
Alma User Guide

Cosmin Oancea and Stephen M. Watt

Ontario Research Centre for Computer Algebra
Department of Computer Science

University of Western Ontario
London Ontario, Canada N6A 5B7

Abstract. The Alma framework allows Aldor and Maple to be used
together. This can be used to access safe and efficient mathematical
libraries, written in Aldor, from Maple. A high-level mapping is provided
between the concepts of Aldor and the concepts of Maple, allowing, Aldor
domains to be used as Maple modules. We describe how to install and
use Alma.

1 Introduction

This document provides instructions to help the user to install and use Alma, a
framework that allows Aldor and Maple to be used together.

The ideas behind Alma have been described earlier. The most relevant ar-
ticle is “Domains and Expressions: An Interface between Two Approaches to
Computer Algebra” [4]. That paper presents a high-level correspondence be-
tween Maple and Aldor concepts that bridges the semantic differences between
the two environments. It introduces the Alma framework, describes its architec-
ture, the C, Aldor and Maple mappings, and shows some interaction examples.
The paper “A Study in the Integration of Computer Algebra Systems: Memory
Management in a Maple-Aldor Environment” [5] investigates what is required
to make the low-level run-time systems of Maple and Aldor to work together. It
proposes a foreign function interface between the two languages and a protocol
whereby the garbage collectors of the two systems can cooperate when struc-
tures span the two system heaps. The aim is that the Alma framework should
work on top of this enhanced foreign function interface. Other related papers
describe earlier results [3] or synthesize experiments of supporting parametric
polymorphism across language boundaries [1]. These documents can be found in
the AlmaArchFolder/Doc/RelevantArticles folder.

This guide is organized as follows: Section 2 describes what is required to
attach the Alma code generator to the Aldor compiler. Section 3 guides the
user in buiding and running an Alma application. Finally, Section 4 looks into
the Maple mapping Alma generates. This is the interface between the user and
the application, and consequently, the mapping ideas and the structure of the
“reflective” features need to be well understood.

2 Installation

We assume you have already downloaded the AlmaArchFolder.tar.gz file and
uncompressed it:

$ tar -zxvf AlmaArchFolder.tar.gz

To install Alma you need to take the following steps:

1. Install Maple [2] (www.maplesoft.com).

2. Install Aldor [6, 7] (www.aldor.org).

3. If you are using a version of Aldor before version 1.1, you must apply a bug
fix to the compiler, as described in Appendix A.

4. Integrate the Alma code generator into the Aldor compiler, as described
below.

To integrate the Alma code generator into the Aldor compiler:

• Copy the AlmaArchFolder/src/MapleInterop folder at the location that con-
tains the Aldor compiler sources:

$ cp -r AlmaArchFolder/src/MapleInterop $ALDOR_COMPILER/src/

• Copy the AlmaArchFolder/src/maplegen.h file at the location that contains
the Aldor compiler sources:

$ cp AlmaArchFolder/src/maplegen.h $ALDOR_COMPILER/src/

• Search the AlmaArchFolder/src/emit.c file to find the commented lines that
contain the ALMA word:

$ grep "ALMA" AlmaArchFolder/src/emit.c

Follow the comments and do the proper modifications in the emit.c file of
your Aldor compiler sources. In principle, you need to include the maplegen.h
file (#include "maplegen.h") and to add the call:

genMapleStub(finfo, symes, macs);

as the first executable instruction of the emitTheSymbolExpr function.

• Rebuild the Aldor compiler: src$ make

• Copy the folder AlmaArchFolder/src/AlmaBase somewhere. This folder con-
tains the mappings for some very common Aldor domains such as String,
Character, Integer, together with some “static” functionality of the Alma
framework, such as system functions to construct basic type values: integer,
strings, characters, polynomials. We shall assume the $ALMA BASE environ-
ment variable points to that location. Compile the amaldorbase.as file:

$ cd $ALMA_BASE; aldor -Fo amaldorbase.as}

This will generate the amaldorbase.o file.

3 Building an Example Alma Application

The Maple worksheet AlmaArchFolder/Tests/ComplexEg1/testingGcd.mw com-
putes the greatest common divisor of two polynomials in the presence of regular
chains. In order to achieve this, it accesses the functionality of Moreno Maza’s
library for triangular sets decomposition (part of Aldor’s BasicMath library).
This section describes the steps involved in buiding this Alma application.

• $ cd AlmaArchFolder/Tests/ComplexEg1/

• Generate the Alma Aldor, C and Maple stubs that encapsulate the Basic-
Math library exports found when parsing the testgcd.as file by running

$ aldor -Fasy -Y$BMROOT/lib -lbasicmath testgcd.as

where $BMROOT is an environment variable that points to the Aldor Basic-
Math library instalation directory.

• Open the atestgcd.as file for editing. Search for QuotientFieldCategory.
Replace
QuotientFieldCategory(D) with QuotientFieldCategory(MALDOR0 R)
QuotientFieldCategory0(D) with QuotientFieldCategory0(MALDOR0 R)
CanonicalInjection(S) with CanonicalInjection(RationalNumber).

There are three places where you have to perform the substitutions above.

• Compile the Aldor stub:

$ aldor -Fo atestgcd.as

• Compile the C stub:

$ cc -I$ALDORROOT/include -I$MAPLE/extern/include -I$ALMA_BASE} \
-c ctestgcd.c} \newline

where $ALDORROOT is the environment variable that points to the directory
where Aldor is installed (see Aldor documentation), and similar for $MAPLE.
$ALMA BASE has been defined in Section 2 (last paragraph/bullet).

• Link the Aldor and C stub together with the “static” Alma functionality:

$ cc -shared $ALMA_BASE/amaldorbase.o ctestgcd.o atestgcd.o} \
-olibctestgcd.so -L$MAPLE/bin.IBM_INTEL_LINUX -L$ALDORROOT/lib \
-L$BMROOT/lib/ -lmaplec -lbasicmath -laldor -lfoam -lm

This will create the libctestgcd.so library.

• Open the testingGcd.mw worksheet: $ xmaple testingGcd.mw&. The work-
sheet uses the helper file mtestgcdwrap.mpl. See [4] for details. In mtestgcd-
wrap.mpl modify the ALMA library variable to point to the right location.
Also read the static Alma Maple wrapper from $ALMA BASE (line 6). Now
you can run the worksheet.

4 Alma bindings for Maple

This section discusses some of the ideas involved in the Maple mapping. We
assume your current directory is the one in which you have uncompressed the
AlmaArchFolder.tar.gz file. Type:

$ cd AlmaArchFolder/Tests/SimpleEg1
$ aldor -Fasy -Y$BMROOT/lib -lbasicmath MapleTest.as

This will generate three files: aMapleTest.as, cMapleTest.c and mMaple-
Test.mpl. These are the Aldor, C and Maple Alma-mappings corresponding to
the MapleTest.as input file. The C and Aldor mappings are straight-forward. An
Aldor function f is mapped to a function that returns a pointer to the f function.
An Aldor domain/category, or a domain/category-producing function, or a con-
stant is mapped to a function that when called will return the category/domain
or constant as a pointer. The C stub is responsible to call the Aldor wrapper
function. If the export is a function then it also gets the closure of the desired
function and call it through the Aldor-C low-level foreign function interface.
The remainder of this section concentrates on the structure of the Maple stub
(mMapleTest.mpl).

Start by compiling the MapleTest.as file:

$ aldor -Fasy -Y$BMROOT/lib -lbasicmath MapleTest.as

Take a look at the generated mMapleTest.mpl file, which represents the Maple
stub. The Maple-mapping is hierarchical: The MapleTest module encapsulates
the ModuleA, PolynomialA, MyCat1, MyDom1 exports, which are themselfs mod-
ules or functions that produce modules. The PolynomialA(...) and MyDom1
modules correspond to the Aldor domains with the same names. Applying the
PolynomialA function on a valid coeffcient ring generates a module that exports
at its turn the functionality defined in the Aldor input file MapleTest.as: the Q
constant of type MyCat1, four functions named coerce and one named ff.

The mapping separates the exports of a domain into constants, which are
placed in the CTS module, and functionals, which are placed in the FCTS mod-
ule (see the PolynomialA(...) module). The same is true for the outermost
module, in our case MapleTest. This separation ensures that no naming prob-
lems appear. For example in Aldor it is legal to have a function and a constant
sharing the same name, but if not for this separation, the Maple names would
clash. However, except as we have mentioned, all the names are exported by
the given module and they do not have to be directed through the CTS/FCTS
modules: PolynomialA:-ff and PolynomialA:-FCTS:-ff are identical and the
same holds for PolynomialA:-Q and PolynomialA:-CTS:-Q.

Look at the implementation of the coerce export of the PolynomialA:-FCTS
module. If the first argument is the string "AlmaHelp" then the function will just
display static information related to what this export does and how it is sup-
posed to be used (see Figure 1). Otherwise the body of the coerce export is
composed from four if expressions. Each corresponds to one of the coerce

print("Context: PolynomialA(MALDOR0__R : Ring); ");

print("Candidate: coerce: (MALDOR0__R) -> (PolynomialA(MALDOR0__R))");

print("Comment: coerces an element of the ring to a poly");

print("Candidate: coerce: (String) -> (PolynomialA(MALDOR0__R))");

print("Comment: coerces a String element to a poly");

print("Candidate: coerce: (Integer) -> (PolynomialA(MALDOR0__R))");

print("Comment: coerces an Integer element to a poly");

print("Candidate: coerce: (MALDOR0__R) ->

(MALDOR0__R, PolynomialA(MALDOR0__R))");

print("Comment: receives as arg an elem of the ring

and returns an elem of the ring and a poly");

Fig. 1. Helper information for the MapleTest:-PolynomialA:-coerce export

exports of the PolynomialA Aldor domain. This is how Aldor’s overloading
is supported in Alma: by concatenating the implementations and employing
run-time tests to determine which is the correct code to be executed. The ex-
pression type(args[1], maldorTypeCheck(String)) will return true if and
only if the first argument of the function has the Alma-type String. Similarly
type(args[1], maldorTypeCheck(args4[1, 3])) will return true if and only
if the first argument of the function is a value of the ring type of the PolynomialA
domain (the parameter of the PolynomialA function).

Look now at the signatures of the first and last coerce exports of the
PolynomialA Aldor domain. They are identical if excluding the return types.
This is of course legal in Aldor since the type-inference will disambiguate the
call. However, in order to support this in our Maple mapping, we ask the user
to send an extra parameter in these cases: a list containing the return types
of the desired function. For example, if the test type(["t", args[2, 1]],
maldorTypeCheck(Info:-ALMA self)) succeeds the first coerce function will
be called: the one that returns a value of PolynomialA(R) Alma-type.

Figure 2 shows the Maple code that calls the C stub. The Alma getClosure
call returns the Alma-object corresponding to the current function. The first
parameter is the name of the C function that achieves this, the second is the
domain parameters, the third and fourth parameters indicate the indexes in
the Info:-ALMA GenExports export where the meta-information correspond-
ing to this function is to be found. The intent was that the Alma getClosure
function should use the Maple support for caching (option remember), such
that the C and Aldor mapping involved in returning the closure of this func-
tion are called only once. (The Aldor-Maple garbage collector synchronization
is not yet integrated in the Alma framework, so the closures are not cached
yet.) The Info:-ALMA GenExports array is filled lazily, as needed, through a
call to Info:-ALMA printExports[ind fc, ind](). This is because Aldor do-

cached_clos := ‘Alma_getClosure‘(Info:-ALMA_GenExports[2, 2, 5],

Info:-ALMA_GenExports[2, 2, 9], 2, 2);

tmp_fct := define_external(’coerce_3PolynomialAALMA13’,

’MAPLE’,LIB="./libcMapleTest.so"):

ret := tmp_fct(cached_clos[2],

write_ret_MALDOR_map(lst->lst[2], [args]), [Info:-ALMA_self]);

Fig. 2. Maple mapping calling the C stub

mains may encapsulate hundreds of exports, but the Maple user will probably
only use a few of them.

The usage of the export meta-information array Info:-ALMA GenExports
and of the Alma getClosure function allows some flexibility: for example method-
based recompilation with type-inlining, and incremental export-information fill-
ing. The first argument uniquely identifies the desired closure-object, so the
Maple option remember will always return the correct closure object.

The define external call in Figure 2 returns an interface to the C function
that handles the closure invocation (tmp fct). Finaly the tmp fct is called: the
first argument is the pointer to the Aldor closure, then the Aldor objects on
which the closure is to be called, and finally the Alma-type for the return(s).
Note that the index 2 in an Alma-object is exactly the Aldor pointer/object (see
[4]).

Method level recompilation and closure caching are two features that are not
supported in the current implementation. The first can be serviced at the Maple
level by static code, but since we have not yet found an example where this yields
a speed-up, we left it un-implemented. The second is easy to implement: just add
option remember to all Alma getClosure functions as soon as the Maple-Aldor
garbage collectors are synchronized.

One may reduce the size of the C stub by shrinking down the number of C
functions that call Aldor closures. In principle you need one function for distinct
pair of arguments number, returns number.

References

1. Y. Chicha, M. Lloyd, C. Oancea, and S. M. Watt. Parametric Polymorphism for
Computer Algebra Software Components. In Proc. 6th International Symposium on
Symbolic and Numeric Algorithms for Scientific Comput., pages 119–130. Mirton
Publishing House, 2004.

2. M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter, J. Mc-
Carron, and P. DeMarco. Maple 9 Advanced Programming Guide. Maplesoft, 2003.

3. C. Oancea and S. M. Watt. A Framework for Using Aldor Libraries with Maple. In
Actas de los Encuentros de Algebra Computacional y Aplicaciones, pages 219–224,
2004.

4. C. E. Oancea and S. M. Watt. Domains and Expressions: An Interface between
Two Approaches to Computer Algebra. In Proceedings of the ACM ISSAC 2005,
pages 261–269, 2005.

5. S. M. Watt. A Study in the Integration of Computer Algebra Systems: Memory
Management in a Maple-Aldor Environment. In Proc. International Congress of
Mathematical Software, pages 405–411, 2002.

6. S. M. Watt. Aldor. In J. Grabmeier, E. Kaltofen, and V. Weispfenning, editors,
Handbook of Computer Algebra, pages 154–160, 2003.

7. S. M. Watt, P. A. Broadbery, S. S. Dooley, P. Iglio, S. C. Morrison, J. M. Steinbach,
and R. S. Sutor. AXIOM Library Compiler User Guide. Numerical Algorithms
Group (ISBN 1-85206-106-5), 1994.

Appendix

A Fixing an Aldor Compiler Bug

For Aldor compilers before version 1.1, it is necessary to fix a compiler bug to use
Alma: In the type inference module some operations are checking to see whether
two symes are equal by testing pointer equality. It should use the symeEqual
function instead. The fix involves two Aldor source files: absub.c and tfsat.c,
which can be found in the AlmaArchFolder/src folder. Try to find the commented
lines that contain the word ALMA, for example by typing at the command prompt:

src$ grep "ALMA" *.c

Follow the comments to do the necessary modifications in your Aldor compiler
sources to fix the bug. Recompile the compiler:

src$ make

and run the test suites.

