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On the Support of the Implicit Equation of Rational Parametric
Hypersurfaces

IOANNIS Z. Emiris !, ILIAS S. KOTSIREAS 2

Abstract. We propose the use of various tools from algebraic geometry, with an emphasis on toric (or sparse)
elimination theory, in order to predict the support of the implicit equation of a parametric hypersurface. The
problem of implicitization lies at the heart of several algorithms in computer-aided design and geometric modeling,
two of which are immediately improved by our contributions. We believe that other methods of implicitization
shall be able to benefit from our work. In particular we use, on the one hand, degree bounds, formulated in terms
of the mixed volume of Newton polytopes and on the other, information on the support of the toric (or sparse)
resultant. In many cases, we obtain the exact support of the implicit equation.

1 Introduction

In this paper we apply several tools from algebraic geometry, with an emphasis on toric (or sparse) elimination theory,
in order to predict the support of the implicit equation of a parametric hypersurface. The problem of switching from a
rational parametric representation to an implicit, or algebraic, representation of a curve, surface, or hypersurface lies
at the heart of several algorithms in computer-aided design and geometric modeling.

In particular we use, on the one hand, bounds on the total degree of the implicit expression, as well as bounds on
its degree in each variable. For tightness, we formulate these bounds in terms of Newton polytopes and mixed volumes,
which exploit any structure in the parametric equations. On the other hand, we exploit information on the support of
the toric (or sparse) resultant by considering the extreme monomials as described in [GKZ94,Stu94]. In many cases,
we obtain the exact support of the implicit equation.

Our motivation comes mainly from two implicitization algorithms. The first is [CGKWO01], where the authors
propose a new method for implicitization of parametric families of curves, surfaces and hypersurfaces, using essentially
linear algebra. The method has a very wide range of applicability, can handle base points, and works both symbolically
and numerically, depending on the way one performs the integrations. It may be improved, both theoretically and
in what regards the implementation as follows: First, it looks for an implicit equation of a particular degree at a
time. This implies that any information on the degree of the implicit equation (such as upper bounds) may accelerate
execution.

More importantly, the method constructs a symmetric singular square matrix and computes a basis of its nullspace.
The dimension of this matrix equals the number of possible monomials in the implicit equation, since the rows and
columns are indexed by these monomials. Without any constraints on the set of monomials, the dimension is (m;"),
where the number of parametric equations is 7 and the algorithm seeks an implicit equation of total degree m. The
worked out examples show that we succeed in obtaining substantial efficiency improvements, because we constrain
in advance the monomials that will appear in the implicit equation, hence diminishing dramatically the size of the
matrices involved as illustrated in the table below.

Our second motivation are algorithms based on perturbed resultant matrices, which yield the implicit equation even
in the presence of base points, e.g. [DE01,MC92]. The problem reduces to sparse interpolation, which is substantially
accelerated when we can accurately predict the output support. More specifically, the algorithm of Ben-Or and Tiwari
requires a number of evaluations which is linear in the bound on the support cardinality; cf. [BOT88,Zip93].

The comparative table below shows a synopsis of the results of the execution of the algorithm on some examples
(see section 7 for all the details). We refer to our method as IPSOS.
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Curve / parametric | implicit General # monomials
Surface (bi)degree | degree |# monomials| from IPSOS
Unit Circle 2 2 6 3 (optimal)
Descartes Folium 3 3 10 3 (optimal)
Buchberger 1,2 4 35 2 (optimal)
Busé 3 5 56 4 (optimal)
Bilinear 1,1 2 10 9 (optimal)

This paper is structured as follows: In section 2 we introduce some algebraic tools that we will use in the sequel,
in particular toric elimination theory with an emphasis on the toric resultant. In section 3 we summarize classical
algebraic geometry arguments that allow us to predict the degree of the implicit equation in advance. We apply
these arguments to predict the degrees of the implicit equation in each variable separately. In section 4 we describe
the algorithm for predicting the support of the implicit equation by combining the tools mentioned in the previous
sections. In section 6 we present several examples of implicitization of curves and surfaces; the computed support turns
out to be optimal in all of these examples. Some of them are fully worked out to give the implicit equation by applying
the method from [CGKWO01]. In section 5 we give some details on our Maple implementation of the algorithm and the
interoperability of the Maple code with other public-domain C/C++ stand-alone programs that we use, mainly for
performing computations with polyhedra. Finally, in section 7 we provide some conclusions and some ideas for future
work.

2 Toric elimination theory

This section overviews our algebraic tools, coming for the most part from the theory of toric (or sparse) elimination.
For a more comprehensive discussion, the reader may consult e.g. [CLO98,GKZ94].

Let A; C Z™ be a finite set and consider generic Laurent polynomials (i.e. with integer exponents) in n variables
z=(Z1,-..,Tn):

f’t(w) = Z Cia $a, Cia 7é 0.

°

a€A;

Then A; is the support of polynomial f; and its Newton polytope @@; C R™ is the convex hull of the support A;. The
following bound is also known as the Bernstein-Khovanskii-Kushnirenko (BKK) number.

Theorem 1. The mized volume MV(Q1,...,Q,) of the Newton polytopes Q1,...,Qn C R™ corresponding to polyno-
mials f1,...,fn € K[zlﬂ, ..., xX1] bounds the degree of the toric variety of these polynomials.

Mixed volume generalizes Bézout’s classical bound given by the product of total degrees in the sense that it
reduces to Bézout’s bound for dense polynomials but is in general tighter. The underlying toric variety is embedded
in a projective space of high dimension and contains (f*)” as a dense subset, where K is the algebraic closure of the
coefficient field K and K~ = K \ {0}.

The mixed volume can be computed by means of a mixed subsivision; mixed subsivisions are discussed below. Once
such a subsivision is computed, the sum of volumes of all mixed cells equals the mixed volume.

Consider an over-constrained system of polynomials fy,...,f, € K [xlﬂ, ...,xF1], with respective supports
Ao,...,An cz.

*r¥n

Definition 1. The toric (or sparse) resultant R(fo,. .., fn) is a polynomial in Z[c;,], homogeneous in the coefficients
of each f;, with degree equal to MV_; :== MV(Qo, ..., Qi—1, Qi+1, - - -, @n). The resultant vanishes after a specialization
of the coefficients iff the specialized system of fo, ..., fn has a solution in the toric variety associated to the Newton
polytopes of the f;.

The toric resultant is also known as the toric (or sparse) mized resultant in order to emphasize the fact that the
supports A; may be different; when all A; are identical, the system is unmixed.
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2.1 Extreme monomials of the toric resultant

Certain works, including [GKZ94,Stu94] have studied the Newton polytope of R, thus providing a point set containing
its support. In particular, [GKZ94] describes certain homogeneities of R with respect to ¢, which would yield a
description of the hyperplanes defining the facets of the Newton polytope of R. But this study is not extended to toric
resultants in general dimension over arbitrary input supports. An alternative approach is to specify the vertices of this
Newton polytope, i.e. the extreme monomials which appear in the toric resultant. In [Stu94], the author shows that
the extreme monomials correspond to the image of a many-to-one map, and indicates how to compute them. A more
theoretical discussion of certain of these facts is found in [GKZ94, Sect. 8.3].

For these results, we need some concepts from polyhedral combinatorics. Consider any collection {4;};cr of sup-
ports, for some set I C {0, ...,n}. Its rank, denoted rk(/), is the rank of the affine lattice generated by the > ,; A;. A
collection {A;}icy, for some I, is essential iff rk(I) = |I|—1 and rk(J) > |J| for every proper subset J C I. Remark that
an essential collection contains no singleton. The initial form init, (f) of a multivariate polynomial f in k variables,
with respect to some functional w : Z¥ — R, is the sum of all terms in f which maximize the inner product of w by
the corresponding exponent vector.

When k = |Ag| + - -+ + |An|, then w defines a lifting function on the input system, by lifting every support point
a € A; to (a,w(a)) € Z™ xR. The lifted supports, denoted by Qi, lie in R"*+!, Their Minkowski sum is Q = Q1+ - ++Qhn;
its lower hull projects bijectively, along the last coordinate, to @ = Q1 + -+ 4+ @, C R™. The lower hull facets then
correspond to maximal cells of an induced coherent mized decomposition of Q.

If w is sufficiently generic, then this decomposition is tight; in the sequel, we assume our mixed decompositions are
both coherent and tight and denote it by A,,. Then, maximal cells of the form F' = Fy+- - -+ Fy,, where dim F; =1 for
all j € {0,...,n} except for one value, are called mized. It is clear that the (n 4 1)st summand must have dimension
0; if this is the i¢-th summand, then the cell is said to be of type ¢ or --mixed. An important remark, to be applied
later, is that the sum of volumes of all i-mixed cells equals the partial mixed volume MV _;, for any i € {0,...,n}.

The corresponding coefficient in f; is denoted by c;r,; its monomial is ™ and F; € A;.

Theorem 2 ([Stu94]). Suppose that {Ao, ..., A,} is essential. Then the initial form of the toric (mized) resultant
R with respect to a generic w equals the monomial

init,(R) = ﬁ H cz.);f(F)
i=0 F

where vol(-) denotes ordinary Euclidean volume and the second product is over all mized cells of type i of the tight
mized coherent decomposition A, .

It is clear that a bijective correspondence exists between the extreme monomials and the configurations of the
mixed cells of the A;. So, it suffices to compute all distinct mixed cell configurations, as discussed in [MV99].

Another (simpler) means of reducing the number of relevant mixed decompositions is by restricting attention to
those with a specific number of cells. This number is usually straightforward to compute in small dimensions (e.g.
when n = 1,2, as in the imlicitization of curves and surfaces) and reduces drastically the set of mixed decompositions.
For instance, when studying the implicitization of a biquadratic surface, the total number of mixed decompositions is
19728, whereas those with 8 cells is 62.

In certain special cases, we can be more specific about the Newton polytope of the toric resultant. First, its
dimension equals k—2n—1, where k = |Ag|+- - -+ |Ap| is the sum of the support cardinalities [GKZ94,Stu94]. Certain
corollaries follow: For essential support families, a 1-dimensional Newton polytope of R is possible iff all polynomials
are binomials. The only resultant polytope of dimension 2 is the triangle; in this case the support cardinalities must
be 2 and 3. For dimension 3, the possible polytopes are the tetrahedron, the square-based pyramid, and polytope N3 >
given in [Stu94]; the support cardinalities are respectively 2,2 and 3.

It is known that the coefficients of all extreme monomials are in {—1,1} [GKZ91,CE00,Stu94]. This information
may be used for numeric purposes. Sturmfels [Stu94] also specifies, for the extreme monomials, a way to compute the
precise coefficients. But this requires computing several coherent mixed decompositions, and goes beyond the scope of
the present report.



2.2 The Cayley trick

For background information and proofs see [GKZ94,MV99,Stu94]. Here we briefly indicate the elements which are
important to our approach.

Theorem 3. There exists a transformation, known as the Cayley trick, that presents the problem of computing all
mized decompositions of Ay, ..., A, CZ" as an equivalent problem of computing all regular triangulations of a set of
|Ao| + - -+ + |Ap| points in Z2"+1. This point set corresponds to the columns of the matriz below, where k; = |A;].

Let us describe the point set used in the Cayley trick. Let kg,...,k, € N denote the cardinalities of the input
supports A;. Then, it suffices to consider the point set corresponding to the column vectors of the following matrix,
namely the points (e;, a;;) € Z*"*! for i = 0,...,n, where e; = (0,...,0,1,0,...,0) € N**! has a unique unit at the
i-th position and another n zeroes:

—
0 0 0...0 11...1
ap1 ... Q0ky A11 --- A1k, anl ... ank,

Efficient algorithms exist for computing all regular triangulations of a point set [DL00,Ram02]. These algorithms
typically require that the input points be given in homogeneous coordinates, so we add a last row of units in the
matrix above. In this case, we can omit the first row of the matrix above; see the examples for an illustration.

3 Degree bounds for the implicit equation

In this section we sketch some techniques to predict the total degree of the implicit equation, given the rational
parametric equations. In conjunction with standard algebraic geometry arguments, (see e.g. [CLO97]) we use toric
elimination theory to exploit any sparseness in the input equations. In addition, we adapt the approach to compute
the degree of the implicit equation in each variable separately.

For the sake of simplicity, we shall describe our arguments in affine space instead of projective space, but this is
no lack of generality. In addition, we motivate the discussion using a plane curve with rational parametric equations
as follows:

zo = Po(t1)/Q(t1), =1 = Pi(t1)/Q(t1) (1)

where Py(t1), P1(t1), Q(t1) are univariate polynomials in ¢;.

Total degree When we intersect a plane curve with a generic straight line, we obtain generically® a certain number
of points. This number corresponds to the degree of the implicit equation. To carry out this computation algebraically,
form an equation of a generic straight line a g + b =1 + ¢ = 0, substitute o and z; by (1), clear out denominators
and compute the degree of the resulting equation in ¢;. This degree will be the total degree of the implicit equation.

In general, we intersect the parametric hypersurface with n generic linear equations in x, . . ., x,, where n denotes
the number of parameters; above we had n = 1. The parametric expressions are substituted in these n equations to
yield a non-linear system of 7 polynomials in 7 indeterminates, namely the parameters ¢1,...,t,. The degree of the

(toric) variety defined by this system is bounded by the corresponding mixed volume, which thus bounds the total
degree of the implicit equation. Remark that the support of each polynomial in ¢ is the union of the supports of the
z;Q(t) — P;(t), seen as polynomials in ¢. Therefore all equations have the same support and the same Newton polytope,
hence the mixed volume equals n! multiplied by the volume of this Newton polytope.

3 The term “generic” here is taken to mean that the line is sufficiently random, for instance it cannot be a tangent line to the
curve
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Degree in each variable The above argument can be adapted to compute the degree in xzy,z; of the implicit
equation of the curve separately. To compute the degree of the implicit equation in zg, intersect the curve with a
straight line parallel to the zy axis, namely z; = K; where K is a generic constant. Then, as before, x; is substituted
by its parametric expression in (1). The degree of the resulting equation in ¢; bounds the degree of the implicit equation
in zg.

In general, we would like to bound the degree of the implicit equation in some variable z;, j € {0,...,n}. Then,
intersect the implicit equation by the set of generic linear equations z; = K; for j # ¢ € {0,...,n} and replace the z;
by their parametric expressions. The resulting system of n equations in n indeterminates t1,...,t, is well-constrained,

and its mixed volume bounds the number of its isolated roots. Hence, this mixed volume bounds the implicit degree
in z;. This is simply the mixed volume of the polynomials z;Q(t) — P;(t), ¢ # j, seen as polynomials in the parameters
t.

4 Implicitization with Polynomial Sparse Optimized Support (IPSOS)

In this section we describe our algorithm, named IPSOS, which allows one to estimate the support of the implicit equa-
tion of a curve, surface or hypersurface. This information can subsequently be used by implicitization algorithms such
as those in [CGKW01,DE01,MC92]. For general information on implicitization, the reader may consult [CLO97,MC92].

Our algorithm applies to rational parametric (hyper)surfaces. The main idea is that, given the parametric ex-
pressions z; = P;(t)/Q(¢), for ¢ = 0,...,n, we regard them as polynomials f; = z;Q(¢) — P;(t) in the parameters
t = (t1,.-.,ts). Then, the implicitization problem is equivalent to eliminating the parameters ¢; the implicit equation
equals the resultant of the f;, provided there are no base point (i.e. singularities) and that the parametrization is one-
to-one (i.e. proper). If the latter condition is violated, then the resultant gives us a multiple of the implicit equation.
For simplicity, we may assyme the given parametrization is one-to-one.

Our toric elimination tools shall be applied to the polynomials f;, where we ignore the specific values of the
coefficients. This is an interesting feature of the algorithm, namely that it considers the monomials in the parametric
equations but not their actual coefficients. This shows that the algorithm is suitable for use as a preprocessing off-line
step in CAGD computations, where one needs to compute thousands of examples with the same support structure in
real time. This implicitization of families of (hyper)surfaces is the so-called generic implicitization.

Of course, the generic resultant coefficients are eventually specialized to functions of the z;. Then, any bounds on
the implicit degree in the z; are applied, in order to reduce the support set which is output.

INPUT: Rational Parametric Equations of a Hypersurface

2o = Po(t)/Q(t), -, 2n = Pu(t)/Q(2) (2)
where t = (t1,...,t,) and ged(P;(t),Q(t)) =1,i=0,...,n.

OUTPUT: A superset of the monomials in the support of the implicit equation of (2).

1. Define the polynomials f; = z;Q(¢t) — Pi(t),i = 0,...,n and look at them as polynomials in ¢: f; = Z it
a;;EA;
where A; C Z".
2. Apply the Cayley trick to construct a matrix described above, then compute all regular triangulations of the
corresponding point set, which yield all mixed subdivisions of Ay + --- + A,.
3. Obtain the extreme monomials of the Newton polytope of the resultant from the mixed subdivisions. Then compute
the support of the resultant.

€ij
5
5. Use the implicit degree bound to eliminate any of the monomials computed at the previous step that cannot

appear in the implicit equation, i.e. whose degree is higher than the total implicit degree.

4. Transform the support, which is a set of monomials of the form H ¢, to a set of monomials in the zg, ..., z,.

Step 2 yields as by-product all partial mixed volumes MV _; fori = 0,...,n, and hence the implicit degree separately
in the x; variables.



Step 3 may be analyzed into certain substeps, in different ways. Given the vertices of a polytope in dimension
k =ko+ -+ ky,, there are algorithms for computing all integer points in its interior. Some efficient implementations
though require that the polytope be described in terms of its facets, so we may have to produce these facets from the
set of extreme points.

Notice that in the last step, we may also use implicit degree bounds in each separate variable x;. But these bounds
should already be taken into account when the algorithm computes the toric resultant support. The latter claim follows
from toric resultant theory and the homogeneities of the toric resultant as a polynomial in the coefficients of the f;.

5 Implementation of the Algorithm

A preliminary implementation of the algorithm in Maple 8 will soon be available upon request from the authors.
The name of the package is IPSOS( Implicitization with Polynomial Sparse Optimized Support). Besides Maple 8
functions, it makes use of certain Linux/Unix commands as well as publicly available software for Linux/Unix. The
following programs were actually used during the development stages of the algorithm. Most of them are required to
be locally installed for our Maple 8 overall routine to run.
e The C Program PORTA [CLS99] developed by Thomas Christof and Andreas Loebel is a collection of routines for
analyzing polytopes and polyhedra, computing the facet presentation of a polytope given its vertices, as well as for
enumerating all integral points inside a polytope (though the latter does not seem to be a fast algorithm).
e The Maple V program PUNTOS [DL00] developed by Jesuis A. De Loera allows us to compute regular triangulations
of point sets. Its applicability is limited by reasons of efficiency as well as by the fact that it cannot well handle very
small examples. But a more robust alternative (albeit not in Maple) is TOPCOM below.
e The C++ program TOPCOM version 0.11.1 [Ram02] was developed by Jérg Rambau for regular triangulations of
point sets. In using it, an important option is to specify the number of simplices in the triangulations of interest. We
also experimented with symmetries, which do not seem to accelerate execution.
e The C program Mixvol, which is an implementation of the incremental mixed volume algorithm from [EC95].
Some possibilities for improvement are the following: First, recall that a bijective correspondence exists between
the extreme monomials and the mixed subdivisions of the A;, which is studied in [MV99]. Unfortunately, we were
unable to find an implementation of this work, hence it is not yet used in our software.
Another possibility of improvement is to use the library PolyLib [Wil02]. The Polyhedral Library (PolyLib for
short) operates on objects made up of unions of polyhedra of any dimension. In particular, it may be able to compute
integer points in polyhedra of high dimensions.

6 Examples

In this section we present a number of examples of implicitization of curves and surfaces given by rational function
parameterizations, using the techniques developed above for predicting the degree and the support. Each example
serves to illustrate different aspects of the endeavor.

6.1 Unit Circle
Suppose that we are given the following rational parameterization of the unit circle:

2 -1 2t

= — = — 3
=5 VS po (3)

First we write the equations as polynomials in #: x t2 +z —t2,y t?> +y — 2¢t. The Cayley trick constructs the matrix

00111
02012
11111
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and the corresponding coefficients are {z + 1,z — 1}, {y, —2,y} in the f;. The corresponding 5 regular triangulations
are:

{{1,2,3},{2,3,4},{2,4,5}},{{1,2,3},{2,3,5}},{{1, 3,4},{1,2,4},{2,4,5}},{{1, 3,4},{1,4,5},{1,2,5} },{{1,2,5},{1, 3,5} },
which yield the following extreme monomials: [0, 2,2,0,0],[1,1,0,2,0],[2,0,0,0, 2].

The enumeration of all support points gives: [2,0,0,0, 2], [0,2,2,0,0],[1,1,1,0,1],[1,1,0,2,0]. Then, the candidate
monomials are: {1, y2, 2%, y? z, y? 22 }. Using the degree argument (d = 2 in this case) we obtain the following monomials

{1,4% 2%}

This result is optimal and can be used to write down the actual implicit equation of the unit circle using one of the
implicitization methods. The implicitization method described in [CGKWO01] employs, in principle, a 6 x 6 symmetric
singular matrix to solve this problem. Using the sparse support information we obtained from the algorithm, we reduce
the size of the problem to a 3 x 3 matrix. We start with the vector v = [1,z?,y?] and construct the 3 x 3 matrix M
below. Substituting the parametric forms of z,y from 3 and integrating for ¢ € [—1, 1] we obtain matrix G:

1 z2 42 2 —m+4 247
M= |z* z* 2% G=|-n+416/3-3/271/27m —4/3
y? 2%y yt 247 1/27—4/3 1/27 —2/3

whose nullspace is spanned by the vector [—1, 1,1]. This vector multiplied by v gives the implicit equation of the unit
circle, namely: —1 + 22 + y2? = 0.

6.2 Folium of Descartes

This example is taken from [CLO97].

Fig. 1. Folium of Descartes

The candidate monomials are
{*, 2, 2%y, zy,y” 2°}.



After intersecting with the degree bound which is d = 3 we obtain the monomials {33, z3, zy}.

Using the implicitization method of [CGKWO01], this example requires, in principle, a 10 x 10 symmetric singular
matrix. Using the sparse support information obtained by the algorithm, we construct the 3 x 3 symmetric singular
matrix

2292 oty Ty
aly 20 23y?
zyt 233 oS
and performing the substitutions and the integrations for t € [0, ..., 1] we obtain the matrix

— % +4/3In(2) +4/9V3r —F +7/3 W (2) +§v3r —§3+5/3In(2)+5/9V3r
-2 1 7/3In(2)+ 537 -T2 +14/3In(2) + 4 V31 =32 4+ 7/3In(2) + £ /3n

whose nullspace is of dimension 1 and is generated by the vector [—3,1,1]. This shows that the implicit equation of
the Descartes’s Folium is:

3 4+y3—3zy=0.

Since there are no zero entries in the nullvector, we see that all of the monomials predicted by our algorithm (and
only these) appear in the implicit equation. This means that the result of the algorithm is optimal.

6.3 Example from [Buc88§]

r =rt, y:rtQ, z=r
The implicitization method described in [CGKWO01] employs, a priori, a 35 x 35 symmetric singular matrix to solve
this problem. Using the degree bound and the sparse support information we can use a 2 X 2 matrix to solve this
problem.

Fig. 2. Buchberger Example

In fact, the support computed by ISPOS is optimal, even without applying the implicit degree bound, since the
implicit equation of this surface is given by
zt —y?z=0.
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6.4 Example from [Bus01]

52 s3

t2

FERER
Our algorithm yields the monomials
[z%y,2°,2°y%, 3%

53 + 13

To finish the implicitization by the method of [CGKWO01] we start with the vector [z3y, z®, z3y?, y%23] and construct

the 4 x 4 matrix

.’I?6y2 .’126y .’L‘6y3 $3y323
$6y m6 .’L'6y2 $3y223
.'E6y3 :L'6y2 $6y4 z3y4z3

.’E3y323 $3y2 23 .’E3y423 y426

After substitution and integration we obtain a matrix whose nullspace is spanned by the vector [—2,1,1, —1]. This

gives the implicit equation:
—22%y 4 2% + 23y?

z—O

Remark: In this example, we had to aid Maple in performing double integrations of the form:

atb
I, = // S B) dtds and I, = // 51 B) dt ds

where a, b, c € N, by imposing a change of variables of the form ¢t = 7 s (which implies dt = sd7). Thus we obtain the

formula

s~ 3c—1
// des

and Maple is now able to find the result for Z;. A similar formula allows for integrals of type Z> to be computed.

7 Conclusion & Future Work

We presented an algorithm to predict in advance the support of the implicit equation, given parametric equations of
a curve, surface or hypersurface. This infromation can be subsequently used by implicitization algorithms resulting in

dramatic gains in efficiency, e.g. [CGKWO1].
e Bicubic Surface

The well-known bicubic surface example from CAGD (whose implicit equation is computed with the special method
developed in [GV97]) representes a significant challenge for the IPSOS algorithm. The parametric equations of the

bicubic surface B are given by:

z=3t(t—1)2+(s—13+3s
y=3s(s—1)2+t3+3¢
z=-35(s2—5s5+5)t3—3 (s>+6 s?

In particular, for the input points:

(o, o, o, o, 11, fo, o, o, 1, 11, [0, O, O, 2, 1], [O,
o, o, 1, o, 11, [0, O, 2, O, 11, [0, O, 3, O, 11, [1,
(1, o, o, 1, 11, [1, 0, O, 3, 11, [1, O, 1, O, 11, [1,
(1, o, 3, o, 11, [0, 1, 0, O, 11, [0, 1, O, 1, 1], [O,
(o, ¢+, 1, o, 11, o, 1, 1, 1, 1], [0, 1, 1, 2, 1], [O,
[o, 1, 2, o, 11, [0, 1, 2, 1, 11, [0, 1, 2, 2, 1], [O,
[o, 1, 3, 1, 11, [0, 1, 3, 2, 1], [0, 1, 3, 3, 1]]

-

-

-

-

= = = O OO

-

—9s+1)t2+t(6s>+9 s>

-

N = ONOO

-

-

-

-

W wWwNOOoO W

(5)

—-18s+3)—-3s(s—1)

11,
11,
11,
1],
1],
1],
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there are 737129 regular triangulations computed with TOPCOM. The last one is:

T[737129] :={{2,3,4,7,13},1{3,4,5,7,13},{3,5,6,7,13},{3,6,9,13,14},{6,9,12,13,14},
{3,6,9,14,15},{6,9,12,14,15},{6,12,13,14,16},{6,12,14,15,16},{6,12,15,16,17},
{3,6,9,15,18},{6,9,12,15,18},{6,12,15,17,18},{3,9,15,18,19},{3,6,9, 18,19},
{6,9,12,18,19},{6,12,16,17,20},{6,12,17,18,20},{3,6,9,19,23},{6,9,12,19,23},
{6,12,19,22,23},{6,12,22,23,24},{6,12,23,24,25},{3,6,9,23,26},{6,9,12,23,26},
{6,12,23,25,26},{0,2,4,7,13},{3,6,7,9,13},{6,12,18,19,22},{6,12,18,20, 24},
{6,7,9,12,13},{6,12,18,22,24}};

The size of the file is 383M. This underlines the fact that we should not compute all of the regular triangulations but
only the mixed cell subdivisions [MC00,MV99].

References

[BOT88] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynomial interpolation. In Proc.
ACM Symp. Theory of Computing, pages 301-309, New York, 1988. ACM Press.

[Buc8s8] Bruno Buchberger. Applications of Grobner Bases in Non-Linear Computational Geometry. In J. R. Rice, editor,
Mathematical Aspects of Scientific Software, volume 14 of IMA Volumes in Mathematics and its applications, pages
59-87. Springer-Verlag, 1988.

[Bus01] Laurent Busé. Residual resultant over the projective plane and the implicitization problem. In ISSAC (London ON,
Canada), pages 48-55. ACM, 2001.

[CE00] J.F. Canny and I.Z. Emiris. A subdivision-based algorithm for the sparse resultant. J. ACM, 47(3):417-451, May

2000.

[CGKWO01] Robert M. Corless, Mark W. Giesbrecht, Ilias S. Kotsireas, and Stephen M. Watt. Numerical implicitization of

[CLOY7]

[CLOYS]
[CLS99]

[DE01]
[DL00]
[ECO5]

[GKZ91]

[GKZ94]

[GV97]

[MC92]
[MCO0]
[MV99]
[Ram02]
[Stu94]

[Wil02]
[Zip93]

parametric hypersurfaces with linear algebra. In Artificial intelligence and symbolic computation (Madrid, 2000),
pages 174-183. Springer, Berlin, 2001.

David Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms. Springer-Verlag, New York, second
edition, 1997. An introduction to computational algebraic geometry and commutative algebra.

David Cox, John Little, and Donal O’Shea. Using algebraic geometry. Springer-Verlag, New York, 1998.

Thomas Christof, Andreas Loebel, and M. Stoer. PORTA, version 1.3, 1999. University of Heidelberg and ZIB
Berlin. http://www.zib.de/Optimization/Software/Porta.

Carlos D’Andrea and Ioannis Z. Emiris. Computing sparse projection operators. In Symbolic computation: solving
equations in algebra, geometry, and engineering (South Hadley, MA, 2000), pages 121-139. Amer. Math. Soc.,
Providence, RI, 2001.

Jests A. De Loera. PUNTOS, http://www.math.ucdavis.edu/ deloera/, 2000.

1.Z. Emiris and J.F. Canny. Efficient incremental algorithms for the sparse resultant and the mixed volume. J. Sym-
bolic Computation, 20(2):117-149, 1995.

IM. Gelfand, M.M. Kapranov, and A.V. Zelevinsky. Discriminants of polynomials in several variables and triangu-
lations of Newton polytopes. Leningrad Math. J., 2(3):449-505, 1991. (Translated from Algebra i Analiz 2, 1990,
pp- 1-62).

I. M. Gel'fand, M. M. Kapranov, and A. V. Zelevinsky. Discriminants, resultants, and multidimensional determi-
nants. Birkhduser Boston Inc., Boston, MA, 1994.

Laureano Gonzalez-Vega. Implicitization of parametric curves and surfaces by using multidimensional Newton
formulae. J. Symbolic Comput., 23(2-3):137-151, 1997. Parametric algebraic curves and applications (Albuquerque,
NM, 1995).

Dinesh Manocha and John F. Canny. Algorithm for implicitizing rational parametric surfaces. Comput. Aided
Geom. Design, 9(1):25-50, 1992.

T. Michiels and R. Cools. Decomposing the secondary Cayley polytope. Discrete Comput. Geom., 23(3):367-380,
2000.

T. Michiels and J. Verschelde. Enumerating regular mixed-cell configurations. Discrete Comput. Geom., 21(4):569—
579, 1999.

Jorg Rambau. TOPCOM: Triangulations of point configurations and oriented matroids. Technical Report 02-17,
Z1B, Berlin, 2002. To appear in Proc. Intern. Congress Math. Software 2002. http://www.zib.de/rambau/TOPCOM.
Bernd Sturmfels. On the Newton polytope of the resultant. J. Algebraic Combin., 3(2):207-236, 1994.

Doran Wilde. PolyLib, http://icps.u-strasbg.fr/PolyLib/, 2002.

R. Zippel. Effective Polynomial Computation. Kluwer Academic Publishers, Boston, 1993.



