, Springer-Verlag,
Berlin/Heidelberg, (eds. V.G. Ghanza and E.W. Mayr and E.V. Vorozhtsov), (2001),
25–42.

[3] A. Douglis and L. Nirenberg, Interior Estimates for Elliptic Systems of Partial Differ-
ential Equations, Comm. Pure Appl. Math., 8 (1955), 503–538.

[4] P.I. Dudnikov and S.N. Samborski, Linear Overdetermined Systems of Partial Dif-
ferential Equations. Initial and Initial-Boundary Value Problems, Partial Differential
Equations VIII, (ed. M.A. Shubin), Springer-Verlag, Berlin/Heidelberg, 1996, Ency-
clopaedia of Mathematical Sciences 65, pp. 1–86

[5] J. Gerhard and W. Oevel and F. Postel and S. Wehmeier, MuPAD tutorial,
Springer, (2000), http://www.mupad.de/.

[6] K. Krupchyk, W. Seiler and J. Tuomela, Overdetermined elliptic PDEs, to appear in
J. Found. Comp. Math.

[7] K. Krupchyk and J. Tuomela, Shapiro-Lopatinskij condition for elliptic boundary value
problems, submitted to LMS J. Comput. Math.

[8] J. F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups,
Mathematics and its applications, 14, Gordon and Breach Science Publishers, (1978).

[9] N. Tarkhanov, Complexes of Differential Operators, Kluwer Academic Publishers,
Dordrecht, NL, 1995.

[10] D. Spencer, Overdetermined systems of linear partial differential equations, Bull. Am.
Math. Soc, 75, (1969), 179–239.

Katya Krupchyk
Department of Mathematics

University of Joensuu, Finland
katya.krupchyk@joensuu.fi

http://www.joensuu.fi/mathematics/department/personnel/krupchyk.htm

Jukka Tuomela
Department of Mathematics

University of Joensuu
jukka.tuomela@joensuu.fi

http://www.joensuu.fi/mathematics/department/personnel/tuomela.htm

Component-free vector algebra in Aldor 415

Component-free vector algebra in Aldor

Songxin Liang David J. Jeffrey Stephen M. Watt

Abstract

An implementation of a component-free symbolic vector algebra in Aldor is pre-
sented. This package provides two powerful functions: simplification of vector expres-
sions and the proof of vector identities. The implementation benefits greatly from
Aldor’s strong typing, which allows several simplification problems that have defeated
previous implementations to be solved.

1 Introduction

Vector algebra and vector calculus have many applications throughout science and math-
ematics. Vector analysis often simplifies the derivation of mathematical theorems and the
statements of physical laws, while vector notation can often clearly convey geometric or
physical interpretations that greatly facilitate understanding. Physicists and engineers pre-
fer to formulate their equations of motion using abstract vectors rather than components.
Thus they prefer to write the velocity of a rotating body as ω ∧ r, rather than in some
component form as

[ω2z − ω3y, ω3x− ω1z, ω1y − ω2x] .

Many computer algebra systems provide vector operations, and some have add-on vector
analysis packages, for example, the VectorAnalysis package for Mathematica [4]. See also
[2]. However, these packages do not perform component-independent operations. This
means that before one can do any vector operations, one must set the components for all
vectors involved. Component-independent systems are difficult and challenging, because
vector algebra has a strange and intriguing structure [3]. Denoting the vector and scalar
products of a, b by a ∧ b and a · b, we see:

• neither operation is associative. If p, q, r are vectors, then p ∧ (q ∧ r) 6= (p ∧ q) ∧ r,
whereas p · (q · r) and (p · q) · r are invalid.

• neither operation has a multiplicative unit. There does not exist a fixed vector u such
that for any vector p, u ∧ p = p or p ∧ u = p or u · p = p or p · u = p.

• both admit zero divisors. For any vector p, p ∧ p = 0; if q is a vector perpendicular
to p, then p · q = 0.

• the two operations are connected by the strange side relation p∧(q∧r) = (p·r)q−(p·q)r

416 Liang et al. Transgressive Computing

Stoutemyer [3] implemented component-free vector operations. However, Stoutemyer’s
package left some simplification problems unsolved. When he tried to simplify the vec-
tor expression

(a ∧ b) ∧ (b ∧ c) · (c ∧ a)− (a · (b ∧ c))2

which should simplify to zero, he only got

a · (a · b ∧ c.b) ∧ c− (a · b ∧ c)2 .
The reason was that although the scalar factor a · b∧ c could be factored out, revealing the
expression to be zero, the built-in scalar-factoring-out mechanism could not recognize that
a · b ∧ c is a scalar despite its vector components.

Because of space limitations, this description of the program is necessarily brief, and
omits most details. However, the source code for the program will be made available on the
Aldor web site, from where it may be downloaded and inspected.

2 Mathematical strategy

In this section we describe the mathematical strategy of the package, while the next section
describes the Aldor implementation. Simplification is achieved by defining a canonical form
for a vector expression and transforming all input expressions into this form.

2.1 Expression representation

A vector expression is a sum of terms, with each term being a product of scalar and vector.
The scalar is further divided into scalars from the coefficient field and scalars formed because
of a scalar product of vectors. A vector expression is represented as: Rep==List Term, and

Term==Record (coe:R, sca: List List String, vec:List String),

where coe, sca, vec are respectively the coefficient, scalar part and vector part of a term.
For example, the term −2(a.b)(a ∧ b · c)(c ∧ d) is represented as

[-2, [["a","b"], ["a","b","c"]], ["c","d"]].

Note that the vector triple product (a ∧ b) · c is an important scalar that is represented by
the three-element bracket. Because of the equality (a ∧ b) · c = a · (b ∧ c), the product can
be represented as the triple ["a","b","c"].

In addition to the basic data structure, there is a set of ordering rules to two occurrences
of the same term will be represented by the same list.

2.2 Transformation rules

The transformation rules used to reduce expressions to canonical form are taken from stan-
dard textbooks. In the current version of the program, the basic rules are not all independent
of each other. For example, the program applies separately the rule

a ∧ a = 0 ,

Component-free vector algebra in Aldor 417

even though it can be deduced from the rule

a ∧ b = −b ∧ a ,

because setting b = a gives a ∧ a = −a ∧ a. Note that in physics books, the rule is proved
by using the fact that the angle between parallel vectors is 0.

3 Implementation in Aldor

Aldor is a strongly typed, imperative programming language with a two-level object model
of categories and domains [1]. Here we give an overview of a few of the top level constructs.
We first define a vector space category as follows:

define VectorSpcCategory(R:Join(ArithmeticType, ExpressionType), n:MI==3):

Category==with

{

*: (R,%)->%;

*: (%,R)->%;

+: (%,%)->%;

-: (%,%)->%;

-: %->%;

=: (%,%)->Boolean;

default

{

import from R;

(x:%)-(y:%):%==x+(-1)*y;

(x:%)*(r:R):%==r*x;

-(x:%):%==(-1)*x;

}

}.

Here, n is the dimension of the space. Based on VectorSpcCategory, we define the vector
algebra category VectorAlgCategory as follows.

define VectorAlgCategory(R:Join(ArithmeticType, ExpressionType)):

Category== VectorSpcCategory(R) with

{

vector: Symbol->%;

scalarZero: ()->%;

vectorZero: ()->%;

realVector?: %->Boolean;

simplify: (%,UseAdvancedRules:Boolean==false)->%;

identity?: (%,%)->Boolean;

s3p: (%,%,%)->%;

418 Liang et al. Transgressive Computing

*: (%,%)->%;

apply: (%,%)->%;

^: (%,%)->%;

<<: (TextWriter,%)->TextWriter;

default

{

s3p(x:%,y:%,z:%):%==apply(x^y,z);

}

}.

With these categories, we can implement a vector algebra domain VectorAlg.

4 An Example

Stoutemyer’s unsolved problem from section 1 is solved as follows.

((a ∧ b) ∧ (b ∧ c)) · (c ∧ a)− (a · (b ∧ c)) ∗ (a · (b ∧ c)) ⇒
((a ∧ b · c) ∗ b− (a ∧ b · b) ∗ c) · (c ∧ a)− (a · (b ∧ c)) ∗ (a · (b ∧ c)) ⇒

((a ∧ b · c) ∗ b− 0) · (c ∧ a)− (a · (b ∧ c)) ∗ (a · (b ∧ c)) ⇒
(a ∧ b · c) ∗ (b · (c ∧ a))− (a · (b ∧ c)) ∗ (a · (b ∧ c)) ⇒

(a ∧ b · c) ∗ (b ∧ c) · a− (a · (b ∧ c)) ∗ (a · (b ∧ c)) ⇒
(a ∧ b · c) ∗ (a · (b ∧ c))− (a · (b ∧ c)) ∗ (a · (b ∧ c)) ⇒

(a · (b ∧ c) ∗ (a · (b ∧ c))− (a · (b ∧ c)) ∗ (a · (b ∧ c)) ⇒ 0

References

[1] Aldor Compiler User Guide, http://www.aldor.org

[2] Fiedler, B., 1997. Vectan 1.1. Manual Math. Inst., Univ. Leipzig, 1-22.

[3] Stoutemyer, D. R., 1979. Symbolic computer vector analysis. Computers & Mathemat-
ics with Applications, v 5, n 1, 1979, p 1-9.

[4] Wolfram, S., 1996. The Mathematica Book, 3rd ed.. Wolfram Media/Cambridge Uni-
versity Press.

S. Liang, D.J. Jeffrey, S.M. Watt
Ontario Research Centre for Computer Algebra,

The University of Western Ontario, London, Ontario, Canada N6A 5B7
djeffrey@uwo.ca

http://www.apmaths.uwo.ca/∼djeffrey/

Primary decomposition of zero-dimensional ideals: Putting Monico’s ... 419

Primary decomposition of zero-dimensional ideals: Putting

Monico’s algorithm into practice

Marc Moreno Maza Éric Schost Wenqin Zhou

Abstract

Monico published in [Journal of Symbolic Computation, 34(5):451–459, 2002] an al-
gorithm to compute the primary decomposition of a zero-dimensional ideal, that mostly
relies on a characteristic polynomial computation modulo the input ideal, and its fac-
torization.

We revisit this algorithm, and discuss Maple and Magma implementations that con-
tradict the somehow pessimistic conclusions of Monico’s original article: this algorithm
provides competitive, sometimes faster alternatives to built-in functions in both sys-
tems. We also give an estimation of the probability of success of the algorithm.

Keywords: Primary decomposition, zero-dimensional ideal, Gröbner basis, characteristic
polynomial.

1 Introduction

In [9], Monico presents an algorithm for computing the primary decomposition of a zero-
dimensional ideal, starting from a Gröbner basis of this ideal (see also further discussions
by Cox [4, 3]). However, the experiments in [9], conducted in the Singular computer al-
gebra system, were clearly in favor of the built-in primary decomposition routines, which
implement the algorithm of [6]. A conclusion of [9] was thus that . . . “this algorithm, while
relatively easy to implement, is only of practical interest if the vectorspace dimension of the
quotient ring is small”.

In this extended abstract, we report on new sets of experiments, in the Maple and
Magma systems, for which our implementation of Monico’s algorithm competes with, or
outperforms, the built-in primary decomposition facilities.

Algorithmically, the main issue is the computation of the characteristic polynomial of
an element modulo the input ideal. As in [11], we use a solution to this question relying on
trace computations and Newton’s formulas. Besides, Monico’s algorithm is probabilistic;
using classical zero-avoidance results [16, 13], we give estimates on the probability of failure
of this algorithm.

420 Moreno Maza et al. Transgressive Computing

2 Description of the algorithm

2.1 Overview

Let I be a zero-dimensional ideal in k[X1, . . . ,Xn], where k is any field (we denote by k
one of its algebraic closures). We aim at computing a minimal primary decomposition of I,
which we will write

I = Q1 ∩ · · · ∩Qs.
To this effect, Monico’s algorithm takes as input a Gröbner basis for the ideal I, and outputs
polynomials R1, . . . , Rs, such that for all i = 1, . . . , s, Qi = I + 〈Ri〉 holds. From this, one
may compute Gröbner bases for all Qi, if required.

The polynomials Ri are obtained as follows. Let A be the residue class ring

A = k[X1, . . . ,Xn]/I,

and let t be a “generic” element in A (the genericity assumption is discussed more precisely
in Subsection 2.3). Write χt ∈ k[T] for the characteristic polynomial of the endomorphism

µt :
A → A
u 7→ ut,

which we call the characteristic polynomial of t. Let finally c1, . . . , cℓ ∈ k[T] be the
irreducible factors of χt, and m1, . . . ,mℓ their multiplicities. For i = 1, . . . , ℓ, define
ri = cmi

i (t) ∈ A, and take for Ri any preimage of ri in k[X1, . . . ,Xn]. Then we have
the equality (Proposition 2.3 in [9])

I = (I + 〈R1〉) ∩ · · · ∩ (I + 〈Rℓ〉) .

Furthermore, as said above, under suitable genericity conditions on t, ℓ equals the number
s of primary components of I, and the ideals I + 〈Ri〉 are then these primary components.

2.2 Details of the implementations

Given the input Gröbner basis, and t ∈ A, the main tasks in this algorithm are:

1. computing the characteristic polynomial χt of t;

2. factoring χt as χt = cm1
1 · · · cmℓ

ℓ ;

3. computing cmi
i (t) for all i.

In this work, we concentrated on points 1 and 3, leaving factorization to the built-in routines.

Primary decomposition of zero-dimensional ideals: Putting Monico’s ... 421

Characteristic polynomial computation. Several solutions are available to compute
the characteristic polynomial of an element t in A. In our experiments, the most efficient
solution turned out to strongly depend on the implementation platform.

Built-in characteristic polynomial routines turned out to be the bottleneck in our pre-
liminary Maple implementation. Our solution for this platform comes from Rouillier’s
work [11], and is closely related to Leverrier’s algorithm [8] (note that primary decomposi-
tion is already mentioned as an application of the RUR algorithm in [11]).

Let tr be the trace linear form on the quotient A, which maps t ∈ A to the trace of
the map µt. The following classical proposition, a consequence of the so-called “Stickel-
berger Theorem” [5, Proposition 4.2.8] shows how to use this linear form for characteristic
polynomial computation.

Proposition 2.1. For all t ∈ A and i in N, tr(ti) is the ith power sum (Newton sum) of
the characteristic polynomial of t.

Our algorithm for characteristic polynomial computation then follows Rouillier’s. Note
that as input, we know a Gröbner basis of I, and thus a monomial basis B = b1, . . . , bD of
the quotient A. Due to the use of Newton’s relations below, we have to assume that D is
less than the characteristic of the base field.

1. Compute the matrix Mt of the endomorphism µt in the basis b1, . . . , bD;

2. Compute the trace form, that is, the trace of all elements b1, . . . , bD;

3. Compute the powers 1, t, . . . , tD by successively applyingMt to the vector [1, 0, . . . , 0]t;

4. Compute the traces of these vectors using the linearity of the trace;

5. Recover the polynomial χt using Newton’s relations.

More precisely, we start by computing the multiplication matrices of all variables modulo I,
and deduce the whole multiplication table of A by successive multiplications. Computing the
multiplication matrix of a variable requires D reductions by the given Gröbner basis. Then,
deducing the whole multiplication table requires at most |B × B| matrix/vector products
in size D, hence has cost in O(D4); note however that |B × B| may be smaller than D2.
The matrix Mt, as well as the traces of all elements b1, . . . , bD are then deduced from the
multiplication table, for O(D3) operations. Step 3 requiresD matrix/vector multiplications,
for a cost in O(D3); Step 4 and Step 5 have cost in O(D2). See [11] for a similar analysis.

In contrast, in the system Magma, the most efficient approach we found uses the built-in
CharacteristicPolynomial function (with the default settings). Then, on this platform,
we do not need to use explicitly the trace form, and thus, we do not need to know the whole
multiplication table of A: only the matrix Mt of the multiplication map µt is required.

The element t is then taken as a random polynomial of degree 1: the algorithm is
still valid with this restriction (see below), and the computations are substantially faster.
We then determine the matrix Mt, and deduce its characteristic polynomial using built-in
routines.

422 Moreno Maza et al. Transgressive Computing

Evaluation. The final step of the algorithm consists in evaluating univariate polynomials
at the element t ∈ A.

• In our Maple implementation, using Leverrier’s idea, the required powers of t are
already known, hence only constant multiplications and additions are required to
perform the evaluation.

• In the Magma implementation, some more work is required, since only the multiplica-
tion matrix Mt of t is known; hence, this evaluation is done through Horner’s scheme,
using the matrix Mt to perform the successive multiplications by t.

2.3 Probabilistic aspects

The validity of this algorithm depends of the choice of t; we now discuss conditions that
guarantee success. Recall that Q1∩ · · ·∩Qs denotes a minimal primary decomposition of I.

Proposition 2.2. Suppose that for all points α, β in V (I), t(α) 6= t(β). Then the previous
algorithm correctly computes the primary decomposition of I.

Proof. By the Chinese Remainder Theorem, one may write A =
∏
i≤sAi, with Ai =

k[X1, . . . ,Xn]/Qi. To any t in A and i ≤ s, we associate the characteristic polynomial χt,i
of the image of t in Ai; in particular, χt is the product of the polynomials χt,i. Proposition
2.3 in [9] states that if the χt,i are pairwise coprime, the output is correct. By Stickelberger’s
theorem, the roots of χt,i are the values t(α), for α in V (Qi), and the conclusion of our
proposition follows.

From this proposition, we deduce through standard arguments that using generic ele-
ments will guarantee success. We first state a result for arbitrary elements in the quotient,
and then its analogue for linear forms.

Corollary 2.3. Let b1, . . . , bD be the given monomial basis of A and let d ≤ D be the
number of distinct roots of I.

• There exists a non-zero polynomial ∆ ∈ k[T1, . . . , TD] of degree d(d− 1)/2 such that,
if ∆(t1, . . . , tD) 6= 0, then using t = t1b1 + · · ·+ tDbD yields the primary decomposition
of I.

• There exists a non-zero polynomial ∆′ ∈ k[T1, . . . , Tn] of degree d(d−1)/2 such that, if
∆′(t1, . . . , tn) 6= 0, then using t = t1X1 + · · ·+ tnXn yields the primary decomposition
of I.

Proof. Let α1, . . . , αd be the points in V (I), and write αi = αi,1, . . . , αi,n. We associate to
αi the linear forms

ai(T1, . . . , TD) = b1(αi)T1 + · · ·+ bD(αi)TD and a′i(T1, . . . , Tn) = αi,1T1 + · · · + αi,nTn.

Primary decomposition of zero-dimensional ideals: Putting Monico’s ... 423

Finally, for i, j in 1, . . . , d, with i 6= j, we define ci,j = ai − aj and c′i,j = a′i − a′j . Then

∆ =
∏

1≤i<j≤d
ci,j and ∆′ =

∏

1≤i<j≤d
c′i,j

satisfy our requirements.

Using the Zippel-Schwartz lemma [16, 13], we deduce the following probability estimate.
We still use the notation of the previous corollary.

Corollary 2.4. Let ε > 0 and let S be a subset of k of size larger than, or equal to,
d(d− 1)/2ε.

• Suppose that t1, . . . , tD are chosen uniformly at random in S. Then the probability
that the algorithm outputs the correct result using t = t1b1 + · · · + tDbD is at least
1− ε.

• Suppose that t1, . . . , tn are chosen uniformly at random in S. Then the probability
that the algorithm outputs the correct result using t = t1X1 + · · · + tnXn is at least
1− ε.

3 Experimental results

We finally give our computation tables. Times are given in seconds, and are obtained on
a 2.60GHz Pentium 4 processor with 1Gb of RAM. All computations are done modulo the
prime p = 33554393, which leads, in view of Corollary 2.4 and of the corresponding degrees,
to a probability of success of at least 0.9996. Time limits were set to 1000 seconds, and
memory limits to 2Gb. Most examples below can be found on the web pages of the test
suites [1, 15].

Maple implementation. We first report on the Maple implementation, made under
Maple version 10. Our timings include the computation of the initial Gröbner basis, as
well as those of all output primary components (first and last timing columns). Strictly
speaking, these are not part of Monico’s algorithm, especially concerning the final Gröbner
bases computations. However, this information is obviously of interest for benchmarking
this algorithm, all the more as the built-in primary decomposition routine outputs Gröbner
bases for the primary components. The numbers reported in Figure 1 are then as follows:

• vars: number n of variables;

• deg: maximal degree of the input equations;

• D: dimension of the quotient A over k;

• t1: initial Gröbner basis;

424 Moreno Maza et al. Transgressive Computing

System vars deg D t1 t2 t3 t4 t5 t6 t7 Total Maple

Katsura-7 8 2 128 111 149 3 1 1.2 0.2 970 1235.4 161.2
chemkin 13 3 40 19 18 0.1 0.2 0.1 0.1 5.8 43.3 22.9

Pinchon-2 10 4 48 39.2 20.9 0.2 0.2 0.2 0.1 34.9 66.4 Error
Methan61 10 2 27 24.1 6.2 0.2 0.1 0.1 0.1 10.8 41.6 27

Rose 3 9 136 0.5 2.9 4.1 1.4 1.4 0.2 32.4 42.9 Error
Cyclic 6 6 6 156 32.5 22.1 9.7 2.2 2 0.2 182.5 251.2 48.6
4 body 6 5 138 310 167.6 5.2 1.8 1.6 0.1 441 927.3 412.3

l-4 5 3 243 0.1 2.4 51.2 4.0 7.0 0.2 314.9 379.8 Error
dessin-2 10 2 42 14.2 13.7 0.1 0.2 0.1 0.1 62.1 90.5 18.5

dessin-18-3 8 3 46 6.8 10.7 1.6 1.6 0.1 0.1 22.2 43.1 12.5
gametwo-5 5 4 44 11.8 6 0.2 0.2 0.1 0.1 15.1 33.5 15.6

r-5 5 6 121 0.1 0.7 3.7 1.0 1.0 0.1 54.1 60.7 Error

Figure 1: Maple timings modulo p = 33554393.

• t2: computation of the matrices of multiplication by X1, . . . ,Xn;

• t3: computation of all multiplication matrices;

• t4: trace computations, and deduction of the characteristic polynomial;

• t5: factorization of the characteristic polynomial;

• t6: evaluation of the polynomials Ri;

• t7: Gröbner bases of all primary components;

• Total: total time, sum of t1, . . . , t7.

• Maple: built-in Maple primary decomposition, using the function PrimaryDecomposi-

tion of the PolynomialIdeals package.

On these examples, our implementation does not quite reach the efficiency of the built-in
Maple routine. However, the ratio never becomes exceedingly large, and we expect that a
better tuned, lower-level implementation of Monico’s algorithm would yield better results.

Remark next that on some of these examples, the built-in routine outputs the error (in
mod/GetAlgExt) only the single algebraic extension case is implemented. Our
algorithm does not require handling algebraic extensions of the base field, and thus avoids
these difficulties, while preserving reasonable performances.

Note finally that the implementation relies on two distinct packages: the Groebner

package for Gröbner bases computations, and the LinearAlgebra:-Modular package for
all operations on matrices (using encoding of integers mod p by hardware floats). We want
to underline that on all these examples, most of the time, by far, is spent on Gröbner-related
operations, to compute Gröbner bases, and the matrices of multiplication by the variables
X1, . . . ,Xn. All other multiplication matrices are obtained by linear algebra only, which
explains why they are often must faster to compute.

Primary decomposition of zero-dimensional ideals: Putting Monico’s ... 425

System vars deg D t1 t2 t3 t4 t5 t6 Total Magma

Katsura-7 8 2 128 0.25 0.35 0.1 0.3 0.1 0.25 1.53 mem. > 2Gb
Katsura-8 9 2 256 2.4 4 0.15 1.2 0.1 9.4 17.25 time > 1000
chemkin 13 3 40 0.1 0.1 0.1 0.1 0.1 0.1 0.6 2.0

Pinchon-2 10 4 48 0.1 0.1 0.1 0.1 0.1 1.0 1.5 mem. > 2Gb
Methan61 10 2 27 0.1 0.1 0.1 0.1 0.1 0.1 0.6 0.5

Rose 3 9 136 0.1 0.1 0.1 0.4 0.1 0.1 0.9 3.4
Cyclic 6 6 6 156 0.2 0.1 0.1 0.1 0.1 1.0 1.6 0.3
4 body 6 5 138 0.4 0.3 0.1 0.5 0.1 1.5 1.9 mem. > 2Gb

l-4 5 3 243 0.1 0.1 0.1 0.7 0.1 2.0 3.1 3.9
dessin-2 10 2 42 0.1 0.1 0.1 0.4 0.1 0.1 0.9 165.2

dessin-18-3 8 3 46 0.1 0.1 0.1 0.1 0.1 0.1 0.6 1.4
gametwo-5 5 4 44 11.8 0.1 0.1 0.1 0.1 0.1 12.3 330.6

r-5 5 6 121 0.1 0.1 0.1 0.2 0.1 0.3 0.9 0.4

Figure 2: Magma timings modulo p = 33554393.

Magma implementation. Next, we discuss the results obtained using Magma version
2.11-2. As before, we count the time for computing the initial Gröbner basis, as well as
Gröbner bases for all primary components. In Figure 2, all timings have been rounded up
to the next integer multiple of 0.1. The legend of this figure is as follows:

• vars, deg, D: as in Figure 1;

• t1: initial Gröbner basis;

• t2: computation of the matrix of multiplication by t;

• t3: computation of the characteristic polynomial;

• t4: factorization of the characteristic polynomial;

• t5: evaluation of the polynomials Ri;

• t6: Gröbner bases of all primary components;

• Total: total time, sum of t1, . . . , t6.

• Magma: built-in Magma primary decomposition, using the function PrimaryDecompo-

sition.

The results on the Magma platform are more clearly in our favor, since on most examples,
the built-in function takes a (sometimes much) longer time, or Magma fails by exhausting
all available resources.

For these examples, the Gröbner computations are much faster in Magma than in Maple,
which accounts for the large gap observed between the two systems. On the other hand,
the linear algebra computations are more balanced, though still in favor of Magma. Indeed,

426 Moreno Maza et al. Transgressive Computing

for both systems, linear algebra mod p is handled by similar techniques of floating-point
encoding.

4 Conclusion and future work

Our main goal in this paper was to show that Monico’s algorithm does actually provide
a practical way to compute primary decompositions, assuming facilities for Gröbner bases
computations, and univariate polynomial factorization. We substantiated this statement
by means of Maple and Magma implementations, which, although implemented in a high-
level environment, compete, and even outperform in some cases, the available routines.
Furthermore, we stressed that the choice of implementation techniques is largely influenced
by the relative efficiencies of the available tools.

Further developments are possible along these lines. Indeed, the trace computations
used above are a special case of the power projection problem, which consists in evaluating
a linear form at the powers of a given element t in A. This question, and the dual problem
of evaluating a univariate polynomial at t, admit more elaborate solutions, using baby
steps / giant steps techniques: the use of these techniques for evaluation is due to Paterson
and Stockmeyer [10]; applying them to power projection dates to work of Kaltofen and
Shoup, see [14, 7] and references therein. In our context, this baby steps / giant steps
approach was already used in [2] and [12]. However, as reported in these references, making
profit of this idea seems not to be immediate; more work in this direction is thus required.

References

[1] D. Bini and B. Mourrain. Polynomial test suite.
http://www-sop.inria.fr/saga/POL/

[2] A. Bostan, B. Salvy, and É. Schost. Fast algorithms for zero-dimensional polynomial
systems using duality. Applicable Algebra in Engineering, Communication and Com-
puting, 14(4):239–272, 2003.

[3] D. A. Cox. Galois theory via eigenvalue methods. In D. Wang and L. Zhi, editors,
SNC 2005, pages 166–176, 2005.

[4] D. A. Cox. Solving equations via algebras. In Solving polynomial equations, volume 14
of Algorithms Comput. Math., pages 63–123. Springer, Berlin, 2005.

[5] D. A. Cox, J. Little, and D. O’Shea. Using algebraic geometry. Springer-Verlag, New
York, 1998.

[6] P. Gianni, B. Trager, and G. Zacharias. Gröbner bases and primary decomposition of
polynomial ideals. Journal of Symbolic Computation, 6(2-3):149–167, 1988. Computa-
tional aspects of commutative algebra.

Primary decomposition of zero-dimensional ideals: Putting Monico’s ... 427

[7] E. Kaltofen. Challenges of symbolic computation: my favorite open problems. Journal
of Symbolic Computation, 29(6):891–919, 2000.

[8] U. J. J. Leverrier. Sur les variations séculaires des éléments elliptiques des sept planètes
principales: Mercure, Venus, la Terre, Mars, Jupiter, Saturne et Uranus. J. Math.
Pures Appli., 4:220–254, 1840.

[9] C. Monico. Computing the primary decomposition of zero-dimensional ideals. Journal
of Symbolic Computation, 34(5):451–459, 2002.

[10] M. S. Paterson and L. J. Stockmeyer. On the number of nonscalar multiplications
necessary to evaluate polynomials. SIAM Journal on Computing, 2(1):60–66, March
1973.

[11] F. Rouillier. Solving zero-dimensional systems through the Rational Univariate Rep-
resentation. Applicable Algebra in Engineering, Communication and Computing,
9(5):433–461, 1999.

[12] F. Rouillier. On solving zero dimensional systems with rational coefficients. Submitted
to Journal of Symbolic Computation, 2005.

[13] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM, 27(4):701–717, October 1980.

[14] V. Shoup. Efficient computation of minimal polynomials in algebraic extensions of
finite fields. In Proceedings of the 1999 International Symposium on Symbolic and
Algebraic Computation (Vancouver, BC), pages 53–58, New York, 1999. ACM.

[15] J. Verschelde. The test database of polynomial systems.
http://www.math.uic.edu/~jan/PHCpack/node10.html

[16] R. Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and algebraic
computation, number 72 in Lecture Notes in Computer Science, pages 216–226, Berlin,
1979. Springer. Proceedings EUROSAM ’79, Marseille, 1979.

Marc Moreno Maza
ORCCA, University of Western Ontario, London, Ontario, Canada.

moreno@orcca.on.ca

Éric Schost
LIX, École polytechnique, 91128 Palaiseau, France.

Eric.Schost@polytechnique.fr

Wenqin Zhou
ORCCA, University of Western Ontario, London, Ontario, Canada.

wzhou7@scl.csd.uwo.ca

428 Moreno Maza et al. Transgressive Computing

The Parametric Instability of Motion at Resonance as a Source of ... 429

The Parametric Instability of Motion at Resonance as a

Source of Chaotic Behaviour at solving a Restricted Three

body Problem

Alexey E. Rosaev

Abstract

A method of dynamical system analysis is applied to a planetary restricted three-
body problem (RTBP). It is well known, that equations of motion for a restricted
3-body problem in the rotating rectangular frame may be reduced to the second order
differential equation with periodic coefficients (Hill’s equation). Here we derive Hill’s
equation at the cylindrical coordinate frame. It gives the ability to estimate the width
and position of instable zones. Moreover, the dependence of the position of instable
zones on orbital eccentricity of the test particle is derived. It is noted, that the overlap-
ping of instability zones in a strongly perturbed system can be a source of the chaotic
behaviour.

INTRODUCTION. MAIN EQUATIONS

The three-body problem is a continuous source of study, since the discovery of its non-
integrability due to H. Poincaré (1892). However, some problems are still unresolved. In
particular, the explanation of the fact that in the asteroid belt some resonances are empty
while others are well populated has been until recently an open problem (Celletti et al,
2002). In this paper, we consider the planar circular restricted three-body problem, when
mass m revolves around M (M is much more than m) in a circular orbit and a third body
is considered with negligible mass m0 (Szebehely, 1967). We assume that all bodies move
on the same plane. The equations of a planar restricted Hill’s problem in the rectangular
frame are:

(
∂2

∂t2
X

)
− 2m

(
∂

∂t
Y

)
+ f X = 0

(
∂2

∂t2
Y

)
+ 2m

(
∂

∂t
X

)
+ g X = 0

430 Rosaev Transgressive Computing

where m - a perturbing body mass, X,Y - rectangle coordinates, f and g - known functions,
t- time.
These equations may be reduced to a Hill equation for a normal distance from the variation
orbit x (Szebehely, 1967). In our view, a cylindrical system has some advantages over
other ones, because the variation of one of the coordinates - central distance R - is always
restricted and may be considered as a small parameter at the problem.
The main equations for the planar circular 3-body problem in the absolute cylindrical frame
are:

(
∂2

∂t2
R(t)

)
− R(t)

(
∂

∂t
λ(t)

)2

=
∂

∂R
U

∂

∂t
R(t)2

(
∂

∂t
λ(t)

)
=

∂

∂λ
U

where perturbation function in the absolute frame:

U0 =
Gm

∆
+
GM

R

where M- mass of the primary; m - mass of the perturbing body; R, r - distance from the
mass center test particle and the perturbing body respectively; G - constant of gravity,
δλ(t) = (ω − ωs) t + ϕ - angle between the perturbed and perturbing bodies(differential
longitude of the perturbed body), ω, ωs- mean motions of the perturbed and perturbing
bodies respectively, ϕ- initial phase, and:

∆ =
√
R2 + r2 − 2Rr cos(δ λ)

There are two small parameters in the problem: x - radial shift from the intermediate
(in variations) orbit and r/R - the central distances ratio of the perturbing and the per-
turbed bodies. Let R(t)=R+x(t), where R is constant. Accordingly, there are two ways of
linearization (two possible sequences of expansion).

1 THE EQUATION IN VARIATIONS

The principle part of expansion perturbation function may be written with using Legendre’s
polynomials. In case of outer perturbing body (Stiefel, Scheifele, 1971):

The Parametric Instability of Motion at Resonance as a Source of ... 431

U = − GM

R
−

∞∑

p=2

Gm

r

(
R

r

)p
Pp(cos(δ λ))

At linear approach by x we have:

(
∂2

∂t2
x

)
+ ω(t)2 x = f(t)

where f(t) and ω depend on time:

ω2 =
GM

R3
− Gm

∆3

(
1− 3

R− r cos(δ λ)

∆2

)

f(t) =
L0

2

R0
3 −

GM

R0
2 −

∞∑

p=2

p
Gm

r2
y0

(p−1) Pp(cos(δ λ))

Then the expansion by power y= R0/r is applied. At zero order by y:

ω2 =
GM

R0
3 +

1

2

Gm

r3
+

3

2

Gm cos(2 δ λ)

r3

Now we can easy take into account the eccentricity of the perturbed particle orbit and show,
that such generalization gives very interesting results.
At the elliptic osculating orbit, after the introduction of osculating orbital elements a -
semimajor axis, e - eccentricity, for angular momentum L we have:

L = R2
(
∂

∂t
λ

)
=
√

GM a (1− e2)

R0 depends on time. The phase-averaged value of R0 is approximately:

R̄0 =
1

2
π

∫ 2π

0

a (1− e2)

1 + e cos(ϕ)
dϕ = a

√
1− e2

After angular momentum substitution and linearization:

432 Rosaev Transgressive Computing

3
L0

2

R0
4 − 2

GM

R0
3 =

GM

a3

(
1− 3

4
e4
)

Finally, for the test particle elliptic motion case ω depends on the eccentricity:

ω2 =
GM

(
1− 3

4
e4
)

a3
+

∞∑

p=2

Gm

r3
p (p − 1)

(
R

r

)(p−2)

Pp(cos(δ λ))

Then we can group the terms with equal pδλ by using Laplace’s coefficients. The main
frequency may be represented as follows:

ω2 =
GM

a3

(
1− 3

4
e4
)

+

∞∑

p=2

Gm

r3
bp cos(δ λ)

where bp is easy to calculate numerically. For the periodic, or for the quasi-periodic solutions:

δ λ =
∑

n

λn cos (nω0 t)

This is the Hill’s equation:

(
∂2

∂t2
x

)
+ ω2 x = f(t)

where (h is proportional to b):

ω2 = ω0
2

(
1 +

(
∑

n

hn cos (nω0 t)

))

ω0
2 =

GM

R0
3

(
1− 3

4
e4
)

=
GM

R0
3 (1− α)

The Hill’s equation is also linear (with floating factors), so it’s approximately solution
possible to get a position of instability. The width of the resonance instability rapidly
decreases as the resonance order increases. For the first order resonance (Landau & Lifshitz,
1971):

The Parametric Instability of Motion at Resonance as a Source of ... 433

∆(ω) =
ω0 nhn
2n − 4

2 THE STABILITY OF EQUATION IN VARIATIONS SO-
LUTION

To investigate the stability, x may be considered as negligible small. The instability in this
case results instability in general. So, we can restrict only the 1-st order in expansion by
power x. The Mathieu’s equation is a limit case of the Hill’s equation and it is easy to
study. On the other side, because the both equations (Hill’s and Mathieu’s) are linear, the
main area of instability of the Mathieu’s equation must be present in the Hill’s equation
solution. Hence, the areas of instability also exist in this case,and they comply with the
condition:

ω

ωs
=

nk

nk − 2 + α

It means that the orbits near resonances (2n+1)/(2n-1) are instable parametric. This
conclusion completely coincides with the results of study of the problem under discussion
in the paper by Hadjidemetriou (Hadjidemetriou, 1982) by methods of matrix algebra.
In the view of linear equations in an elliptic case, we can explain an interesting feature -
centres of resonant zones are shifted out relative to the exact commensurability (resonance).
In a simple case with one perturbing body, the centres of instable resonant zones moved
away from the exact commensurabilities toward the source of perturbation. So, exact
commensurability may be outside of the respective instable zone!
These expressions show, that, at strong perturbations, unstable resonance zones may be
overlapped. Beginning from this point,in accordance with chaotic motion appearance,the
behaviour of the system becomes completely chaotic when such zones fill all phase space.
The condition of resonance overlapping is:

n+ 1

n− 1− 3

4
e4
− n

n− 2 +
3

4
e4

=
nmb

M (2n − 4)

(
1− 3

8
e4
)

It seems, that the width of instability increased with eccentricity. On the other hand, the
distance between two nearest unstable areas ∆ω decreased. The width of areas of instability
quickly decreases with the growth of order n. However, for each m, M, the such value of
n is present, since of which the overlapping of unstable zones take place (Fig.2). The
resonance overlap criterion (Chiricov, 1979) affirms that whenever two resonances overlap,
the corresponding resonant orbits become chaotic. For e=0, as it is evident, that overlapping

434 Rosaev Transgressive Computing

of unstable zones is possible only if limit n approaches to infinity. It means, that the effect
of resonance overlapping of instable zones and related chaotic behaviour, strongly depends
on the orbital eccentricity of test particle m.

3 RESULTS AND CONCLUSIONS

As a result, we obtain very suitable equation in variation to study perturbed motion at
resonance.
The main result of this study may be formulated in such form:
1. There are no stable orbits with e=0 and i=0 in the vicinity of mean motion resonances
(2n-1)/(2n+1).
2. Unstable zone positions and widths depend on eccentricity. Athigh order of resonance
they overlap.
The results can be applied to a number of problems of the Solar system dynamics. A
number of minor planets, on high elliptic orbits, fall into instable areas and show the
regular behaviour of their orbits. We suppose, that stability of such orbits is provided due
to large eccentricity.

References

[1] Celletti A., Chessa A., Hadjidemetriou J., Valsecchi G. B.: A Systematic Study of the
Stability of Symmetric Periodic Orbits in the Planar, Circular, Restricted Three-Body
Problem Celestial Mechanics and Dynamical Astronomy 83: 1-4,2002,239-255.

[2] Chiricov B.V.: A universal instability of many-dimensional oscillator systems. Phys.
Rep. 52,1979,263-379.

[3] Hadjidemetriou, J.D.: On the relation between resonance and instability in planetary
systems, Celestial Mechanics, vol. 27, 1982, pp. 305-322.

[4] Landau L.D.,Liphshitz E. M. Mechanics. Moscow, Nauka, 1973, p.104-105.

[5] Poincaré H.: Les Méthodes Nouvelles de la Mécanique Céleste, Gauthier Villars, Paris,
1892.

[6] Stiefel E. L., Scheifele G. Linear and Regular Celestial Mechanics. Springer-Verlag Berlin
Heidelberg New York, 1971, 305 p.

[7] Szebehely, V. Theory of Orbits. The Restricted Problem of Three Bodies. Acad.press
New York & London, 1967.

Rosaev A.
FGUP NPC Nedra, Yaroslavl, Russia

rosaev@nedra.ru

Obstacle to Factorization of LPDOs 435

Obstacle to Factorization of LPDOs

Ekaterina Shemyakova Franz Winkler

Abstract

We investigate the problem of approximate factorization of linear partial differential
operators of arbitrary order and in arbitrarily many variables. Given any such operator
L and a specified factorization of its symbol, we define the associated ring of obstacles
to the factorization of L extending the specified factorization of the symbol. We derive
some facts about obstacles and give an exhaustive enumeration of obstacles for operators
of order two and three.

Introduction

We consider the problem of the factorization of Linear Partial Differential Operators (LPDO)
over some function space. We start with the approach of Grigoriev and Schwarz [2], who
gave an algorithm for factorization of such operators with separable symbol. In each step
of this algorithm one has to solve a system of linear equations, which was proved to have
at most one solution. So in each step one either finds the next homogeneous component of
factors in the factorization or stops and concludes that there is no factorization.

We suggest to use the information obtained by the algorithm even in the case of non-
existence of any factorization, that is to describe what actually prevents a factorization.
We introduce the notion of a common obstacle to factorization. The idea goes back to
Laplace, who found his famous invariants as the common obstacles for second order strictly
hyperbolic operators, as described in [4]. Some particular cases of this idea are considered
in [3].

A common obstacle is not unique in general. However, we prove that all common
obstacles belong to the same class in the ring of obstacles, which is the factor ring of the
ring of differential operators modulo the homogeneous ideal generated by the factors of
the symbol. We say that this class of common obstacles is the obstacle, which is defined
uniquely.

The paper is organized as follows: in Section 1 we fix some notation. In Section 2,
we introduce the notion of a common obstacle. Then, in Section 3, we define the ring of
obstacles and the uniquely determined obstacle. Uniqueness, order estimation, and behavior
of families of factorizations are investigated. In Section 4 and 5 exact formulae for all
obstacles of second and third order operators are determined.

436 Shemyakova et al. Transgressive Computing

1 Notation

Let K be a commutative ring of functions with 1 in the variables x1, . . . , xn. Consider a
differential ring

K[X1, . . . ,Xn],

where the differential variables X1, . . . ,Xn correspond to the usual partial derivations
∂x1 , . . . , ∂xn respectively. We use the notation

X(i1,...,in) := Xi1
1 . . . Xin

n

and define the (total) order in the usual fashion:

|X(i1,...,in)| = ord(X(i1,...,in)) := i1 + · · · + in.

The differential polynomial ring K[X1, . . . ,Xn] is graded by the total order. The elements
of K[X1, . . . ,Xn] are linear partial differential operators, which we abbreviate as LPDO.
Consider L ∈ K[X1, . . . ,Xn] of order d and with the coefficients aJ ∈ K, J ∈ Nn, that is

L =
∑

|J |≤d
aJX

J =

d∑

i=0

Li, (1)

where Li = {aJXJ | ord(XJ) = i} is called a homogeneous component of L of order i [1].
The homogeneous component Ld is called the symbol of L and denoted by SymL.

Now, we define operations in K[X1, . . . ,Xn]: for two LPDOs L (1) and

M =
∑

J≤r
bJX

J

we define the common operation of operator composition:

L ∗M :=
∑

|I|≤d,|J |≤r
aIX

I
(
bJ∂

J
)
,

the operation of the polynomial multiplication:

L ·M :=
∑

|I|≤d,|J |≤r

(
aIbJX

I+J
)
.

2 Common Obstacle

In this section let L be an LPDO and let its symbol SymL be decomposed as SymL = S1 ·S2.

Definition 2.1. We say that a factorization L = L1 ∗ L2 such that

SymL1 = S1 and SymL2 = S2

is of the type (S1)(S2) (or an extension of the factorization SymL = S1 · S2).

Obstacle to Factorization of LPDOs 437

Example 2.2. Consider the second order operator

M = (ex + y)∂2
xx + (x+ (ex + y)y)∂2

xy + xy∂2
yy + ∂x + (x+ y)∂y.

The decomposition of the symbol

SymM = (ex + y)X2 + (x+ (ex + y)y)XY 2 + xyY 2 = ((ex + y)X + xY)(X + yY)

can be extended to the factorization

M = ((ex + y)∂x + x∂y + 1) ∗ (∂x + y∂y).

Remark 2.3. In general, not every decomposition of the symbol can be expanded into a
factorization of the operator.

Definition 2.4. An LPDO R ∈ K[X1, . . . ,Xn] is called a common obstacle to factorization
of the type (S1)(S2) if there exists a factorization of the type (S1)(S2) for the operator
L−R and R has minimal possible order.

Obviously, a common obstacle is not uniquely defined.

Remark 2.5. A common obstacle always exists, although it may be equal to 0.

Theorem 2.6. Let L be an LPDO in two variables, ord(L) = d, and SymL = S1 ·S2, where
S1 and S2 are coprime. Then the order of a common obstacle to a factorization of the type
(S1)(S2) is less or equal to d− 2.

Remark 2.7. Let deg(S1) = deg(S2) = 1 and the number n of variables be 2. Then a
common obstacle to factorization of the type (S1)(S2) has order less or equal to 0. That is,
any common obstacle is a zero order operator.

Remark 2.8. Let deg(S1) = 1, deg(S2) = 2 and the number n of variables be 2. Then a
common obstacle to factorizations has order less or equal to 1.

3 Ring of obstacles

In this section let L ∈ K[X1, . . . ,Xn] and SymL = S1 · S2, where S1 and S2 are coprime.
Denote the orders of S1 and S2 by k and l, respectively.

Definition 3.1. We define the ring of obstacles as the factor ring

K(S1, S2) := K[X1, . . . ,Xn]/〈S1, S2〉,

where 〈S1, S2〉 is the homogeneous ideal generated by S1 and S2.

When L has no factorization of the type (S1)(S2), one may, nevertheless, apply the
algorithm of Grigoriev and Schwarz [2] to L, looking for a factorization of such a type. In
this way, at every step one has to solve an equation in order to find the next homogeneous
components of the factors of L. So, either there is a solution and we may proceed one more
step, or, otherwise, we stop and have a common obstacle, which is necessarily unique by
construction.

438 Shemyakova et al. Transgressive Computing

Definition 3.2. We call the common obstacle obtained by the above algorithm the main
obstacle.

Definition 3.3. We define the obstacle to factorizations of the type (S1)(S2) as the whole
coset of the main obstacle in K(S1, S2).

Theorem 3.4. Any common obstacle belongs to the same coset in K(S1, S2), that is the
obstacle is uniquely defined as an element of the ring K(S1, S2).

Remark 3.5. So, the common obstacle is not unique, but there are the main obstacle and
the obstacle, which are uniquely defined.

Remark 3.6. The factorization of L of the type (S1)(S2) exists if and only if the obstacle
equals zero. The factorization of L of the type (S1)(S2) exists if and only if the main
obstacle is zero.

Theorem 3.7. The dimension of the ring of obstacles K(S1, S2) in order d < k + l is

(
n+ d− 1

n− 1

)
− χ(d− k)

(
n+ d− k − 1

n− 1

)
− χ(d− l)

(
n+ d− l − 1

n− 1

)
,

where

χ(c) :=

{
1 if c ≥ 0 ,

0 otherwise.

Example 3.8. Let k = l = 1. Then by the theorem 3.7 the dimension of the ring of
obstacles

• in order 0 is 1,

• in order 1 is n− 2.

Example 3.9. Let k = 1 and l = 2. Then by the theorem 3.7 the dimension of the ring of
obstacles

• in order 0 is 1,

• in order 1 is n− 1,

• in order 2 is n2−n−2
2 .

Theorem 3.10. Let f be an arbitrary function in K. Then the obstacle for the type (S1 ·
1
f)(S2 · f) agrees with the obstacle for the type (S1)(S2).

Obstacle to Factorization of LPDOs 439

4 Obstacle for second order LPDO

In this section we assume that n = 2, i.e. we are in the case of two variables, and L ∈
K[X1,X2] is an LPDO of second order. Suppose its symbol is decomposed as SymL = S1·S2,
where S1 and S2 are coprime. Because of theorem 3.10, it is enough to find the obstacle
only in the case where the coefficients in X1 in S1 and S2 are 1. So we may consider

S1 = X1 + αX2, S2 = X1 + βX2,

where α, β ∈ K, as the general forms of S1 and S2. Then the LPDO L may be written as

L = S1 · S2 + a10X1 + a01X2 + a00,

for some a10, a01, a00 ∈ K. In this situation we can give an exact formula for the main
obstacle of this type.

Theorem 4.1. The main obstacle of the type (S1)(S2) is

c2 − a10c+ a00,

where

c =
1

α− β (∂x(β) + α∂y(β) + a10α− a01) .

Remark 4.2. The main obstacle to a factorization of the type is (S2)(S1) is

c2 − a10c+ a00,

where

c =
1

β − α (∂x(α) + β∂y(α) + a10β − a01) .

Remark 4.3. So, now, from the formulae it is clear, that the obstacle to factorization of the
type (S1)(S2) is not the same as that of the type (S2)(S1).

Remark 4.4. As mentioned at the beginning of this section, the obstacle in the case S1 =
X1, S2 = X2 can be obtained from Theorem 4.1 by a change of variables. But for a second
order operator it is easy to consider the case S1 = X1, S2 = X2 separately. Namely, we may
find that the obstacle P1 for the type (X1)(X2) is

P1 = a00 − ∂x1(a10)− a10a01

and the obstacle P2 for the type (X2)(X1) is

P2 = a00 − ∂x2(a01)− a10a01.

Remark 4.5. One may note that the obtained obstacles P1 and P2 are exactly the Laplace
invariants of a strictly hyperbolic second order LPDO [4] .

440 Shemyakova et al. Transgressive Computing

5 Obstacle for third order LPDO

In this section we assume that n = 2, i.e. we are in the case of two variables, and L ∈
K[X1,X2] is an LPDO of third order. Suppose its symbol is decomposed as

SymL = S1 · S2 · S3.

Because of Theorem 3.10, we may assume that the coefficients in X1 in S1 and S2 are 1.
So, we may say that the following are the general forms for S1, S2, S3:

S1 = X1 + s1X2, S2 = X1 + s2X2, S3 = X1 + s3X2,

where s1, s2, s3 ∈ K. Thus, in this section we may consider the following as the general form
of L:

L = S1 · S2 · S3 + L2 + L1 + L0,

where
L2 = a20X

2
1 + a11X1X2 + a02X

2
2 , L1 = a10X1 + a01X2, L0 = a00

and all aij ∈ K.
In he following we determine the main obstacle to the factorization of L for every

combination of S1, S2, S3 into two factors of the form (Si)(SjSk) or (SjSk)Si. It is convenient
to introduce the following notation.

Definition 5.1. For α, β, γ ∈ K and s ∈ {−1, 1} we define

det(α, β, γ, s) := s(γ − α)(β − α),

p10(α, β, γ, s) :=
1

det(α, β, γ, s)
((−βγ + βα+ γα)a20 − αa11 + a02),

p01(α, β, γ, s) :=
1

det(α, β, γ, s)
(αβγa20 − βγa11 + (−α+ β + γ)a02),

p00(α, β, γ, s) :=
1

det(α, β, γ, s)
(α2a20 − αa11 + a02),

P1(α, β, γ) := (a10 − S1(p10(α, β, γ, s)) + g00p01(α, β, γ, s)) ·X1+

(a01 + S1(p01(α, β, γ, s)) + g00p01(α, β, γ, s)) ·X2 + a00,

P2(α, β, γ) := a10X1 + (a01 − (S1 · S2 + p10(γ, β, α, 1)X1+

p01(γ, β, α, 1)X2)(γ))X2 + a00 − (S1 · S2)(p00(γ, β, α, 1)).

Remark 5.2. Note that in the pI(α, β, γ, s), I ∈ {(10), (01), (00)} and P1(α, β, γ) the second
and the third variables commute, while in P2(α, β, γ) the first and the second variables
commute.

Theorem 5.3. For the types (Si)(Sj · Sk) and (Sj · Sk) · (Si), where Si is coprime with
Sj · Sk, the main obstacles are P1(si, sj, sk) and P2(sj , sk, si), respectively.

Obstacle to Factorization of LPDOs 441

Acknowledgement

We acknowledge support for this work from FWF (Austrian national science fund) under
the projects SFB F013/F1304 and P16357-N04.

References

[1] J. Björk. Rings of differential operators, North-Holland Publishing Commpany, Ams-
terdam - Oxford - New York. 1979.

[2] D.Grigoriev, F.Schwarz. Factoring and Solving Linear Partial Differential Equations,
J. Computing 73, pp.179-197. 2004.

[3] E. Kartashova. Hierarchy of general invariants for bivariate LPDOs. to appear in J.
Theor.Math.Phys., May 2006.

[4] S.P. Tsarev. Generalized Laplace Transformations and Integration of Hyperbolic Sys-
tems of Linear Partial Differential Equations, Proc. ISSAC’05, 325-331. 2005.

Ekaterina Shemyakova, Franz Winkler
Research Institute for Symbolic Computations (RISC)

J.Kepler University, Altenbergerstr. 69, A-4040 Linz, Austria
{kath, Franz.Winkler}@risc.uni-linz.ac.at

http://www.risc.uni-linz.ac.at/

442 Shemyakova et al. Transgressive Computing

Fraction-free forms of LU matrix factoring 443

Fraction-free forms of LU matrix factoring

Wenqin Zhou David J. Jeffrey Robert M. Corless

Abstract

This paper considers LU matrix factoring. It addresses the, essentially practical,
question of how to represent the results of fraction-free algorithms (also called exact-
division) in a fraction-free form. Thus, at present, a system such as Maple can perform
fraction-free calculations, but cannot return fraction-free matrices because there is no
widely accepted form in which to do so. This paper reviews one previous attempt to
define such a form and presents a new form that is more convenient.

1 Introduction

Developers of computer algebra systems are sometimes frustrated by the lack of standard
mathematical forms in which to return their results. Matrix LU factoring is an example.
The terms fraction free and exact division have each been used to describe methods used in
linear algebra. Bareiss [1] used fraction free for his version of Gaussian elimination (which
he credited to Jordan), while Erlingsson, Kaltofen & Musser [2] used exact division to
describe their version of Gram—Schmidt orthogonalization, which they credit to [3]. Given
the existence of two apparently equivalent terms, we propose using the term exact division
to describe an algorithm that relies on divisions being exact, and the term fraction free to
describe any output form which contains only entries in the input domain. In other words,
one term describes the process and the other the result. (The term division-free is also
available.)

A fraction-free output need not come from an exact-division algorithm. Thus, although
here we consider Bareiss-type algorithms, one could equally consider computations based
on other techniques, such as p-adic lifting [8]. Further, the fraction-free idea is not confined
to linear algebra: below, we shall mention pseudo-division of polynomials.

Turing’s description of Gaussian elimination as a matrix factoring [4] is well established
in linear algebra, particularly numerical linear algebra [5]. Even though the factoring takes
a number of different forms (Cholesky, Doolittle-LU, Crout-LU, Turing), only relatively re-
cently has there been an attempt to define a fraction-free form [6, 7]. Thus at present Maple

offers LU factoring with the option FractionFree, but the output contains fractions.
> LUDecomposition(<<10,9>|<7,6>>,method=’FractionFree’);

[
1 0
0 1

]
,

[
1 0
9
10

1
10

]
,

[
10 7
0 −3

]

444 Zhou et al. Transgressive Computing

Thus a user cannot continue a fraction-free calculation from this point without first undoing
the divisions that Maple has done. The problem is that all forms of Turing’s factoring
have been defined primarily in a numerical context, and the special considerations of exact
computation have been neglected.

A fraction-free form for LU factoring was given in [6], where the following theorem
was stated. Although stated for matrices over Z, it clearly applies to more general input
domains.

Theorem 1.1. The matrix A ∈ Zn×n may be written

F1PA = LF2U , (1)

where F1 = diag(1, p1, p1p2, . . . , p1p2 · · · pn−1), P is a permutation matrix, L ∈ Zn×n is
unit lower triangular, F2 = diag(1, 1, p1, p1p2, . . . , p1p2 · · · pn−2), and U ∈ Zn×n is upper
triangular. The pi are the pivots that arise.

Proof. A proof is given in [6], and is not reproduced.
This factoring is modelled on other fraction-free definitions, such as pseudo-division of

polynomials. There, polynomials a, b ∈ Z[x] are divided by writing [9]

βa(x) = b(x)q(x) + r(x) ,

where β inflates the coefficients of a(x) so as to guarantee that q(x), r(x) ∈ Z[x]. Analo-
gously, the matrix F1 above serves to inflate the matrix A so that L,U are fraction free.
However, although this model is satisfactory for pseudo-division, in the matrix case it leads
to two unsatisfactory features: first, two inflating matrices are required, and secondly, the
matrices are clumsy, containing entries that increase rapidly in size. If the model of pseudo-
division is abandoned, then a tidier factoring is possible. Again, we state the theorem for
Z with the generalization being clear.

Theorem 1.2. The matrix A ∈ Zn×n may be written

PA = LD−1U (2)

L =

p1

l21 p2
...

...
. . .

ln−1,1 ln−1,2 · · · pn−1

ln1 ln2 · · · · · · 1

, U =

p1 u12 · · · · · · u1n

p2 · · · · · · u2n

. . .
...

...
pn−1 un−1,n

pn

D = diag(p1, p1p2, . . . , pn−2pn−1, pn−1) .

where P is a permutation matrix, L and U are triangular as shown, and the pi are the
pivots arising in the Gaussian elimination. The pivot pn is also the determinant of matrix
A.

Fraction-free forms of LU matrix factoring 445

Proof. The proof is based on the Bareiss procedure, but as stated above, there is no
implication that this procedure is the only way to compute the factoring. The proof is by
induction. If Ak is a k × k matrix, then we start at k = 3.

A3 =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

a11 0 0

a21 a
(1)
22 0

a31 a
(1)
32 1

p1 0 0
0 p1p2 0
0 0 p2

−1

a11 a12 a13

0 a
(1)
22 a

(1)
23

0 0 a
(2)
33 /a11

 .

Here p1 = a11, p2 = a
(1)
22 , a

(1)
ij = aija11 − ai1a1j and a

(2)
33 = a

(1)
33 a

(1)
22 − a

(1)
23 a

(1)
32 , implying

a
(2)
33 /a11 = a33a11a22 − a33a21a12 − a31a13a22 − a32a11a23 + a32a21a13 + a31a12a23 ,

where the well-known exact-divisibility is seen. Now suppose the theorem is true for Ak.
For convenience, we label the elements of the matrix from 2 to k+1, and using the obvious
block notation, we write

Ak =

[
a22 a23

a32 A33

]
=

[
p2

a32 L̂

] [
p2

D̂

]−1 [
p2 a23

Û33

]
.

Now for Ak+1 we have

Ak+1 =

a11 a12 a13

a21 a22 a23

a31 a32 A33

 =

a11

a21 1
a31 0 I

p1

p1

p1I

−1

a11 a12 a13

a
(1)
22 a

(1)
23

a
(1)
32 A

(1)
33

=

a11

a21 1
a31 0 I

p1

p1

p1I

−1

1 0 0

0 a
(1)
22 0

0 a
(1)
32 L̂

1 0 0
0 p2 0

0 0 D̂

−1

a11 a12 a13

0 a
(1)
22 a

(1)
23

0 0 Û
(1)

=

a11 0 0

a21 a
(1)
22 0

a31 a
(1)
32 L̂

p1 0 0
0 p1p2 0

0 0 D̂

−1

a11 a12 a13

0 a
(1)
22 a

(1)
23

0 0 Û/p1

Since Û is the same as A
(2)
33 , the division is exact, a fact known to Camille Jordan [1].

2 Concluding remarks

In [7] there is a discussion of fraction-free forward and backward substitution, which comple-
ments the LU factoring itself. Lack of space prevents such a discussion here. An anonymous
reviewer has offered an attractive alternative to the discussion of theorem 1.2, which we have
not used because we do not know the reviewer’s identity. Analogous results can be obtained
for QR factoring, but space limitations prevent us giving details.

446 Zhou et al. Transgressive Computing

References

[1] Erwin H. Bareiss. Sylvester’s identity and multistep integer-preserving Gaussian elim-
ination. Mathematics of Computation, Vol. 22, No. 103, page 565-578, 1968.

[2] Úlfar Erlingsson, Erich Kaltofen & David Musser. Generic Gram—Schmidt Orthog-
onalization by Exact Division. International Symposium on Symbolic and Algebraic
Computation, ACM, page 275-282, 1996.

[3] A.K. Lenstra, H.W. Lenstra & L. Lovász. Factoring polynomials with rational coeffi-
cients, Math. Ann. 261, 1982.

[4] Alan M. Turing. Rounding-off errors in matrix processes. Quart. J. Mech. Appl. Math.,
Vol. 1, page 287-308, 1948.

[5] Lloyd N. Trefethen & David Bau III. Numerical Linear Algebra, SIAM 1997.

[6] R.M. Corless & D.J. Jeffrey. The Turing factorization of a rectangular matrix, SIGSAM
Bull., ACM Press, Vol. 31, No. 3, page 20-30, 1997.

[7] G.C. Nakos, P.R. Turner & R.M. Williams. Fraction-free algorithms for linear and
polynomial equations. SIGSAM Bull., ACM Press, Vol. 31, No. 3, pp 11-19, 1997.

[8] John D. Dixon. Exact solution of linear equations using p-adic expansions. Numerische
Mathematik, Vol 40, pp. 137-141, 1982.

[9] K.O. Geddes, G. Labahn & S. Czapor. Algorithms for Computer Algebra, Kluwer,
1992.

Wenqin Zhou
Ontario Research Centre for Computer Algebra, and Department of Applied Mathematics

The University of Western Ontario, London, Ontario, Canada N6A 5B7
wzhou7@uwo.ca

http://publish.uwo.ca/∼wzhou25/

D. J. Jeffrey
Department of Applied Mathematics, and Ontario Research Centre for Computer Algebra

The University of Western Ontario, London, Ontario, Canada N6A 5B7
djeffrey@uwo.ca

http://www.apmaths.uwo.ca/∼djeffrey/

R. M. Corless
Ontario Research Centre for Computer Algebra, and Department of Applied Mathematics

The University of Western Ontario, London, Ontario, Canada N6A 5B7
Rob.Corless@uwo.ca

http://www.apmaths.uwo.ca/∼rcorless/

Author index 447

Author index

Asarin, Eugene . 15

Benjumea, Juan Carlos 53
Benmakrouha, Farida63
Bouhamidi, Abderrahman 71
Boulier, François . 79
Brenig, Léon . 19
Brezinski, Claude 31, 401

Carbone, Alessandra.37
Chen, Guoting. .93
Cheptea, Daniela . 105
Cojocaru, Liliana . 115
Corless, Robert M. 405, 443
Cosnard, Michel . v
Cung, Van Dat . 131

Dahan, Xavier .149
Danjean, Vincent . 131
Della Dora, Jean. .3
Diaz-Toca, Gema M. 169
Dumas, Jean-Guillaume 131, 185

El Ghazi, Abdellatif 203
El Hajji, Said . 203

Falcón Ganfornina, Raúl M. 213
Fauvet, Frédéric . 231
Fortuny Ayuso, Pedro 247
Foursov, Mikhail V. 257

Gautier, Thierry. .131
Giraud, Luc . 203
Gratton, Serge . 203

Hespel, Christiane 63, 257, 271
Hildebrand, Roland.287
Huard, Guillaume 131

Ilie, Silvana . 405

Jbilou, Khalid . 71
Jeffrey, David J. 415, 443

Krupchyk, Katya . 411

Lemaire, François. .79
Liang, Songxin . 415
Lombardi, Henri .169

Maignan, Aude . 3
Mart́ın-Morales, Jorge 303
Mart́ın-Vide, Carlos 105
Martig, Cyrille . 271
Mazure, Marie-Laurence 311
Mezzarobba, Marc.327
Mitrana, Victor . 105
Moreno Maza, Marc 79, 149, 419

Núñez, Juan . 53

Quitté, Claude . 169

Raffin, Bruno. .131
Ramis, Jean-Pierre 39
Rapine, Christophe 131
Recio Muñiz, Tomás 41
Redivo Zaglia, Michela 401
Reid, Greg . 405
Richard-Jung, Françoise 231

448 Transgressive Computing

Roch, Jean-Louis . 131
Rosaev, Alexey E. 429

Safey El Din, Mohab 327
Schost, Éric . 149, 419
Shemyakova, Ekaterina 435
Smirnova, Elena . 339

Tabera, Luis Felipe 357
Takesue, Masaru . 365
Tenorio, Ángel F. .53
Thomann, Jean . 231
Tonnelier, Arnaud 381
Tournier, Laurent .3
Trystram, Denis . 131
Tuomela, Jukka . 411

Urbańska, Anna . 185

Vincent, Jean-Marc.387

Watt, Stephen M. 43, 339, 415
Winkler, Franz . 435

Xie, Yuzhen . 149

Zhou, Wenqin 419, 443

	Stokes phenomenon, differential Galois groups, accelerating functions
	Stokes phenomenon; alien derivations
	Accelerating functions

	Simplification tools for recurrence equations
	Ore polynomials and series equality
	Redundant initial conditions
	Right factor
	Guessing a right factor
	Guessing a new polynomial Q
	Examples

	Splitting of a series
	Description of the method
	Examples
	From recurrence equation to differential equation

	Examples
	Description of the calculations
	The accelerating C3
	The accelerating C4

	Conclusion

