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Abstract

Moving frames chosen to be invariant under a known Lie group G provide a pow-
erful generalization of the idea of choosing G-invariant coordinates to cases where
G-invariant coordinates do not exist. Such G-invariant formulations are of great cur-
rent interest in areas such as Geometric Integration where G-invariant integrators
(e.g. symplectic integrators), can often substantially outperform non-invariant inte-
grators. They are also of substantial interest in applications where one would like
to factor out a known group.

One form of classical existence and uniqueness theory for analytic PDE referred to
(standard) commuting partial derivatives is that of Riquier, which was formulated
and generalized by Rust using a Gröbner style development.

We extend the Rust-Riquier existence and uniqueness theory to analytic PDE
written in terms of moving frames of non-commuting Partial Differential Operators
(PDO). The main idea for the theoretical development is to use the commutation
relations between the PDO to place them in a standard order. This normalization
is exploited to generalize the corresponding steps of the commuting Rust-Riquier
Theory to the non-commuting case.

Given an equivalence group G Lisle has given a G-invariant method for determin-
ing the structure of Lie symmetry groups of classes of PDE. Lisle’s method for such
group classification problems was illustrated on a number of challenging examples,
which lead to unmanageable expression explosion for computer algebra programs
using the standard (commuting) frame. He obtained new results, which for want
of an existence and uniqueness theorem for PDE in non-commuting frames, had to
be individually checked. We provide an existence and uniqueness theorem making
rigorous the output from Lisle’s method. For the finite parameter group case, the
output is reformulated in terms of the integration of a system of Frobenius type,
which can be numerically integrated by integrating an ODE system along a curve.
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1 Introduction

We consider analytic systems of partial differential equations (PDE) with inde-
pendent variables x = (x1, x2, ..., xm) and dependent variables u = (u1, ..., un).
We give existence and uniqueness theorems for systems written in terms of
differential operators ∂̃i of the form:

∂̃i =
m∑

j=1

aij(x, u)
∂

∂xj
, i = 1, ..., m, det(aij(x, u))m×m 6= 0. (1)

An easy computation shows that the ∂̃i satisfy commutation relations of the
form:

[ ∂̃i, ∂̃j ] =
∑

k

γk
ij∂̃k , 1 ≤ i ≤ j ≤ m, (2)

where the γk
ij are so-called structure functions of x, u and first order derivatives

of u. Thus the ∂̃i are generally non-commutative in comparison to the usual
commuting partial derivatives ∂

∂xj
(which will be abbreviated as ∂xj

or ∂j).

Any system of PDE can be written in terms of such a system of non-commutative
operators by inverting the relation (1).

It is not immediately clear why one would want to give up commutativity
to express PDE in terms of non-commuting operators (in a so-called mov-
ing frame of differential operators). The motivation is that a non-commuting
frame may enjoy properties not shared by the standard commuting frame. For
example such properties might be geometrical properties such as invariance
under a certain Lie group G. A special case is that of using polar coordinates
for cylindrically invariant problems (where the operators are ∂

∂θ
and ∂

∂r
and in

fact commute). A classic example of a moving frame which does not yield a
global coordinate system is the existence of a global coordinate system on the
Torus. This process of choosing appropriate coordinates to avoid unnecessar-
ily complicated expressions, has a long history. Given a G-invariant problem,
however, it is not possible to always choose G-invariant coordinates.

Cartan, with his method of moving frames, found a significant and far-reaching
generalization of such ideas (see [1, Chapt 5] for historical remarks and also the
foundational work of Tresse [33]). More recent works include those of Griffiths
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[10], and a new more general constructive approach was given to Moving Frame
Theory by Fels and Olver [7,8]. Given an arbitrary Lie group G the power of
the general method of moving frames is that under fairly weak conditions, on
some sufficiently prolonged space, a G-invariant frame exists.

A major motivation for our work was provided by work of Lisle [16] (also see
[17]). That work concerned the computation and exploitation of Lie symme-
tries of classes of differential equations. For example, in modelling diffusion,
one may be interested in classes of nonlinear diffusion equations of the form

ut =
(
K(u)ux

)
x

, (3)

where the diffusion is assumed to be nonlinear (Ku(u) = K̇(u) 6= 0). A com-
mon objective is to determine functional forms of the diffusion coefficient
K(u), capable of modelling physically important diffusion processes, for which
exact solutions of the diffusion PDE can be found. Lie group classification
methods can in theory determine the K(u) for which such nonlinear diffu-
sion PDE have large symmetry groups, and give procedures for identifying
corresponding classes of exact solutions.

Algorithms [26,27] based on commuting partial derivatives, exist for identi-
fying the size and structure of the symmetry groups of classes of PDE such
as (3). Computer implementations of the above algorithms using commuting
partial derivatives rely on differential elimination packages such as the Rif-
Simp, Diffalg and Diffgrob packages in Maple. These packages manipulate the
defining equations for infinitesimal Lie symmetries of the physical PDE of in-
terest. These defining equations are overdetermined linear homogeneous PDE
with coefficients depending on the so-called classification functions (e.g. the
K(u) in the PDE above). We direct the reader to the review article of Here-
man on symbolic packages for differential equations [12]. These differential
generalizations of Gröbner Bases [3], when applied to such systems, typically
build up coefficients involving derivatives of the classification functions. These
coefficients can become so large and complicated [16], that they can fail to ter-
minate in the available time and memory. This problem persists today, despite
considerable progress in both computer speed/memory and improvements in
differential elimination algorithms based on commuting PDO.

The idea of Lisle’s method [16,17] to address the expression explosion often
encountered in such classification problems, was to exploit easily determined
equivalence transformations that mapped one member of such a class to an-
other member (paradoxically, an easier problem, than that of determination
of symmmetries mapping a member to itself). For example it is easily seen
that the class of transformations:

x = βx′, t = t′, u = γu′ + α, β, γ 6= 0 (4)
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map the diffusion equation to γu′
t′ = γβ−2

(
K(γu′ + α)u′

x′

)
x′

. Hence the coef-

ficient K(u) is mapped to a new coefficient, given by K ′(u) = β−2K(γu′ +α).

Lisle’s method [16,17] exploits such equivalence transformations during the
process of finding symmetries by recasting the equations for symmetries in a
form which is invariant under the equivalence group. He was able to complete
group classification problems, which could not be done by computer algebra
methods based on commuting derivations. For these and other non-trivial
examples, the reader is directed to [16,17].

Another motivation for our work, is the revitalized interest in Cartan’s method
of moving frames, its applications and generalizations (see [21] and the review
paper [23]). Applications include: various forms of equivalence problem such
deciding when two objects are equivalent [4] under the projective group (a
fundamental problem in computer vision), and deciding when two differential
equations are equivalent by a change of variables. The design of group invariant
numerical methods is also an important application which falls under the new
area of geometric integration [11].

In his review Olver [23, page 2-3] states that “... any serious application ...
will rely on computer algebra”, and further that “large scale applications ...
will require the development of a suitable noncommutative Gröbner basis the-
ory for such algebras, complicated by the non-commutativity of the invariant
differential operators ...”.

In this paper we give existence and uniqueness theorems for systems of an-
alytic PDE in a certain form with respect to moving frames of differential
operators. This analytic non-commutative Gröbner-style theory is a partial
answer to Olver’s open problem stated above. It allows nonlinearity which
is not present in the linear differential-algebraic theory we presented in [9].
That linear theory did however allow the coefficient rings to be noncommu-
tative which is relevant in non-commutative physical field theories having for
example, non-commutative matrix coefficients.

We briefly discuss the dichotomy between such analytic and differential al-
gebraic approaches. Rust [30,31] has given a Gröbner style development of
Riquier Theory and generalized this to the nonlinear case. This work has
helped bring analytic differential elimination methods (in the spirit of Riquier)
and differential-algebraic approaches (as initiated by Ritt and Kolchin) closer
together. Still neither theory strictly contains the other. Specializing analytic
functions to polynomials, does not yield all the results in differential algebra.
Conversely the setting of Differential Algebra at this time, is too narrow to
yield the full generality of the analytic approaches. Joint work with Hubert
is ongoing to try to bring both approaches into a common theoretical setting.
For the moment parallel developments seem necessary.
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The main idea of our theory is to use the commutation relations to put the op-
erators in a normal order modulo lower order terms. Then a non-commutative
theory is built by mimicking the commutative theory across leading order
derivatives (the commutative theory of Rust [31]). In particular we exploit a
bijection between the commuting partial derivatives and the non-commutative
differential operators ∂̃i (see Lisle and Reid (2000) [17, Appendix A] in which
the treatment detailed in the current article is first sketched). We give a
rigorous foundation and justification for the group classification-equivalence
method of Lisle [16,17]. Our results are not quite as general as those that
would be required for a complete treatment of Olver’s open problem, but are
at the same time applicable to frames of operators enjoying geometric features
other than G-invariance. In particular a moving frame in Olver’s approach is
a G-invariant map from a manifold to a group. The difficulty of establishing
a rigorous noncommutative Gröbner basis theory for the moving frames case
has become apparent since the seminal work of Mansfield [18], which produces
interesting results, but similarly to the less ambitious work of Lisle, lacks an
existence and uniqueness theorem.

2 An Example - the Nonlinear Diffusion Equation

As a running example we treat the group classification problem for the nonlin-
ear diffusion equation (3). That problem is to identify for all possible functional
forms of the diffusion coefficient and the corresponding Lie symmetry algebras
of vector fields X = ξ(x, t, u)∂x + τ(x, t, u)∂t + η(x, t, u)∂u leaving invariant
(3).

The components ξ, τ , η of the symmetry vector field obey defining equations
which can be automatically produced by many computer algebra packages

τx = τu = ξu = ηuu = 0 (5a)

K(2ξx − τt) − K̇η = 0 (5b)

K(2ηxu − ξxx) + 2K̇ηx + ξt = 0 (5c)

Kηxx − ηt = 0. (5d)

For given K(u), this is an overdetermined linear homogeneous system. This
system is simple enough to have all of its cases analyzed using differential
elimination packages based on commuting PDO and is used for purposes of
illustration (see [24] for first time that this PDE was group classified).

We seek to write the defining equations (5) for its symmetries in a form in-
variant under the action of the equivalence group (4).
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Following the method of Lisle [16] leads to the following frame:

∂̃1 := K1/2∂x , ∂̃2 := ∂t , ∂̃3 := K/K̇ ∂u . (6)

The reader can verify that this frame of PDO is invariant under the equivalence
group For example ∂̃1 = K1/2∂x = β(K ′)1/2 1

β
∂x′ = (K ′)1/2∂x′. Lisle’s method

also requires introducing new infinitesimals defined by θ1∂̃1 + θ2∂̃2 + θ2∂̃2 =
ξ∂x + τ∂t + η∂u yielding

θ1 := K−1/2ξ , θ2 := τ , θ3 := K̇/K η (7)

which the reader can verify are invariant. Lisle’s method also yields the scalar
equivalence group invariant

J :=
KK̈

K̇2
− 1 , ∂̃1J = 0 , ∂̃2J = 0 (8)

Computation of the structure relations for the frame by making the replace-
ments (6) yields

[∂̃1, ∂̃3] = −1
2
∂̃1 , [∂̃1, ∂̃2] = 0 , [∂̃2, ∂̃3] = 0 . (9)

The defining system (5) becomes

∂̃3θ
1 + 1

2
θ1 = 0 ∂̃1θ

2 = 0 ∂̃1∂̃1θ
3 − ∂̃2θ

3 = 0

∂̃2θ
2 − 2∂̃1θ

1 + θ3 = 0 ∂̃1∂̃3θ
3 − 1

2
∂̃1∂̃1θ

1 − (J − 1)∂̃1θ
3 + 1

2
∂̃2θ

1 = 0

∂̃3θ
2 = 0 ∂̃3∂̃3θ

3 − J∂̃3θ
3 − ∂̃3Jθ3 = 0 (10)

For example ξu = 0 implies that
(

K̇
K

∂̃3

) (
K1/2θ1

)
= 0 and that ∂̃3θ

1 + 1
2
θ1 = 0

by using ∂̃3K = K.

Our aim with the above system was not to give a detailed explanation of
how Lisle’s method (which is described elsewhere [16,17]), but instead to give
the reader some insight, on the origin of such systems written in terms of
non-commuting PDO.

The goal of the rest of the paper is to develop an existence and uniqueness
theory for analytic systems such as (10) which are expressed in terms of non-
commuting PDO.

3 Derivations

Let F be a field (R or C in practice) with characteric zero, x = (x1, · · · , xm)
be the independant variables and u = (u1, · · · , un) be the dependant variables
for a system of PDE.
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In the usual commutative approaches to differential algebra and differential
elimination theory [30,2], a set of indeterminates corresponding to the partial
derivatives is defined:

Ω = {vi
α | α = (α1, · · · , αm) ∈ N

m, i = 1, · · · , n} .

Each indeterminate of Ω corresponds to a partial derivative by:

vi
α ↔ (∂m)αm · · · (∂1)

α1ui(x1, · · · , xn) := ∂αui(x1, · · · , xn) .

As usual the commutative total derivative operators are then introduced to
act on members of Ω by a unit increment of the i-th index of their vector
subscript:

Div
k
α := vk

β .

where β = (α1, ..., αi + 1, ..., αn). The usual (commutative) total derivative
Dxi

≡ Di action on functions of {x} ∪ Ω is then given by:

Di = ∂i +
∑

v∈Ω

(Div)
∂

∂v
. (11)

The corresponding construction for the non-commutative case is as follows.

We suppose that there are n derivations ∂̃1, ..., ∂̃n which act on formal power
series in the xi with coefficients in F. The derivation operators do not neces-
sarily commute, that is, ∂̃i∂̃j 6= ∂̃j ∂̃i (e.g. see (9)).

Theorem 3.1 Since the ∂̃i are derivations, they are of the form:

∂̃i =
m∑

j=1

aij∂j where aij = ∂̃i(xj). (12)

PROOF. A derivation ∂̃i satifies ∂̃i(f + g) = ∂̃i(f) + ∂̃i(g) and ∂̃i(f g) =
∂̃i(f) g+f ∂̃i(g) where f and g are any power series. Using those two properties,
a derivation on the formal power series is uniquely defined by its action on
the variables xk. Since

∑m
j=1 aij∂j is a derivation (a linear combination of

derivations is a derivation) and satifies
∑m

j=1 aij∂j(xk) = aik = ∂̃i(xk), equation
(12) follows. 2

Consider the set of indeterminates

Ω̃ = {ṽi
α | α = (α1, · · · , αm) ∈ N

m, i = 1, · · · , n} .

Each indeterminate of this set corresponds to a derivation by:

ṽi
α ↔ (∂̃m)αm · · · (∂̃1)

α1ui(x1, · · · , xn) := ∂̃αui(x1, · · · , xn) .
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In contrast to the commutative case this correspondence only gives a subset
of the set of all derivations. However the commutation relations will enable us
to extend this correspondence to the whole set.

Note that the full set of derivations of dependant variables of order r contains
nmr members which is far greater than the corresponding number of r-order

derivations of the form above (which is n
(

r + m − 1

r

)
).

To be able to apply a reduction process (described in section 5), and prove
uniqueness and existence in Theorem 7.4, we impose:

Blanket Hypothesis 3.2 (Analyticity-Invertibility Assumption) Throughout
this paper we assume that the matrix (aij(x, u)) is an analytic function of x, u
with coefficients in F and is invertible in the domain we are interested in.

With Hypothesis 3.2, we have the following commutation rules:

∂̃i∂̃j − ∂̃j ∂̃i =
m∑

k=1

bk
ij ∂̃k (13)

where the bk
ij are analytic functions of x, u and first derivatives of u with values

in F.

PROOF. By replacing in ∂̃i∂̃j − ∂̃j ∂̃i the expressions ∂̃i and ∂̃j given by (12),
we get a linear combination of the ∂i (order 2 derivations are cancelled). By
inverting the matrix (aij(x, u)), each ∂k is itself a linear combination of the

∂̃k’s. Thus ∂̃i∂̃j − ∂̃j ∂̃i is a linear combination of ∂̃k’s. 2

Nontrivial examples of moving frames of PDO can be found in Lisle and Reid
[17], Mansfield [18] and Spivak [32].

From (12) it is natural to define the (non-commuting) formal total derivation
by:

D̃i =
m∑

j=1

aij(x, u)Dj (14)

By the commutation rule (13), any D̃j ṽ can be rewritten (normalized) as a
function of {x} ∪ Ω̃. Assuming this normalization gives as a consequence of
(11),(14)

D̃i = ∂̃i +
∑

ṽ∈Ω̃

(D̃iṽ)
∂

∂ṽ
(15)
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on functions of {x}∪Ω̃. As a consequence we can now extend our normalization
process to functions of {x} ∪ Ω̃.

Blanket Hypothesis 3.3 (Normalization Assumption for Derivations)
In this article, each time a derivation is applied to to a function of {x} ∪ Ω̃
we assume that the commutation rules are applied to get an expression only
involving elements of Ω̃.

For example, in system (10) all of the derivations are in Ω̃ except for ∂̃1∂̃3θ
3.

So using the commutation relation [∂̃1, ∂̃3] = −1
2
∂̃1 in (9) we can replace ∂̃1∂̃3θ

3

in (10) by ∂̃3∂̃1θ
3 − 1

2
∂̃1θ

3 so that the fifth equation of (10) is replaced with

∂̃3∂̃1θ
3 − 1

2
∂̃1∂̃1θ

1 − (J − 1
2
)∂̃1θ

3 + 1
2
∂̃2θ

1 = 0 . (16)

Denoting ∂̃α = ∂̃αm
m · · · ∂̃α1

1 and ∂α = ∂αm
m · · ·∂α1

1 where α = (α1, . . . , αm) ∈
Nm, we have the following property:

Theorem 3.4 (Bijection between derivations and partial derivatives)
Each derivation operator can be expressed as an invertible linear function of
partial differential operators.

PROOF. Using relation (12), any derivation monomial ∂̃α can be rewritten
as a linear combination of ∂α. Conversely, any derivation monomial ∂α can be
rewritten as a linear combination of ∂̃α’s using Hypotheses 3.2 and 3.3. 2

4 Rankings

As with any Gröbner style theory, rankings play a fundamental role.

Suppose ≺ is a total order on the set of (normalized) derivations Ω̃. For an
analytic function f of {x} ∪ Ω̃ = {x1, . . . , xm}∪ Ω̃ let hdf denote the greatest
derivation with respect the occurring in f . For α = (α1, · · · , αm) ∈ Nm, let
|α| = α1 + · · ·+ αm.

Definition 4.1 A positive ranking ≺ of Ω̃ is a total ordering on Ω̃ which is
compatible with differentiation and well-ordering:

∂̃αui ≺ ∂̃βuj ⇒ hdD̃γ ∂̃αui ≺ hdD̃γ ∂̃βuj (17)

∂̃αui ≺ hdD̃γ ∂̃αui for |γ| 6= 0. (18)
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Throughout this paper a positive ranking ≺ is fixed. Moreover, we suppose
that ≺ is compatible with the total degree ordering that is:

|α| < |β| =⇒ ∂̃αui ≺ ∂̃βuj for any 1 ≤ i, j ≤ n (19)

Thanks to conditions (19) and (13), we have the following property:

If ∂̃αui is the highest derivative of f, then hd(D̃βf) = ∂̃α+βui (20)

There obviously exist positive rankings satisfying (19) such as:

∂̃αui ≺ ∂̃βuj ⇐⇒ |α| < |β|, or

|α| = |β|, and i < j, or

|α| = |β|, i = j and α1 < β1, or

|α| = |β|, i = j, α1 = β1, · · · , αk−1 = βk−1,

and αk < βk for some 2 ≤ k ≤ m − 1.

As a consequence on our example this ranking implies:

θ1 ≺θ2 ≺ θ3 ≺ ∂̃1θ
1 ≺ ∂̃2θ

1 ≺ ∂̃3θ
1 ≺ ∂̃1θ

2 ≺ ∂̃2θ
2 ≺ ∂̃3θ

2 ≺ ∂̃1θ
3 ≺ ∂̃2θ

3 ≺ ∂̃3θ
3

≺ ∂̃1∂̃1θ
1 ≺ ∂̃2∂̃1θ

1 ≺ ∂̃2∂̃2θ
1 ≺ ...

According to this ranking, the highest derivation in each equation of (10) with
its 5-th equation replaced with (16) can be determined. Solving each equation
for its highest derivative with respect to the above ranking yields the system:

∂̃3θ
1 = −1

2
θ1 ∂̃1θ

2 = 0 ∂̃1∂̃1θ
3 = ∂̃2θ

3

∂̃2θ
2 = 2∂̃1θ

1 − θ3 ∂̃3∂̃1θ
3 = 1

2
∂̃1∂̃1θ

1 + (J − 1
2
)∂̃1θ

3 − 1
2
∂̃2θ

1

∂̃3θ
2 = 0 ∂̃3∂̃3θ

3 = J∂̃3θ
3 + (∂̃3J)θ3 (21)

To check the conditions for our existence and uniqueness theorem for such
systems in solved form, we need to determine if certain integrability conditions
are satisfied, or reduced to zero modulo the system. Hence in the next section
we define and study a suitable reduction process.

5 Reduction

Let f be an analytic function of {x} ∪ Ω̃. We say that f is ≺-monic if f has
the form f = hdf + g, with hdg ≺ hdf . For example the system (21) above
is ≺-monic.
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In the remainder of the paper, let a finite set M of ≺-monic analytic functions
of {x} ∪ Ω̃ be fixed. (Other restrictions will be made on M in section 6).

For g, h two analytic functions of {x} ∪ Ω̃, we say that h is a one step reduction
of g if there exist f ∈ M and α ∈ N

m such that, with ṽ∗ := hdD̃αf, h can be
given by substituting ṽ∗ − D̃αf for ṽ∗ in g:

h = g(x, (ṽ)ṽ 6=ṽ∗, (ṽ
∗ − D̃αf)ṽ=ṽ∗).

This is denoted g 7→(α,f) h, or simply g 7→ h.

We say that g reduces to h if h can be obtained from g by a finite chain of one
step reductions. That is, g reduces to h if there exists a positive integer k and
k functions h1, · · · , hk of {x} ∪ Ω̃ such that

g = h1 7→ h2 7→ · · · 7→ hk = h.

We write g 7→µ h or g 7→ h, where µ is of the form

µ = ((α1, f1), · · · , (αk−1, fk−1))

with hi 7→
(αi,fi) hi+1. We also write h = red(g, µ).

We say that g completely reduces to h if g reduces to h and h reduces to h′

implies that h = h′.

Remark 5.1 The complete reduction may not be unique since may exist two
different functions h and h such that g completely reduces to both h and h.

Example 5.2 As a consequence of the system (21) the following integrability
condition is satisfied D̃2(∂̃3θ

2)− D̃3(∂̃2θ
2) = D̃2(0)− D̃3(2∂̃1θ

1 − θ3). Normal-
ization of this equation using commutation relations implies that −D̃3(2∂̃1θ

1−
θ3) = 0. Reduction of this last equation with respect to ∂̃3θ

1 = −1
2
θ1 and use

of the normalization yields ∂̃3θ
3 = 0. Using this relation to reduce ∂̃3∂̃3θ

3 =
J∂̃3θ

3 + (∂̃3J)θ3 yields (∂̃3J)θ3 = 0 and in summary we have obtained the
equations

∂̃3θ
3 = 0 , (∂̃3J)θ3 = 0 . (22)

The ad hoc simplification achieved here is only given as an illustration of how
reduction can be used to uncover hidden relations from a system. Determina-
tion of all the hidden relations, awaits the full development of the theory in
the next few sections.
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6 Parametric Derivations, Principal Derivations and Non-commutative
Riquier Bases

Recall that M is a finite set of ≺-monic analytic functions of {x} ∪ Ω̃. As
usual all derivations are assumed to be normalized.

The principal derivations of M are defined as

PrinM := {ṽ ∈ Ω̃| there exist f ∈ M and α ∈ N
m with ṽ = hdD̃αf}

The parametric derivations of M, which we denote ParM, are those deriva-
tions that are not principal.

All leading derivations of elements in M are in PrinM, and it is easily shown
that PrinM are elements of Ω̃ which contain some highest derivation as a
factor. Therefore a reduction h of g is a complete reduction if and only if h
depends on {x} ∪ ParM only.

In this paper, fix a non-empty open subset U of F{x}∪Ω̃. Moreover, we now
assume that M is a set of ≺-monic analytic functions which are polynomials
in PrinM.

Lemma 6.1 Let f, f ′ ∈ M and g be an analytic function on U that is a
polynomial in PrinM. If there exist non-empty one step reductions: h =
red(g, (α, f)), k = red(g, (β, f ′)) and hdD̃αf = hdD̃βf ′, then:

(1) if hdD̃αf ≺ hdD̃βf ′ then red(h, ((β, f ′), (α, f))) = red(k, (α, f)).
(2) if D̃αf − D̃βf ′ →µ 0, then red(h, µ) = red(k, µ)

In both cases, there exists an analytic function l such that h → l and k → l.

PROOF. Let ṽ∗ = hdD̃αf and ṽ∗∗ = hdD̃βf ′. If ṽ∗ ≺ ṽ∗∗, we have

red(k, (α, f)) = g(x, (ṽ)ṽ 6=ṽ∗,ṽ∗∗, (ṽ
∗ − D̃αf)ṽ=ṽ∗, (ṽ

∗∗ − D̃βf ′(x, (ṽ)ṽ 6=ṽ∗,

(ṽ∗ − D̃αf)ṽ=ṽ∗)ṽ=ṽ∗∗)

= red(h, ((β, f ′), (α, f)))
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If ṽ∗ = ṽ∗∗, then

red(h, µ) = g(x, (red(ṽ, µ))ṽ 6=ṽ∗ , (red(ṽ − D̃αf, µ))ṽ=ṽ∗)

= g(x, (red(ṽ, µ))ṽ 6=ṽ∗ , (red(ṽ, µ) − red(D̃αf, µ))ṽ=ṽ∗)

= g(x, (red(ṽ, µ))ṽ 6=ṽ∗ , (red(ṽ, µ) − red(D̃βf ′, µ))ṽ=ṽ∗)

= red(k, µ).

2

Lemma 6.2 (Diamond Lemma) Fix ṽ ∈ Ω̃. Suppose that for all α, α′ ∈
Nm and f, f ′ ∈ M with hdD̃αf = hdD̃α′

f ′ ≤ ṽ, we have D̃αf − D̃α′

f ′ → 0.
Let g be an analytic function on U that is polynomial in PrinM with hdg ≤ ṽ,
and two non-empty reductions g → h, g → k. Then there exists l with h → l
and k → l. In particular, g has an unique complete reduction.

PROOF. The proof is very similar to the proof of the uniqueness of the
normal form of a polynomial modulo a Gröbner basis (for example, see [3]).
Also see [30, page 67] where it is given in the commutative case. 2

The use of the bound ṽ on the highest derivative is needed later in the proofs
of Lemma 8.1 and Theorem 8.5.

Definition 6.3 M is called a non-commutative Riquier Basis if for all α, α′ ∈
Nm and f, f ′ ∈ M with hdD̃αf = hdD̃α′

f ′, the integrability condition D̃αf −
D̃α′

f ′ → 0.

From above lemmas, it is easy to see that:

Theorem 6.4 Suppose that M is a non-commutative Riquier Basis and g is
an analytic function on U that is polynomial in PrinM. Then g has an unique
complete reduction.

We denote the complete reduction of g by red(g,M).

7 The Formal Non-commutative Riquier Existence Theorem

Let f be an F-analytic function of {x} ∪ Ω̃, α = (α1, · · · , αm) ∈ Nm, and x0

be a point in Fm and let u(x) = (u1(x), · · · , un(x)) be a vector of formal power
series in F[[x − x0]]n.

13



If f is defined at the point (x0, (D̃αui(x0))
ṽi

α∈Ω̃
), let f [u](x) denote the formal

power series at x0 given by

f [u](x) := f(x, ((D̃αui(x))
ṽi

α∈Ω̃
).

where the subscript “ṽi
α ∈ Ω̃” indicates that D̃αui(x) is to be substituted in

the argument of f corresponding to ṽi
α for each ṽi

α ∈ Ω̃.

We illustrate these concepts with a simple example.

Example 7.1 Let m = n = 1 and x0 = 1. Here u1, x1, ∂̃1 and ∂1 are simply
denoted u, x, ∂̃ and ∂. The relation (12) is simply denoted ∂̃ = a(x)∂.

Let u(x) be the formal power series

u(x) = 1 + (x − 1) + 2!(x − 1)2 + · · · =
∞∑

k=0

k!(x − 1)k

and let f = ln(ṽ1
(1)) (recall that ṽ1

(1)[u](x) = ∂̃u(x)).

For k ≥ 1, we have ∂̃((x − 1)k) = a(x)k(x − 1)k−1. Differentiating u(x) term
by term (which is the definition of the derivative of a formal power series) we
obtain

ṽ1
(1)[u](x) = ∂̃(u(x)) = a(x)

∞∑

k=1

(k + 1) (k + 1)! (x − 1)k

Note that the ln(y) function is analytic at the constant term of the series u(x),
i.e. at the point y = 1. Thus, the series f [u](x) is well defined and equals:

f [u](x) = ln(ṽ1
(1)[u](x))

= −
∑∞

j=1
(−1)j

j
(ṽ1

(1)[u](x) − 1)j

= −a(x)
∑∞

j=1
(−1)j

j

(∑∞
k=1(k + 1)(k + 1)!(x − 1)k

)j

We say that u(x) ∈ F[[x − x0]]n (for some x0 ∈ F
m) is a formal power series

solution to a system of analytic PDE if f [u](x) is well-defined and f [u](x) = 0
for all f in the system.

Suppose that u(x) ∈ F[[x − x0]]n is a formal power series solution to M.
Clearly, D̃αf [u](x) = 0 for all α ∈ Nm and f ∈ M. Therefore for g, h analytic,
if h is a one step reduction of g then h[u](x) is well-defined if and only if
g[u](x) is well-defined and in this case g[u](x) = h[u](x). Furthermore, u is a
formal power series solution to M∪{g} iff u is a formal power series solution
to M∪ {h}.

14



A specification of initial data for M is a map

φ : {x} ∪ Par M → F

For x0 ∈ Fm, we say that φ is a specification at x0 if

φ(x) := (φ(x1), φ(x2), · · · , φ(xm)) = x0.

For g a function of {x} ∪ Ω̃, let φ(g) be the function of the principal derivations
obtained from g by evaluating x and the parametric derivations using φ:

φ(g) := g(φ(x), (φ(ṽ))ṽ∈ParM).

Lemma 7.2 (Uniform Reduction) let G := {g1, g2, · · · , gk} be a finite set
of functions of {x} ∪ Ω̃. Then there exists µ such that red(g, µ) is a complete
reduction of g for all g ∈ G.

PROOF. By Dickson’s lemma complete reductions always exist and we can
choose µ1 such that red(g1, µ1) is a complete reduction of g1. Recursively
construct red(gj, (µ1, µ2, · · · , µj)) which for j = 2, · · · , k, is a complete re-
duction of red(gj, (µ1, · · · , µj−1)) and hence a complete reduction of gj. Set
µ = (µ1, · · · , µk). Thus for j ∈ {1, · · · , k} we have

red(gj, µ) = red(red(gj, (µ1, · · · , µj)), (µj+1, · · · , µk)) = red(gj, (µ1, · · · , µj)),

which is a complete reduction of gj by construction. 2

Corollary 7.3 If M is a non-commutative Riquier Basis and G is a finite set
of functions of {x} ∪ Ω̃, then there exists µ such that red(g, µ) = red(g,M)
for all g ∈ G.

Theorem 7.4 (Formal Non-commutative Riquier Existence Theorem)
Let M be a non-commutative Riquier Basis such that each f ∈ M is polyno-
mial in the principal derivations (e.g. M is a reduced non-commutative Riquier
basis). For x0 ∈ Fm, let φ be a specification of initial data for M at x0 such
that φ(f) is well-defined for all f ∈ M. Then there is an unique formal power
series solution u(x) ∈ F[[x− x0]]n to M at x0 such that D̃αui(x0) = φ(ṽi

α) for
all ṽi

α ∈ ParM. Furthermore, every formal power series solution to M at x0

may be obtained in this way for some φ.

PROOF. By the bijective correspondence of Theorem 3.4, there exists a n-
uple formal power series u(x) ∈ F[[x − x0]]n satisfying

D̃αui(x0) := φ(red(ṽi
α,M)) (23)
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for i ∈ {1, · · · , m}.

Since u(x) must satisfy equation (23) for all i ∈ {1, · · · , n} and α ∈ Nm and
since by Theorem 3.4 we have a bijection between derivations and partial
derivatives the formal power series solution (if it exists) is unique.

We now prove that u(x) is a formal power series solution of the system, which
will prove the existence part of the theorem.

(1) We have first to check that φ(red(ṽi
α,M)) is well-defined.

Note that φ(red(ṽi
α,M)) depends only on the parametric derivations and so

it is an element of F, so long as it is well-defined.

(2) Then we have to verify that u(x) is a formal power series solution to M.

Clearly, u(x) satisfies D̃αui(x0) = φ(ṽi
α) for all ṽi

α ∈ ParM. Now it suffices
to verify that D̃βf [u](x0) = 0 for all f ∈ M and β ∈ N

m. Hypothesis 3.2 will
imply Dβf [u](x0) = 0 for all f ∈ M and β ∈ Nm and consequently that f [u]
is the zero formal power series.

Fix f, β. We have

D̃βf [u](x0) = (D̃βf)(x0, (D̃βui(x0)))

= (D̃βf)(φ(x0), (φ(red(ṽi
α,M))))

= φ(D̃βf(x, (red(ṽi
α,M))))

Let Ω̃′ be the finite subset of Ω̃ on which D̃βf depends. By Lemma 7.2 there
exists µ such that for all ṽ ∈ Ω̃′

red(ṽi
α,M) = red(ṽi

α, µ).

Therefore

D̃βf [u](x0) = φ(D̃βf(x, (red(ṽi
α, µ))))

= φ(red(D̃βf(x, ṽi
α), µ)).

Note that red(D̃βf(x, ṽi
α), µ) depends only on the parametric derivations and

x. Hence it is a complete reduction of D̃βf(x, ṽi
α) and we have

red(D̃βf(x, ṽi
α), µ) = red(D̃βf(x, ṽi

α),M))

= red(D̃βf(x, ṽi
α), (β, f))

= 0
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Thus (D̃βf [u])(x0) = 0 as required.

This completes the proof of existence part of the theorem.

2

8 Sufficient Finite Sets of Integrability Conditions

Note that the Formal Non-commutative Riquier Existence Theorem 7.4 re-
quires the checking of infinitely many integrability conditions. In this section
we show that only finitely many integrability conditions need to be checked.

Lemma 8.1 (Reduction of a sum) Suppose h, k are polynomials in PrinM.
Suppose h →µ 0 and k →ν 0. Suppose further that for all α, α′ ∈ Nm and
f, f ′ ∈ M with hdD̃αf = hdD̃α′

f ′ ≤ hdk, we have D̃αf − D̃α′

f ′ → 0. Then
we have h + k → 0.

PROOF. There are two cases:

(1) If red(k, µ) is an empty reduction, then

red(h + k, (µ, ν)) = red(h, (µ, ν)) + red(k, (µ, ν))

= red(0, ν) + red(k, ν)

= 0 + 0

= 0

(2) If red(k, µ) is a non-empty reduction, say l = red(k, µ), then by Lemma
6.2 there exist j, l with 0 → j and l → j. Since 0 → j, we have j = 0 and
hence l → 0, say 0 = red(l, ρ). Then we have:

red(h + k, (µ, ρ) = red(h, (µ, ρ)) + red(k, (µ, ρ))

= red(0, ρ) + red(l, ρ)

= 0.

Therefore, h + k → 0, as required.

2
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Lemma 8.2 (Reduction of a Derivation) Take α ∈ Nm, f ∈ M, i ∈ {1, · · · , n}
and g an analytic function on U that is polynomial in PrinM. Let ṽ∗∗ =
hdD̃αf and let ṽ∗ be given by ṽ∗∗ = hdD̃iṽ

∗, if this is well-defined.

Then

red(D̃ig, (α, f)) = D̃i red(g, (α, f)) + red( ∂g
∂ṽ∗∗

, (α, f))D̃iD̃
αf

− red( ∂g
∂ṽ∗

, (α, f))D̃αf.

If ṽ∗ is not well-defined, then the last term is omitted in the above formula.

PROOF. By the definition of reduction we have:

red(g, (α, f)) = g(x, (ṽ)ṽ 6=ṽ∗∗, (ṽ
∗∗ − D̃αf)ṽ=ṽ∗∗). (24)

Therefore, using equation (15) and using the property that the operations red
commute with any ∂i or ∂

∂ṽ
yields

D̃i red(g, (α, f)) = red(∂̃ig, (α, f)) +
∑

ṽ 6=ṽ∗∗ red(∂g
∂ṽ

, (α, f))D̃iṽ

+ red( ∂g
∂ṽ∗∗

, (α, f))D̃i(ṽ
∗∗ − D̃αf).

(25)

Also by the definition of total derivation we have

D̃ig = ∂̃ig +
∑

ṽ∈Ω̃

∂g

∂ṽ
D̃iṽ.

Thus

red(D̃ig, (α, f)) = red(∂̃ig, (α, f)) +
∑

ṽ 6=ṽ∗ red(∂g
∂ṽ

, (α, f))D̃iṽ

+ red( ∂g
∂ṽ∗

, (α, f)) red(D̃iṽ
∗, (α, f))

(26)

The proof is continued on the next page.
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Solving (25) for red(∂̃ig, (α, f)), and then eliminating this from (26) yields

red(D̃ig, (α, f)) = D̃i red(g, (α, f))− red( ∂g
∂ṽ∗∗

, (α, f))D̃i(ṽ
∗∗ − D̃αf)

−
∑

ṽ 6=ṽ∗∗ red(∂g
∂ṽ

, (α, f))D̃iṽ

+
∑

ṽ 6=ṽ∗ red(∂g
∂ṽ

, (α, f))D̃iṽ + red( ∂g
∂ṽ∗

, (α, f)) red(D̃iṽ
∗, (α, f))

= D̃i red(g, (α, f))− red( ∂g
∂ṽ∗∗

, (α, f))D̃i(ṽ
∗∗ − D̃αf)

−
∑

ṽ 6=ṽ∗∗,ṽ∗ red(∂g
∂ṽ

, (α, f))D̃iṽ − red( ∂g
∂ṽ∗

, (α, f))D̃iṽ
∗

+
∑

ṽ 6=ṽ∗,ṽ∗∗ red(∂g
∂ṽ

, (α, f))D̃iṽ + red( ∂g
∂ṽ∗∗

, (α, f))D̃iṽ
∗∗

+ red( ∂g
∂ṽ∗

, (α, f)) red(D̃iṽ
∗, (α, f))

= D̃i red(g, (α, f)) + red( ∂g
∂ṽ∗∗

, (α, f))D̃iD̃
αf+

red( ∂g
∂ṽ∗

, (α, f))[red(D̃iṽ
∗, (α, f)) − D̃iṽ

∗]

(27)

Since the term D̃iṽ
∗ is not normalized, we have to be careful before applying

the red operation. We can write D̃iṽ
∗ = ṽ∗∗ +

∑
ν aν ṽν where the sum is finite,

the aν ’s analytic functions and the ṽν belong to Ω̃ and are different from ṽ∗∗.
Thus we have

red(D̃iṽ
∗, (α, f)) − D̃iṽ

∗ = red(ṽ∗∗ +
∑

ν aν ṽν , (α, f)) − (ṽ∗∗ +
∑

ν aν ṽν)

= red(ṽ∗∗, (α, f)) − ṽ∗∗

= (ṽ∗∗ − D̃αf) − ṽ∗∗

= −D̃αf

Inserting this expression into (27) ends the proof of the lemma. 2

Lemma 8.3 Let g be an analytic function on U such that g → 0 with respect
to M. Fix i ∈ {1, · · · , m}. Suppose that for all α, α′ ∈ Nm and f, f ′ ∈ M with
hdD̃αf = hdD̃α′

f ′ ≺ hdD̃ig, D̃αf − D̃α′

f ′ → 0. Then D̃ig → 0.

PROOF. By the induction on the length of the minimal chain required to
reduce g to 0, we may assume that there exists an analytic function h 6= g of
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{x} ∪ Ω̃ with g → h → 0 and D̃ih → 0, say h = red(g, (αh, fα)). By Lemma
8.2, we have an expression of the form

red(D̃ig, (αh, fh)) = D̃ih + kD̃iD̃
αhfh + lD̃αkfh. (28)

with k and l analytic functions of {x} ∪ Ω̃ satisfying hdk ≺ hdg and hdl ≺
hdg. Furthermore, either hdD̃ih ≺ hdD̃ig or hdD̃iD̃

αf ≺ hdD̃ig. In any
case, at least two of three summands in above equation have highest derivative
strictly less than hdD̃ig. Therefore by two applications of Lemma 8.1, we have
red(D̃ig, (αh, fh)) → 0 and so D̃ig → 0.

2

The least common multiple of α = (α1, . . . , αm) and α′ = (α′
1, . . . , α

′
m) is

defined by (max(α1, α
′
1), . . . , max(αm, α′

m)).

Definition 8.4 Let f, f ′ ∈ M with hdf = D̃αui and hdf ′ = D̃α′

ui′, and β
be the least common multiple of α and α′. Then if i = i′, define the minimal
integrability condition of f and f ′ to be ic(f, f ′) = D̃β−αf − D̃β−α′

f ′. If i 6= i′,
then ic(f, f ′) is said to be undefined.

Theorem 8.5 Suppose that for each pair f, f ′ ∈ M with ic(f, f ′) well-defined
we have ic(f, f ′) → 0. Then M is a non-commutative Riquier Basis.

PROOF. Take f, f ′ ∈ M and α, α′ ∈ Nm such that hdD̃αf = hdD̃α′

f ′. We
have to show that D̃αf − D̃α′

f ′ → 0. We proceed by induction on the highest
derivation in D̃αf .

The basis for the induction is ensured by the assumption ic(f, f ′) → 0.

Now assume that D̃α∗

f ∗ − D̃α∗∗

f ∗∗ → 0 for f ∗, f ∗∗ ∈ M and α∗, α∗∗ ∈ Nm

with hdD̃α∗

f ∗ = hdD̃α∗∗

f ∗∗ ≺ hdD̃αf .

Suppose that D̃αf − D̃α′

f ′ is not equal to ic(f, f ′). Thus there exist γ, β and
β ′ in Nn such that γ 6= (0, . . . , 0), α = γ + β, α′ = γ + β ′ and D̃βf − D̃β′

f ′ =
ic(f, f ′).

In contrast to the commutative case, we do not have D̃αf−D̃α′

f ′ = D̃γ(ic(f, f ′))
for some γ. However, using the commutation rules, we have the following re-
lation:

D̃αf − D̃α′

f ′ = D̃γ(ic(f, f ′)) +
∑

ν

aνD̃
νf +

∑

ν′

aν′D̃ν′

f ′
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where the two sums are finite, aν and aν′ are analytic functions and hdD̃νf ≺
hdD̃αf and hdD̃ν′

f ′ ≺ hdD̃αf .

Using the induction hypothesis and by (repeated) applications of Lemma 8.1,
we have D̃αf − D̃α′

f ′ → 0.

2

Example 8.6 We return to our running example, the frame treatment of the
defining system (5) of PDE for infinitesimal symmetries of the nonlinear Heat
equation (3). From (22) for our system (21) we have two cases.

Case 1: θ3 = 0 , ∂̃3J 6= 0; Case 2: ∂̃3J = 0.

Case 1 (θ3 = 0, ∂̃3J 6= 0). Reducing the system with respect to θ3 = 0
yields 1

2
∂̃1∂̃1θ

1− 1
2
∂̃2θ

1 = 0. Computing and reducing the integrability condition

between this equation and ∂̃3θ
1 = −1

2
θ1 gives ∂̃1∂̃1θ

1 = 0 and ∂̃2θ
1 = 0. In

summary the system for this case becomes:

∂̃1∂̃1θ
1 = 0 ∂̃1θ

2 = 0 θ3 = 0

∂̃2θ
1 = 0 ∂̃2θ

2 = 2∂̃1θ
1

∂̃3θ
1 = −1

2
θ1 ∂̃3θ

2 = 0 (29)

It can be checked that all the integrability conditions for this system are satisfied
and it satisfies all the conditions for a non-commutative Riquier Basis. There
are three parametric derivations θ1, θ2, ∂̃1θ

1. Hence by the Non-commutative
Riquier Existence and Uniqueness Theorem its symmetry algebra is of dimen-
sion three.

Case 2 (∂̃3J = 0). Further compatibility conditions and reductions yield the
condition (3−4J)∂̃1θ

3 = 0. Thus there are two cases: Case 2a: J 6= 3
4
, ∂̃1θ

3 = 0
and Case 2b: J = 3

4
.

Case 2a: (J 6= 3
4
, ∂̃1θ

3 = 0). We obtain:

∂̃1∂̃1θ
1 = 2(1 − J)∂̃1θ

3 ∂̃1θ
2 = 0 ∂̃1∂̃1θ

3 = 0

∂̃2θ
1 = 0 ∂̃2θ

2 = 2∂̃1θ
1 − θ3 ∂̃2θ

3 = 0

∂̃3θ
1 = −1

2
θ1 ∂̃3θ

2 = 0 ∂̃3θ
3 = 0 (30)

It can be checked that all the conditions for a non-commutative Riquier Basis
are satisfied. There are four parametric derivations θ1, θ2, ∂̃1θ

1, θ3. Hence its
symmetry algebra is of dimension four.
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Case 2b: J = 3
4
. The system becomes the non-commutative Riquier Basis:

∂̃1∂̃1θ
1 = 0 ∂̃1θ

2 = 0 ∂̃1θ
3 = 0

∂̃2θ
1 = 0 ∂̃2θ

2 = 2∂̃1θ
1 − θ3 ∂̃2θ

3 = 0

∂̃3θ
1 = −1

2
θ1 ∂̃3θ

2 = 0 ∂̃3θ
3 = 0.

There are five parametric derivations θ1, θ2, θ3, ∂̃1θ
1, ∂̃1θ

3, yielding a five-
dimensional symmetry algebra.

9 Analyticity Issues

Theorem 7.4 gives existence and uniqueness conditions for a formal power
series solution for an associated specification of initial data. The Riquier-
Janet Existence and Uniqueness Theorem for the commutative case states
that, under certain assumptions, a specification of analytic initial data yields
an analytic power series solution.

In this section, we investigate the generalization of this analyticity theorem to
the non-commutative case by seeking conditions on the initial data specifica-
tion ensuring that the formal power series solution is analytic.

Riquier [29] and Janet [13] consider systems of PDE with commuting deriva-
tions. They consider orthonomic and passive systems to express the analyticity
theorem. Instead of defining the orthonomic and passive systems, we will use
the non-commutative Riquier Basis described in this paper to state the Riquier
analyticity theorem. We need the following definitions.

Definition 9.1 A Riquier ranking ≺ is a positive ranking satisfying ∂̃αui ≺
∂̃βui ⇐⇒ ∂̃αuj ≺ ∂̃βuj for any i and j.

Definition 9.2 A specification of initial data φ for a system M is analytic
if there exist two positive real numbers M and r such that |φ(∂̃αui)| ≤ Mr|α|α!
for all ∂̃αui in ParM.

With the above definitions we can state the Riquier analyticity theorem in the
following alternative form.

Theorem 9.3 Let ≺ be a Riquier ranking compatible with the total degree
ordering. Suppose that the ∂̃i commute. Consider a non-commutative Riquier
Basis M and analytic initial data specification φ. Then the unique formal
power series solution thus defined is also analytic.

In the Riquier-Janet Theory, specifying the initial conditions is equivalent to

22



fixing the values of the dependant variables and their derivatives at a point
x0.

Example 9.4





uxxy = f(u)

uxyy = g(u)

� �

�

�������

�����	�

Choosing a specification of initial data around the origin x = 0, y = 0 in the
Riquier-Janet approach amounts to fixing the value of uxy at x = y = 0, and
fixing the value of u on {x = 0}∪{y = 0}. A precise contruction of the initial
data based on multiplicative variables [13] would consist in fixing the value of
uxy on M0 = {(0, 0)}; fixing the value u on M1 = {(x, 0) : x ∈ R}; and fixing
the value uy on M2 = {(0, y) : y ∈ R}.

More generally, a specification of initial data can be expressed in the fol-
lowing geometric manner, which is more suitable for our investigation of the
non-commutative case. Choosing a specification of initial data around x0 is
equivalent to assigning functions to some parametric derivatives along spe-
cific sub-manifolds Mi. The choice of the parametric derivatives and the Mi is
described in [13]. Moreover, choosing an analytic initial data specification is
equivalent to assigning analytic functions to the dependant variables on the
sub-manifolds Mi.

Extending these results to the non-commutative case leads to the following
questions:

• What is the geometric meaning of fixing an initial data specification?
• What criteria must the initial data satisfy to ensure the analyticity of the

associated formal power series solution?

We first consider the case where there are a finite number of parameters in
the formal power series solution.

Theorem 9.5 (Analyticity in the finite parameter case) Let ≺ be a Riquier
ranking compatible with the total degree ordering. Consider a non-commutative
Riquier Basis M with a finite set of parametric derivations ParM = {w1, ..., wk}.
Then the formal power series solution about x0 with initial data w1(x0) =
w1

0, ..., w
k(x0) = wk

0 is analytic at x0.

PROOF. For i = 1, ..., m any D̃iw
l ∈ PrinM can be completely reduced by

M to an analytic function f l
i of {x} ∪ ParM such that

D̃iw
l = f l

i . (31)
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Now from (14) it follows that (31) is equivalent to

Diw
l =

∑

j

bij(x, u)f l
j , (32)

where b(x, u) is the inverse matrix of a(x, u).

The easily computed integrability conditions of (32) are analytic functions
of {x} ∪ ParM. If one integrability condition was not satisfied, there would
a set of initial conditions for (32) such that (32) does not admit a solution.
Thus, for the initial conditions, (31) and M would not admit a solution,
which contradicts the existence theorem of a solution for the non-commutative
Riquier Basis M. Thus the system (32) is a commutative Riquier Basis, and
by the standard commutative theory, must have a formal power series solution
with the given data, which is analytic at x0. 2

We also have:

Theorem 9.6 Under the hypotheses of Theorem 9.5, the integration of M is
equivalent to integrating a system of ODE along an analytic curve.

PROOF. Consider an analytic curve x(τ) = xi(τ), with x(0) = x0. Then
dwl

dτ
=

∑
i

dxi

dτ
∂wl

∂xi
which from (32) yields the system of ODE:

dwl

dτ
=

∑

i

dxi

dτ

∑

j

bij(x, u)f l
j . (33)

2

This gives an answer to a question posed by Mansfield (private communica-
tion), about the ways in which the output of non-commutative differential
elimination methods can be used. Traditional commutative differential elim-
ination packages often use elimination rankings to decouple ODE which can
then be sometimes exactly integrated by ODE solvers. Theorem 9.6 gives an
alternative method for exposing ODE systems. It is interesting to explore to
what extent geometric ODE integrators (numerical integrators invariant un-
der the admitted Lie group), could be fruitfully applied to such systems using
Theorem 9.6. Calculating the induced group action on the ODE system above,
and exploring to what extent invariant descriptions can be found by suitably
choosing the parameterization and curves x(τ) are interesting open problems.

We now consider the case of a non-commutative Riquier Basis M where ParM
is infinite. In the commutative case, the geometric theory of PDE [25], the
geometric prolongation of the system to an order r is obtained by applying
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Di to the equations of the system until no undifferentiated equations of order
r or less remain. Equivalently one may obtain the geometric prolongation by
similarly using D̃i. Since the system is a non-commutative Riquier Basis any
prolongation of the system is formally integrable (as defined in the geometric
theory). It is also a consequence of the geometric theory that some finite order
prolongation of the system has involutive symbol, and hence the system is also
involutive. Indeed in our case the Mansfield Prolongation Theorem [19] can
be used to determine a bound for that order. Once the system is involutive,
then (after a generic change of coordinates if necessary), an analytic existence
and uniqueness theorem can be given.

If no generic change of coordinates is needed, then the analytic data, is spec-
ified by a finite number of analytic functions on a hyper-surface which is left
invariant by one of the frame derivation operators.

One of the novelties of the commutative Riquier Theory, is that an analytic
existence and uniqueness theorem is obtained in the infinite case without need-
ing to change into generic coordinates. We sketch below some partial results
obtained in the infinite non-commutative case.

We can generalize the Riquier analyticity theorem to the non-commuting in-
finite case by assuming that the ∂̃i are lined up with an analytical system
of coordinates. In particular we make the hypothesis (H) that there exist m
analytical functions Xi and a neighborhood N(x0) of the expansion point x0

satisfying:

• ∂̃iXj = 0 in N(x0) if i 6= j
• The Jacobian of (X1, . . . , Xm) does not vanish in N(x0)

This is less stringent than assuming that the ∂̃i are associated to a set of
coordinates since in that case we would have ∂̃iXj = 1, if i = j and 0 otherwise.

Theorem 9.7 Let ≺ be a Riquier ranking compatible with the total degree
ordering. Suppose that the frame ∂̃i satisfies (H). Consider a non-commutative
Riquier Basis M and analytic initial data specification φ. Then the unique
formal power series solution thus defined is also analytic.

The proof consists in transforming our problem into a commuting derivative
problem in the set of coordinates Xi where we can apply the Riquier theorem.

A sketch of the straightforward proof follows.

Sketch of proof

• Without loss of generality set x0 = 0.
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• Introduce new commuting derivations ∂̂i which are based on the system of
coordinates X.

• Prove that there exist m scalar functions Ai(x) analytic at x0 such that
∂̃i = Ai∂̂i with Ai(0) 6= 0.

• Any derivation ∂̃α can be rewritten in terms of Aα1

1 · · ·Aαm
m ∂̂α plus a finite

sum of terms fβ∂̂β where fβ is an analytic function and β strictly “divides”
α (i.e. βk ≤ αk for 1 ≤ k ≤ m).

• Replace the ∂̃i by ∂̂i in M and obtain an orthonomic system M̂. The set of
leaders of M̂ coincide with the ones in M by replacing the ∂̃i with ∂̂i.

• The analytic initial condition specification φ of M defines an analytic initial
condition specification φ̂ of M̂.

• Since the problem has been reduced to the commutative case, φ̂ has a geo-
metrical meaning. In particular this demonstrates that the dependant vari-
ables and some of their derivatives have been fixed to analytic functions on
unions of sub-manifolds of the form Xi = 0.

• Since the ranking is Riquier and compatible with total order, the commu-
tative Riquier analyticity theorem applies.

2

It is interesting to note that the condition (H) is always satisfied in the case
m = 2 (the case m = 1 is obvious).

In general the condition (H) of the previous subsection is not satisfied as the
following example shows:

Example 9.8





∂̃1 = ∂x + ∂z

∂̃2 = ∂y + z∂z

∂̃3 = ∂z

Since ∂̃1∂̃2 − ∂̃2∂̃1 = ∂̃3, the relations ∂̃1X3 = 0 and ∂̃2X3 = 0 imply ∂̃3X3 = 0.
Thus, X3 cannot generate a system of coordinates.

Thus in the general case the above geometric interpretation is lost and it is
not straightforward to adapt the proof of the analyticity theorem ([29], [13])
to the non-commuting case. Indeed, the use of majorizing functions to prove
convergence of the formal series rely on commuting derivatives. The analyticity
results obtained from prolonging the system to involution indicates there is a
reasonable chance of proving a suitable non-commutative Riquier analyticity
theorem in the non-commutative case.
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transformations, Acta. Math. 18, (1894) 1–88.

29


