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Determination of approximate symmetries of differential
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Abstract. There has been considerable progress in the theory and computer
implementation of symbolic computation algorithms to automatically deter-
mine and exploit exact symmetries of exact differential equations. Such pro-
grams usually apply a finite number of exact differentiations and eliminations
to the overdetermined linearized equations for the unknown symmetries (the
symmetry defining equations), to complete them to certain involutive or stan-
dard forms. The symmetry properties can be determined from these involutive
forms.

In many applications, however, the differential equations describing a
model are only known approximately. For example they may contain param-
eters that are only known approximately. Symbolic methods are unstable if
applied to the symmetry defining equations directly, and indirect techniques
(e.g. replacing approximate parameters by symbolic ones) might not be prac-
tical in cases with many parameters. Discussion and examples are given of
such difficulties.

A new generation of symbolic-numeric methods is described and applied
to the problem of determining symmetries of differential equations.

We introduce a class of differential-elimination methods which uses Nu-
merical Linear Algebra, and in particular the Singular Value Decomposition,
to perform the elimination process on the symmetry defining equations. Our
approach uses symbolic differentiations but not symbolic eliminations. Substi-
tution of an appropriate random point in the independent variables, followed
by numerical projection is used to test for the conditions of completion to a
projective involutive form. We prove that this form is equivalent to the invo-
lutive form of the Cartan-Kuranishi theory of partial differential equations.

Our method is applied to determining symmetry properties of 50 ode
from the collection in Kamke’s book.

1. Introduction

The continuous (exact) point symmetries of a differential equation with inde-
pendent variables x and dependent variables y are the group of transformations
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g:

(1) g : x̂ = X(x, y), ŷ = Y (x, y)

leaving invariant its solution set S:

(2) g(S) = S

Applications of symmetries to differential equations include determination of invari-
ant solutions, mappings from intractable to tractable equations (e.g. non-linear to
linear), and the determination of conservation laws. They have become one of the
major tools for determining analytic features and solutions of differential equations
[1, 11].

The (exact) symmetries of a differential equation are usually not known a priori
and have to be determined. By associating the differential equation with a sub-
manifold MS of a Jet space, the condition is replaced with

(3) pr(g) (MS) = MS

where the group has been prolonged to act on derivatives up to the order of the
differential equation.

The Infinitesimal Lie symmetries are the linearized form of such symmetries
about the identity transformation:

(4) x̂ = X(x, y; ε) = x + εξ(x, y) +O(ε2), ŷ = Y (x, y; ε) = y + εη(x, y) +O(ε2)

In particular, the Oε) terms of condition (3) leads to a linear homogeneous system
of over-determined partial differential equations on the function ξ and η [1, 11],
which we call the symmetry defining system.

There are many computer algebra programs for automatically generating such
symmetry defining systems (see the review article by Hereman [8]). They can
be large and highly over-determined. Indeed such systems can be simplified to
canonical forms by a finite number of differentiations and eliminations. This process
is a differential generalization of Gröbner Bases [2, 10, 15, 18, 20].

The canonical forms can then be used for explicit integration of the system and
a number of symbolic computation approaches have been based on this method.
Other approaches [27] take advantage of a mixture of the two approaches.

Such symbolic differential-elimination algorithms tend to explode in memory
on some non-trivial examples, reflecting their underlying exponential complexity.
Moreover they are not guaranteed to deal with models with floating point numbers
in them. This motivated us to develop a symbolic-numeric differential elimination
algorithms by the fact that often on complicated examples,

An underlying principle of our approach, is our strong emphasis on geometry.
In particular we emphasize jet space geometry, the geometry of differential systems
[13, 15, 20, 25, 7]. In comparison to the symbolic differentiation-elimination
approaches, where symbolic or algebraic manipulations of the equations are em-
phasized, our approach focuses on the solutions of the system regarded as algebraic
equations. This is the jet space picture of a differential equation, in which one re-
gards all the appearing variables (derivatives etc.) as formal unknowns on an equal
footing.

Our approach is based on combining techniques from numerical analysis and
symbolic computation. This work falls under the new area of hybrid symbolic-
numeric computation. Symbolic elimination algorithms (e.g. the Gaussian elimina-
tion and Buchberger algorithms) can be executed with systems with floating point
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arithmetic. However, the output is not well defined (for example the Buchberger
algorithm relies on using a field and floating point numbers do not form a field).
Moreover, due to round-off errors, the output is almost always unstable with respect
to small changes in the coefficients of the input systems.

Our approach uses only symbolic differentiation, and avoids symbolic elim-
ination, in an attempt to address the significant expression swell seen in many
symbolic elimination algorithms. In contrast, symbolic differentiation is relatively
cheap. Techniques from Numerical Linear Algebra [6], and in particular the Singu-
lar Value Decomposition (SVD) are used. It was first outlined briefly in [26].

Our approach is motivated by the geometric differential elimination methods
that arose in the approaches of Cartan and Kuranishi. This work has also been in-
fluenced by [19] in which an approach is proposed for ordinary differential systems
that generate prime differential ideals. That approach uses symbolic differentia-
tions, and avoids nonlinear eliminations, instead using linear eliminations based on
substitution of a random point.

In this paper we concentrate on symmetries of second order ordinary differential
equations of the form

(5) yxx = f(x, y, yx)

Extensive studies have been made of this class of equations about of its exact sym-
metry starting with Lie and equivalence properties dating back to Tresse, Cartan
and others [12]. Kamke’s book [9] lists ode of equations which are significant for
their analytic properties, including exact solution etc.

First we introduce (exact) Jet geometry, and the symbolic (exact) method un-
derlying our completion method. Theorems are given on the relation between our
method and the classical Cartan-Kuranishi method. The approximate implemen-
tation of this method which uses the Singular Value Decomposition is discussed.

We use 50 ode taken from Kamke [9] as a test bed for our symbolic-numeric
methods.

Finally we mention that this work is part of a series in which we are developing
the theory and applications of symbolic-numeric methods for general systems of
differential equations. An early example of this series [16] has been that of con-
stant coefficient linear homogeneous pde in particular as used in the problem of
determining a camera’s orientation from reference data (the camera pose problem
an important problem in computer vision). In that paper, we showed experimen-
tally that the methods presented here, could stably predict orientations, even in
singular configurations which had been difficult for other methods in the literature.

In another work [14], we build on the new methods of Numerical Algebraic
Geometry due to Sommese, Verschelde and Wampler [23], and applied these meth-
ods to the problem of completion of systems of ordinary differential equations with
constraints.

In the current work, we focus on linear homogeneous pde with variable coeffi-
cients. Ultimately we believe that efficient algorithms for symbolic-numeric treat-
ments of nonlinear differential systems, will contain features of the linear ones
presented here (since nonlinear systems become linear in their highest derivatives
when differentiated), and nonlinear methods for the lower order equations based in
spirit on the methods of Sommese, Verschelde and Wampler.
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2. Symmetries and Introductory Examples

We illustrate some of the difficulties and associated with symbolic methods
when applied to cases containing floating point numbers. In particular consider:

(6) yxx + 6.708203932 yyx + 5 y3 = 0

which will be used to motivate the need to have truly symbolic-numeric methods
for determining approximate features of systems.

2.1. Defining system for symmetries of yxx + 6.708203932yyx + 5y3 = 0.
Lie point symmetries of (6) are transformations of form (x, y) 7→ (x̂, û) = (x +
ξ(x, y)ε +O(ε2), y + η(x, y)ε +O(ε2)). They generate a Lie algebra of vector fields
ξ(x, y) ∂

∂x + η(x, y) ∂
∂y which follows the flow of the group. The symmetry defining

system of (6) is:

ξyy = 0,

ηyy − 2.0 ξxy + 13.41640787 yξy = 0,

2.0 ηxy − 1.0 ξxx + 15.0 y3ξy + 6.708203928 yξx + 6.708203932 η = 0,

ηxx − 5.0 y3ηy + 10.0 y3ξx + 6.708203932 yηx + 15.0 y2η = 0.(7)

where subscript notation has been used for partial derivatives. This system has
been produced by the Maple command DEtools[odepde].

There are two differential elimination packages in Maple, RifSimp and diffalg.
The theory that both are based on assume that the coefficients in the input system
to be from a field. Since floating point numbers do not form a field (e.g. the
associative property fails), computations with floats with these packages are not
guaranteed to produce a theoretically well-founded result.

2.2. Direct use of floats in exact differential elimination methods.
The package diffalg will process floats as floats in its internal computations, and
when applied to system (7) yields:

(8) ξx = 0.0, ξy = 0.0, η = 0.0

which represents a 1 parameter translation symmetry in x for (6). The Maple pack-
age RifSimp will by default, convert floats into their exact rational approximations,
in the input system, and this strategy is discussed next.

2.3. Rational Substitution Strategy. A common strategy, for symbolic
programs is to replace input floats with rational numbers. Executing this strategy
with system (7) (so that 6.708203928 is replaced with 6.708203928 = 6708203928/109

etc.) both the packages RifSimp and diffalg output the same simplified system:

(9) ξx = 0, ξy = 0, η = 0,

which clearly has a one parameter solution space. In the formation of the defining
system (7) small round-off errors have been introduced (e.g. 6.708203928 appears
in one coefficient and 6.708203932 in another). So an alternative strategy is to
make the rational replacement 6.708203932 = 6708203932/109 in the original ode.
The result of this strategy is that both Maple packages produce simplified form of
the defining system as:

(10) ξxx = 0, ξy = 0, η = −yξx .



DETERMINATION OF APPROXIMATE SYMMETRIES OF DIFFERENTIAL EQUATIONS 5

Integration easily shows that ξ = ax+b, η = −ay. These correspond to the obvious
symmetries of translation in x and a mutual scaling in (x, y) 7→ (x/c, cy) possessed
by the input ode. As the above example illustrates the symbolic simplification
methods are not continuous with respect to small changes in the coefficients. The
is method can, for this example, be regarded as more successful since it found a
larger group of symmetries of (6) than the previous method.

2.4. Symbolic Substitution Strategy. A common strategy by symmetry
and computer algebra researchers to address difficulties faced when using floats is
to replace such quantities with symbolic parameters (or in general with unspecified
functions).

In particular when this is done with the above example, it is embedded in the
one parameter class of ode:

(11) yxx + αyyx + 5y3 = 0

Application of RifSimp and diffalg which can be called using the convenient
interface DEtools[casesplit](sys, option) with option = rif or option =
diffalg yields:

Case 1 (α2 6= 45):

(12) ξxx = 0, ξy = 0, η = −yξx

and Case 2 (α2 = 45):

η =
2
15

ξxxxy + 2 y2ξxy − yξx − 2
15

y αξxxy +
1
15

αξxx − 1
3

αξyy3,

ξxxxx =
30 y2

α
ξxxxy − 30 y

α
ξxxx,

ξyy = 0.(13)

Further algorithms can determine that the dimension of the solution space for Case
2 is eight dimensional. Thus ode (11) has an 8 dimensional Lie group of symmetries
when α2 = 45 and a 2 dimensional group when α2 6= 45. ode with larger symmetry
groups are amenable to a wider class of analytical techniques. For example second
order ode are linearizable [12] if and only if they have an eight dimensional group.
Hence the ode (6) is very close to a linearizable ode.

2.5. Discussion of difficulties with symbolic approaches. As the above
examples illustrate, care has to be taken with symbolic approaches. They are not
designed for using floating point numbers and can produce unstable results when
used with numeric coefficients. Strategies such as rational replacement need to be
used with care, since round-off errors can mean that the rational approximation
does not inherit desired properties of the original system. Further the more general
approach of symbolic replacement, although powerful in certain situations, can be
impractical due to the greater complexity of the calculations involved.

In summary it is useful to explore approaches that more thoroughly integrate
symbolic and numeric methods, and such methods need to consider close-by sys-
tems. For example it would be desirable for a symbolic-numeric approach to be able
to determine that the case α =

√
45 ≈ 6.708203932 was close by with a desirably

large (8) dimensional symmetry group characterizing a linearizable ode.
We could compare our goal to the problem of finding rank deficient matrices

Ã near a matrix A. This linear algebra problem is well known to be solved using
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the Singular Value Decomposition (SVD). For more details on SVD, see [24] or
[6]. Given a tolerance ε, the SVD of A can determine the lowest rank (equivalently
largest dimension for Null(A)) that the family of matrices Ã satisfying ‖Ã−A‖2 ≤ ε
can have. Thus the SVD gives information on how close rank deficient matrices are
to A.

The objective of the work initiated in this article is to stably seek close-by
systems admitting large symmetry groups in the presence of round off errors from
the original system.

3. Jet Space and Involution

In this section we describe the symbolic algorithm underlying our symbolic-
numeric method. It depends heavily on the methods of Jet Space Geometry.

The most basic step in the theory of differential elimination algorithms is to
replace differential equations by algebraic ones, by regarding derivatives as formal
variables.

A polynomially nonlinear q-th order system with n independent variables x =
(x1, x2, ..., xn) and m dependent variables (Ψ1, Ψ2, ..., Ψm) is represented as a poly-
nomial in x, u, u

1
, u
2
, . . . Equivalently and more formally it is represented as an ele-

ment of the differential ring F[x, u, u
1
, u
2
, ...] where the field F is R, C or Q and

u =u
0

↔ (Ψ1, Ψ2, ..., Ψm),

u
1

↔ ∂Ψl

∂xj
,

u
2

↔ ∂2Ψl

∂xj∂xk
,

...

The formal total derivative is:

Dxj =
∂

∂xj
+

∑

l

ul
xj

∂

∂ul
+ ...(14)

For sake of notational brevity, it has become customary to use the variable names
as the names of the variables in the original physical formulation of the differential
system. We follow this convention in our paper.

Thus we consider systems of total derivative order q, of form R1 = 0, ..., Rs = 0,
or more concisely R = 0, where

(15) Rk : Jq → C, Jq = CNq ,

and Nq = n + m

(
q + n

q

)
, is the number of jet variables of order less than or

equal to q.
The spirit of the geometric approach to differential equations is that it is con-

cerned with the (jet) variety of the system:

(16) R = V (R) := {(x, u, u
1
, ..., u

q
) ∈ Jq : Rk(x, u, u

1
, ..., u

q
) = 0},

where u
r

represents the rth order derivatives. If all of the equations in the system
have derivative of order exactly q then a single symbolic prolongation of the system
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is taken to be:

(17) D(R) := {(x, u, u
1
, ..., u

q+1
) ∈ Jq+1 : Rk = 0, DxiR

k = 0}.

If there are equations with derivative order less than q then to form DR derivatives
of these equations are appended to the system, and this process continued until no
undifferentiated equations of lower order remain.

The prolongations of a system can be obtained more efficiently by omitting the
obviously equivalent equations resulting from the commutativity of partial differ-
entiation. For example, given ∂R1

∂x1
, ∂R1

∂x2
, in the first prolongation, ∂

∂x1

∂
∂x2

R1 only
needs to be listed once in the second prolongation. These and many more refined
efficiency improvements are discussed in [20].

The corresponding geometric operation to elimination is that of geometric pro-
jection. A single geometric projection is defined as:

(18) E(R) := {(x, u, u
1
, ..., u

q−1
) ∈ Jq−1 : Rk(x, u, u

1
, ..., u

q−1
, u

q
) = 0}.

We call the systems: ER, E2R, ... , EqR projected systems. They are of respective
orders: q − 1, q − 2, . . . , 0.

The symbol of a qth order system is the linearized highest order part of the
system, which is given by the matrix:

(19) Symbol R :=
∂R

∂ u
q

.

The symbol of a qth order system R = 0 is involutive if

(20) rank Symbol(DR) = Σn
j=1jβ

(q)
j

and the β
(q)
j are the dimensions of certain subspaces of the Null Space of the Symbol

of R. Details of this test are given in [20, 13].

Definition 1 (Involutive System). A differential system of order q is said to be
involutive [13, 20], in a δ-regular system of coordinates if it passes the elimination
test: (E◦D)R = R, has involutive symbol and satisfies the constant rank conditions
given below. Almost all coordinate systems are δ-regular, and can be achieved by a
random (linear) change of coordinates if necessary.

Definition 2 (Constant Rank Conditions). Let R(x, v
q
) = 0 be a qth order

system with independent variables x and jet variables v
q
= (u, u

1
, ..., u

q
) corresponding

to dependent variables and their derivatives. Then this system satisfies the constant
rank conditions at (x0, v

q

0) = (x0, u0, u
1

0, ..., u
q

0) ∈ V (R) ⊆ Jq if there exist nonzero

constants α, β such that

(21) rank
∂R(x, v

q
)

∂(x, v
q
)

= α = rank
∂R

∂ v
q

, rank
∂R

∂ u
q

= β

in a neighbourhood of (x0, v
q

0) in the usual Euclidean norm. We call (x0, v
q

0) a

Euclidean point.
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Involution enables a local existence and uniqueness theorem (the Cartan-Kähler
Theorem) to be stated for the system [3]. It has been used to determine consistent
initial conditions for the numerical solution of systems.

In this article we confine ourselves, unless otherwise stated, to linear homoge-
neous systems of pde. The constant rank conditions are then satisfied automatically
except at a lower (< n) dimensional set of non-Euclidean points in the space of in-
dependent variables. The more complicated situation encountered in non-linear
systems, of decomposition into components of different dimensions does not occur.
As a special case of the Cartan-Kuranishi prolongation theorem [3] we have:

Theorem 3.1 (Cartan-Kuranishi Prolongation Theorem). At regular points a
linear homogeneous system becomes involutive after a finite number of projections
and prolongations. That is given an input system R = 0 there exist Cr, ...C2, C1

with Cj = E or Cj = D for each j:

(22) Cr...C2C1(R)

is an involutive system of order greater than or equal to q except at a lower (< n)
dimensional set of non-Euclidean points in the space of independent variables.

Typical symbolic implementations to obtain involutive systems try to keep the
order of the systems as low as possible through use of symbolic elimination (as
is the case with the RifSimp algorithm). Symbolic implementations of involutive
form algorithms use Gröbner Bases, symbolic Gauss Elimination or Ritt reduction
to perform the symbolic eliminations [20].

The approach which will be described here does not use symbolic elimination,
and instead constructs prolonged systems DkR and finds a l which for some k, yields
ElDkR as an involutive system (in other words we always apply prolongations first).
To prove that such a k, l exist we need the following easily derived results concerning
dimensions and permuting D and E.

Theorem 3.2 (Monotonicity Properties of D and E). Given a system R the
following properties hold:

(23) R ⊆ S ⇒ DR ⊆ DS and ER ⊆ ES;

(24) EDR ⊆ V (R), EDR ⊆ DER;

(25) dimEl+1DkR ≤ dim ElDkR, dim El+1Dk+1R ≤ dim ElDkR.

Proof. The property R ⊆ S ⇒ DR ⊆ DS and ER ⊆ ES follows directly
from the definitions of D and E.

Note that EDR = {(x, u, u
1
, ..., u

q
) ∈ Jq : R(x, u, u

1
, ..., u

q
) = 0, Dxj R = 0} ⊆

V (R), so we have the first property in (24). So given (x, u, u
1
, ..., u

q
) ∈ EDR then

(x, u, u
1
, ..., u

q
) ∈ V (R), so (x, u, u

1
, ..., u

q−1
) ∈ ER. Therefore for some w

q+1
we have

(x, u, u
1
, ..., u

q
, w
q+1

) ∈ DER. Thus EDR ⊆ DER and the second property of (24) is

proved.
We have dim El+1DkR ≤ dim ElDkR since dim ES < dim S for any system S.

Let S = DkR, then since EDS ⊆ V (S) from (24) we have dim EDS ≤ dim S. By
repeated application of this property we obtain dim El+1DS ≤ dim ElS. Conse-
quently we have the monotonicity property dim El+1Dk+1R ≤ dim ElDkR. ¤



DETERMINATION OF APPROXIMATE SYMMETRIES OF DIFFERENTIAL EQUATIONS 9

Theorem 3.3 (Projected Involutive Systems). For a given linear homogeneous
system of pde there exist non-negative integer l, and an integer 0 ≤ k ≤ l such
that EkDlR is involutive except at a lower (< n) dimensional set of non-Euclidean
points in the space of independent variables.

Proof. Applying theorem 3.1, there exist C1, . . . , Cr where each Cj is either
D or E such that Cr · · ·C2C1(R) is an involutive system. Let k = #j such that
Cj = D and l = #j such that Cj = E then 0 ≤ l ≤ k since the total order of the
system q + k − l ≥ q.

From the repeated application of the permutation rules (24) we have

(26) ElDkR ⊆ Cr...C2C1R.

We will prove that ElDkR = Cr...C2C1R. Suppose by contradiction that ElDkR 6=
Cr...C2C1R and let w ∈ Cr...C2C1R\ElDkR. Since w ∈ Cr...C2C1R by the Cartan-
Kähler Theorem [3] there exists a local analytic solution passing through w. How-
ever such a solution must also satisfy ElDkR. But w 6∈ ElDkR contradicting the
existence of a local solution. Hence:

(27) ElDkR = Cr...C2C1R

is an involutive system. ¤

The symbolic algorithm on which our symbolic-numeric method is based is to
determine the k, l whose existence is given above, such that ElDkR is involutive.
However the classical tests for involution, for example the classical elimination test:

(28) dim EDElDkR = dim ElDkR

together with the classical involutive symbol test, depend on systems which are
not in the form EsDrR. Our need to develop tests for involution based solely on
systems of the form EsDrR motivates us to define a projectively involutive system
in the following manner.

Definition 3 (Projectively Involutive System). A differential system ElDkR
is said to be projectively involutive if it passes the projective elimination test:

(29) dim El+1Dk+1R = dim ElDkR

and passes the projective involutive symbol test

(30) rankElDk+1R =
∑

j

jβj

where the βj ≡ β
(q+k−l)
j are the characters for the (q+k−l)-th order system ElDkR

in a δ-regular system of coordinates.

Theorem 3.4. If a system is projectively involutive if and only if it is involutive.

Proof. Suppose that ElDkR is projectively involutive.
Then the properties (24) and (26) imply:

(31) dim El+1Dk+1R ≤ dim EDElDkR ≤ dim ElDkR

and consequently from (29) that

(32) dim EDElDkR = dim ElDkR.

So the elimination test for classical involution is satisfied.
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Next we want to show that the projective involutive symbol test (30) implies the
classical involutive symbol test (20). Rewriting the ranks in terms of co-dimensions
we wish to show that

(33) Nq+k+1−l − dim ElDk+1R =
∑

j

jβj ⇒ Nq+k+1−l − dim DElDkR =
∑

j

jβj

In δ-regular coordinates, Nq+k+1−l − dim DElDkR ≥ ∑
j jβj , so we only need to

show that Nq+k+1−l − dim DElDkR ≤ ∑
j jβj , or equivalently that Nq+k+1−l ≤

dim DElDkR +
∑

j jβj . Now

(34) Nq+k+1−l = dim ElDk+1R +
∑

j

jβj ≤ dim DElDkR +
∑

j

jβj

by using the permutation properties of dimensions and consequently the symbol is
involutive.

Suppose that ElDkR is involutive. Then dim EDElDkR = dim ElDkR. Also
dim El+1Dk+1R ≤ dim EDElDkR = dim ElDkR.

Then repeated application of the properties (24):

(35) ElDk+1R ⊆ DElDkR

Then DElDkR is also involutive since any prolongation of an involutive system is
also involutive [13].

We will prove that ElDk+1R = DElDkR. Suppose by contradiction that
ElDk+1R 6= DElDkR and let w ∈ DElDkR\ElDk+1R. Since w ∈ DElDkR
by the Cartan-Kähler Theorem [3] there exists a local analytic solution passing
through w. However such a solution must also satisfy ElDk+1R. But w 6∈ ElDk+1R
contradicting the existence of a local solution. Hence:

(36) ElDk+1R = DElDkR.

Consequently applying E to (36) gives

(37) El+1Dk+1R = EDElDkR.

Since EDElDkR = ElDkR we have from (37) that dimEl+1Dk+1R = dim ElDkR
and so the projective elimination test is satisfied.

From (37) we have rank ElDk+1R = rank DElDkR, so ElDkR is projectively
involutive.

¤

In summary the symbolic algorithm on which our symbolic-numeric method
is based is as follows. A q-th order system is prolonged (differentiated) until a
projection of the prolonged system (of order ≥ q) satisfies the projected elimination
test. If any of these projections also satisfy the projected involutive symbol test,
then we have found an involutive system (without loss we can choose the minimum
order (≥ q) such system).
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4. Symbol-Numeric Differential Elimination Method

The method is outlined for linear homogeneous systems. A linear homogeneous
differential system can be written in the matrix form:

(38) B(q)(x) v
q
= 0, v

q
=




u
q

·
·
u
1

u




.

For example, consider again the determining system from our simple introduc-
tory example (7). When we write this system in matrix form, rounding the floats
for compactness of presentation, it becomes:



1 0 0 0 0 0 0 0 0 0 0 0

0 1 −2 0 0 0 13.416y 0 0 0 0 0

0 0 0 0 0 1 0 −5.0y3 10.0y3 6.708y 0 15.0y2

0 0 0 2 −1 1 15.0y3 0 6.708y 0 0 6.708




v
2

=




0

0

0

0




where v
2

is the transpose of the vector [ξyy, ηyy, ξxy, ηxy, ξxx, ηxx, ξy, ηy, ξx, ηx, ξ, η].

Successive prolongations (differentiations) of the system yield R,DR, D2R, ...,
and a sequence of corresponding linear homogeneous matrix systems:

(39) B(q)(x) v
q
= 0, B(q+1)(x) v

q+1
= 0, B(q+2)(x) v

q+2
= 0, ...

where the zero vector in the right hand side of each system has the appropriate
dimension for that system.

For linear homogeneous systems our hybrid symbolic-numeric approach is to
choose a random point x = x0, and substitute it into the sequence of systems above.
This yields a sequence of constant matrix systems:

(40) B(q)(x0) v
q
= 0, B(q+1)(x0) v

q+1
= 0, B(q+2)(x0) v

q+2
= 0, ...

For each prolongation, DkR, the projected systems ElDkR, l = 0, 1, ..., k, are
numerically constructed, by replacing the symbolic projection operator E with a
numeric projection operator Ê. This results in the family of systems Êl(Dk(R)).

The numerical implementation of the projected involution test is briefly dis-
cussed. In the numerical implementation, the symbolic elimination operator E is
replaced with a numerical projection Ê. We first find the singular value decompo-
sition (SVD) of B(q+k)(x0) at a random point x0:

(41) B(q+k)(x0) = UΣV t

using one of the available numerical packages (in our case the NAG library). Here
U and V are unitary matrices.

Σ is a diagonal matrix whose diagonal entries, called singular values, are real
decreasing non-negative numbers σ1 ≥ σ2 ≥ . . .. The submatrix of V t obtained
by deleting the first rank(B(q+k)(x0) rows of V t is a basis for the Null Space of
B(q+k)(x0).
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When dealing with numeric coefficients, the matrices B(q+k)(x0) contain float-
ing point numbers. Instead of computing an exact rank, we compute an approxi-
mate rank by computing the SVD B(q+k)(x0) = UΣV t. The approximate rank r
is the number of singular values bigger thant a fixed tolerance.

Deleting the first r rows of V t yields an approximate basis for the Null Space of
B(q+k)(x0). This yields an estimate for dim (DkR). To estimate dim(Ê(DkR)) the
components of the approximate basis for DkR corresponding to the highest order
((q+k)th order) derivatives are deleted. This projected basis yields an approximate
spanning set for Ê(DkR). Proceeding in the same way, deleting components corre-
sponding to highest order jet variables from the approximate spanning set just ob-
tained, yields an approximate spanning set for Ê2(DkR), and then for (Ê3(DkR)),
etc. Application of the SVD to each of these approximate spanning sets yields
the approximate dimensions of E(DkR), E2(DkR), E3(DkR), .... In this way the
dimensions necessary for the application of the approximate projected elimination
test (29) are determined.

To execute the projected involutive symbol test (20) bases for the spaces E(DkR)
are first constructed as above. Then the subspaces of their symbols are extracted
by using the SVD based Subspace Intersection Algorithm described in [6]. The in-
teger from the left hand side of this test is easily approximated using the methods
discussed above. The approximation of the β

(q)
k is more complicated. In this case,

the symbol, or rather approximate bases for each of the subspaces corresponding
to the β

(q)
k are determined by further use of the SVD based Subspace Intersection

Algorithm [6].

5. Examples

5.1. yxx + 6.708203932yyx + 5y3 = 0. When the symbolic-numeric method
is applied to (7) we get the table of dimensions:

Table 1: dim ÊlDkR for (6)

k = 0 k = 1 k = 2
l = 0 8 8 8
l = 1 6 8 8
l = 2 6 8
l = 3 6

We have calculated slightly more than needed here, by calculating an additional
projection. This enables us to calculate the symbol dimensions via:

(42) dim(Symbol El(DkR)) = dim El(DkR)− dim El+1(DkR)

When dim(Symbol El(DkR)) = 0, or equivalently when that the symbol has
full rank, it is easily shown that the symbol of El(DkR) is involutive [13], so that
the projected involutive symbol test amounts to testing:

(43) dim El(DkR) = dim El+1(DkR)

in this case (which occurs in this paper).
We seek the smallest k such that there exists an l = 0, ..., k with ÊlDkR

approximately involutive (choosing the largest such l if there are several such values
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for the given k). Passing the projected elimination test (29), amounts to finding
the first column with an equal entry in the next column entry with an neighboring
equal entry diagonally downwards to its right with both entries being on or above
the main diagonal k = l. This first occurs for k = 0 and l = 0. However in this
case the version of the involutive symbol test in the form (43) is not passed.

At the next prolongation k = 1, the approximate projected elimination test is
passed when l = 0, l = 1. Examining the dimensions of the symbol shows that
the involutive symbol test is passed when l = 1 (the underlined entry in Table 1).
Consequently EDR is approximately involutive, and we expect approximately an
8 dimensional solution space and symmetry group. This result coincide with the
dimension expected for the case α =

√
45 whose approximate value is 6.708203932.

This example shows that the algorithm was able to determine the dimension of
the symmetry group of the the close-by equation yxx +

√
45yyx +5y3 = 0. However,

to be able to speak properly of close-by systems, we would need to introduce a notion
of distance between systems. This challenging topic is the focus of a forth-coming
paper.

5.2. yxx + 7.1yyx + 5y3 = 0. Another case is if we choose a different value
of the parameter, say α = 7.1 then for

(44) yxx + 7.1 yyx + 5 y3 = 0

we obtain using the symbolic-numeric method:

Table 2: dim ÊlDkR for (44)

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5
l = 0 8 8 6 3 2 2
l = 1 6 8 6 3 2 2
l = 2 6 6 3 2 2
l = 3 4 3 2 2
l = 4 3 2 2
l = 5 2 2
l = 6 2

Applying the same process as in Section 5.1, we conclude that ÊlDkR is a
approximately involutive for k = 4 and l = 4 (the underlined entry in Table 2).
Consequently E4D4R is approximately involutive, and we expect approximately a 2
dimensional solution space and symmetry group. This result is consistent with the
one we found by the symbolic substitution strategy, namely that the case α 6= √

45,
there should be a 2 dimensional symmetry group.

5.3. Test Examples from the Kamke Collection. Kamke [9] provided a
large collection of ode with interesting features (usually amenable to some ana-
lytical solution technique). This set has become popular as a suite for testing the
effectiveness of ode symbolic solving software. Many of the ode have symmetries,
and systematic methods using invariants of the symmetries, can be used to assist in
integrating them. Thus they are also used as a suite to bug-check and test software
to reduce the overdetermined systems for the symmetries of the ode.

We took, fairly randomly, 50 ode from Kamke’s collection, and generated the
overdetermined systems of PDE for their symmetries using the Maple’s DEtools[odepde]
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command. ode with parameters in them, had integer values substituted for the
parameters, since our method does not currently allow for parameters.

The 50 overdetermined systems were symbolically reduced (there were no float-
ing point quantities in the systems), without difficulty by the Maple differential
elimination package RifSimp. Using the RifSimp function initialdata, the number
of parameters in the solution spaces of the systems (i.e. the dimensions of their
symmetry groups) were determined. Additionally the dimensions of the projected
spaces both for the system and its symbol were constructed at involution, symbol-
ically, to provide exact data to test the output of our symbolic-numeric method.

We briefly mention that one of the methods we used to detect numerical in-
stability, was lack of monotonicity in the tables of dimensions for the projected
systems and their symbol spaces. In particular the dimensions of the projected sys-
tems must decrease (non-strictly) from on downwards sloping diagonals and also
from top to bottom along the columns of the projected dimension table.

Using a tolerance of 10−9, and performing calculations with Maple’s Digits :=
15, we applied our symbolic-numeric method to the 50 examples.

In the initial versions of the program, 45 of the 50 cases ran successfully. The
remaining 5 cases exhibited instability for the symmetries of ode 24, 26, 27, 28, 33
had high degree monomial terms. ode 26 y ′′ + y ′ + 2 x3y8 = 0, had the highest
degree monomial (an 11th degree monomial) in Table 3. We conjectured that the
instability was due to either very large (or very small) entries in the matrices after
substitution of the random points with values greater than 1 (less than 1). This
would camoflarge linear dependencies and independencies in the system.

This motivated us to substitute random points of modulus 1 in the complex
exponential form exp(iθj), and in some cases random real numbers in a sufficiently
small real interval about 1. These changes removed the instability observed in the
remaining cases and gave results consistent with those determined by the (exact)
symbolic differential elimination algorithms.



ode k l dim(G)

1 y ′′ − y2 = 0 5 5 2
2 y ′′ − 6 y2 − x4 = 0 7 7 0
3 y ′′ − 6 y2 − x = 0 7 7 0
4 y ′′ − 6 y2 + 4 y = 0 6 6 1
5 y ′′ + y2 + 2 x + 3 = 0 7 7 0
6 y ′′ − 2 y3 − yx + 1 = 0 5 5 0
7 y ′′ − y3 = 0 4 4 2
8 y ′′ − 2 y3 + 4 yx− 2 = 0 5 5 0
9 y ′′ + 4 + 2 yx + 3 y + y3 = 0 5 5 0
10 y ′′ + 4 + 2 y2 + 3 y + y3 = 0 4 4 1
11 y ′′ + x4y9 = 0 4 4 1
12 y ′′ y − 1 = 0 4 4 2
13 y ′′ y = 0 1 0 8
14 y ′′ y − x2 = 0 4 4 1

15 2(1 + x2)y ′′ − xy ′2(x + 4y ′) + 2(x + y ′)y ′ − 2y = 0 4 4 0

16 y ′′′ − �1− x3y ′
�3

= 0 2 2 1

17 y ′′ − y′2
y+4

− y′
x+2

= 0 1 0 8

18 y ′ − y = 0 0 0 ∞
19 y ′′′′ + 9 y = 0 2 2 6
20 y ′′ − 3 y ′ − y2 − 2 y = 0 6 6 1
21 y ′′ − 7 y ′ − y3 + 12 y = 0 4 4 1
22 y ′′ + 5 y ′ − 6 y2 + 6 y = 0 5 5 2
23 y ′′ − 3 y ′ − 2 y3 + 2 y = 0 4 4 2

24 y ′′ − 7
2

y ′ − 45
16

y
�
y9 − 1

�
= 0 4 4 1

25 y ′′ + y ′ + 2 y8 = 0 4 4 1
26 y ′′ + y ′ + 2 x3y8 = 0 5 5 0
27 x4y ′′ + y8 = 0 4 4 1
28 x4y ′′ − x

�
x2 + 2 y

�
y ′ + 4 y2 = 0 4 4 2

29 x4y ′′ − x2 (x + y ′) y ′ + 4 y2 = 0 4 4 1

30 x4y ′′ + (xy ′ − y)3 = 0 1 0 8
31 y ′′ + yy ′ − y3 + y = 0 4 4 1
32 y ′′ + (y + 3) y ′ − y3 + y2 + 2 y = 0 4 4 2
33 x4y ′′ +

�
x4y + 3 x3

�
y ′ − x4y3 + x3y2 + 2 x2y = 0 4 4 1

34 y ′′ + 2 yy ′ + xy ′ + y = 0 5 5 0
35 y ′′ + 2 yy ′ + x

�
y ′ + y2

�− 1 = 0 5 5 0
36 y ′′ + 3 yy ′ + y3 + yx− 1 = 0 1 0 8
37 y ′′ + (3 y + x) y ′ + y3 + xy2 = 0 1 0 8
38 y ′′ − 3 yy ′ − 3 y2 − 4 y − 2 = 0 4 4 1
39 y ′′ − (3 y + x) y ′ + y3 + xy2 + x2y + x4 = 0 1 0 8
40 y ′′ − 2 yy ′ = 0 4 4 2
41 y ′′ + yy ′ + 2 y3 = 0 4 4 2
42 y ′′ + x2y ′ + x3 = 0 1 0 8

43 y ′′ + y ′2 + 2 y = 0 4 4 1

44 y ′′ + y ′2 + 2 y ′ + 3 y = 0 4 4 1

45 y ′′ + y ′2 + 2 y ′ + 3 y3 = 0 4 4 1

46 y ′′ + y ′2 + 2 x3y = 0 5 5 0

47 y ′′ + y ′2 + 2 = 0 1 0 8

48 y ′′ + yy ′2 + 2 y = 0 4 4 1

49 y ′′ + x2y ′2 + y ′ = 0 4 4 1

50 4 x2y ′′ − x4y ′2 + 4 y = 0 4 4 1

Table 3: Statistics for application of Symbolic-Numeric Method to 50 Kamke ode where

k, l are integers such that ElDkR is approximately involutive. dim(G) is the dimension of the

symmetry group of the ode calculated using the symbolic numeric results.
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