

Achieving Interoperability of Pen Computing

with Heterogeneous Devices and Digital Ink Formats

by

Xiaojie Wu

in Computer Science

Submitted in partial fulfillment
of the requirements for the degree of

Master of Science

Faculty of Graduate Studies
The University of Western Ontario

London, Ontario
December 2004

 Xiaojie Wu 2004

 ii

THE UNIVERSITY OF WESTERN ONTARIO

FACULTY OF GRADUATE STUDIES

CERTIFICATE OF EXAMINATION

Supervisor Examining Board

______________________________ ________________________________

Supervisory Committee ________________________________

______________________________ ________________________________

The thesis by

Xiaojie Wu

entitled:

Achieving Interoperability of Pen Computing
with Heterogeneous Devices and Digital Ink Formats

is accepted in partial fulfillment of the
requirements for the degree of

Master of Science

Date__________________________ _______________________________

Chair of the Thesis Examination Board

 iii

Abstract

 Pen-based computing has and continues to become accepted and increasingly used.

Hardware and software vendors have typically stored and represented digital ink using

proprietary or restrictive ink formats, and have provided software development toolkits to

access or manipulate ink for user development on their devices. The variety of digital ink

formats and device-dependent software toolkits has limited the ink exchange and

application among heterogeneous devices. Our objective is to explore the interoperability

of pen computing among heterogeneous devices and digital ink formats.

 Our investigation has two aspects: digital ink formats and pen computing application

programming interfaces (APIs). We consider three ink formats: UNIPEN, Jot and

InkML, and two ink APIs: the IBM CrossPad API and the Microsoft Tablet PC API. Our

objectives are twofold: (1) to accomplish conversions among UNIPEN, Jot and InkML;

(2) and to develop a common abstract API for the CrossPad and the Tablet PC. In this

thesis, the issues in conversion among three ink formats are discussed, and the conversion

between UNIPEN and Jot is implemented. We also identify the incompatibilities between

the CrossPad API and the Tablet PC API. The design of an abstract API is described, and

a partial implementation is complete.

Keywords:

pen-based computing, digital ink, UNIPEN, Jot, InkML, CrossPad, Tablet PC

 iv

Acknowledgement

 First and foremost, I would like to extend my sincerest gratitude to my supervisor,

Dr. Stephen Watt, for his consistent guidance, encouragement and support during my

graduate studies, and for his time and patience.

 Many thanks to Mr. Kevin Durdle for his precious advice and help during the design

of the abstraction API, and his sharing of the experience in Microsoft Tablet PC. Thanks

to Mr. Igor Rodianov and Mr. Laurentiu Dragan for their valuable advice and configuring

the development tools and operating systems that I have used for my thesis.

 Thanks to Ms. Bethany Heinrichs for her help during my stay at the ORCCA lab. My

thanks also go to Yuzheng Xie, Xiaofang Xie, Ben Huang and other ORCCA members

and faculty for their friendship, encouragement and help.

 v

Table of Contents

CERTIFICATE OF EXAMINATION ... ii

Abstract .. iii

Acknowledgement ... iv

Table of Contents.. v

List of Tables ... viii

List of Figures .. ix

CHAPTER 1 INTRODUCTION... 1
1.1 THE “WHAT” AND “WHY” OF PEN COMPUTING .. 1
1.2 EXISTING TECHNOLOGY IN PEN COMPUTING... 1
1.3 THESIS OBJECTIVES ... 3
1.4 ORGANIZATION OF THE THESIS .. 4

CHAPTER 2 REVIEW OF DIGITAL INK DATA FORMATS 5
2.1 UNIPEN.. 5

2.1.1 Motivation... 5
2.1.2 Format Definition ... 6
2.1.3 The UNIPEN File.. 6
2.1.4 Software Tools .. 8

2.2 JOT.. 8
2.2.1 Motivation and Goal ... 8
2.2.2 Jot Format Overview .. 9
2.2.3 Format Definition ... 9
2.2.4 Encoding Schema.. 10

2.3 INKML... 12
2.3.1 The purpose of InkML... 12
2.3.2 InkML Elements .. 13

2.3.2.1 Primitive Elements.. 13
2.3.2.2 Application-specific Elements .. 16

CHAPTER 3 REVIEW OF DIGITAL INK SDKS... 17

3.1 THE IBM CROSSPAD SDK .. 17
3.1.1 Introduction... 17
3.1.2 Ink APIs... 18

3.1.2.1 API Classes ... 18
3.1.2.2 I/O Classes .. 20
3.1.2.3 Reco Classes ... 21
3.1.2.4 Forms Classes ... 21
3.1.2.5 Export Classes... 21
3.1.2.6 Inkman Classes ... 22

 vi

3.2 THE MICROSOFT TABLET PC PLATFORM SDK.. 22
3.2.1 Introduction... 22
3.2.2 Tablet PC Platform SDK Overview .. 23
3.2.3 Ink Collection APIs ... 24
3.2.4 Ink Data Management APIs.. 26

3.2.4.1 Ink Data Structures ... 26
3.2.4.2 Ink Creation and Deletion... 27
3.2.4.3 Ink Rendering.. 27
3.2.4.4 Ink Interoperability ... 28

3.2.5 Ink Recognition APIs .. 29

CHAPTER 4 ISSUES IN CONVERSION BETWEEN DATA FORMATS......... 33

4.1 UNIPEN ↔ JOT .. 33
4.1.1 Correspondence of Data between Formats .. 33
4.1.2 Information Lost in the Conversion .. 35
4.1.3 Stroke Group... 35
4.1.4 Ink Point Computation.. 35
4.1.5 Summary ... 36

4.2 JOT ↔ INKML.. 36
4.2.1 Overview ... 36
4.2.2 Ink Point Channels.. 36
4.2.3 Ink Mapping .. 38
4.2.4 Ink Encoding ... 39
4.2.5 Ink Group.. 41
4.2.6 Ink TimeStamp .. 42
4.2.7 Other Issues .. 42
4.2.8 Summary ... 43

4.3 INKML ↔ UNIPEN.. 43
4.3.1 Overview ... 43
4.3.2 UNIPEN and UNIPEN-like InkML... 43
4.3.3 Summary ... 44

CHAPTER 5 IMPLEMENTATION OF DATA FORMAT CONVERSIONS 45
5.1 NOTES TO THE CONVERSIONS .. 45
5.2 UNIPEN ↔ JOT CONVERSION ... 45

5.2.1 Principle Design ... 45
5.2.2 Results ... 47

CHAPTER 6 INCOMPATIBILITIES BETWEEN THE TBLET PC AND
CROSSPAD APIS... 48

6.1 MANAGED AND UNMANAGED CODE.. 48
6.2 A DOCUMENT MODEL OF INK.. 49
6.3 MEMORY MANAGEMENT OF INK.. 50
6.4 INK INPUT .. 50
6.5 INK PROPERTIES AVAILABLE FROM THE HARDWARE ... 51
6.6 INK RENDERING ... 52
6.7 INK DISPLAY/DRAWING ATTRIBUTES .. 53

 vii

6.8 POINT VALUE... 54
6.9 EVENT HANDLING.. 54
6.10 INK PERSISTENCE AND INTEROPERABILITY.. 57
6.11 HANDWRITING RECOGNITION .. 58
6.12 SOME ADVANCED FUNCTIONALITIES OF THE TABLET PC NOT ON THE CROSSPAD
 59
6.13 SOME ADVANCED FUNCTIONALITIES OF THE CROSSPAD NOT ON THE TABLET PC
 60

CHAPTER 7 IMPLEMENTATION OF A COMMON ABSTRCT API FOR THE
TABLET PC AND CROSSPAD.. 61

7.1 PRIMARY DESIGN... 61
7.2 ABSTRACTION INK CLASSES .. 62
7.3 MANAGED AND UNMANAGED C++.. 63

CHAPTER 8 CONCLUSIONS ... 64
8.1 DIGITAL INK FORMAT CONVERSION .. 64
8.2 API INTEROPERABILITY... 65

REFERENCES.. 66

APPENDIX1 A TYPICAL UNIPEN FILE AND UPVIEW VISUALIZATION.... 67

VITA... 71

 viii

List of Tables

TABLE 1. SOME PACKETPROPERTY MEMBERS AND THEIR DESCRIPTIONS 26

TABLE 2. INK PERSISTENCE FORMATS AND DESCRIPTIONS... 29

TABLE 3. DATA CHANNELS FOR PEN POINT IN UNIPEN AND JOT.................................... 34

TABLE 4. OTHER CORRESPONDING DATA CHANNELS IN UNIPEN AND JOT 34

TABLE 5. COMPARISON OF INK POINT DATA CHANNELS IN JOT AND INKML 37

TABLE 6. COMPARISON OF SIZE AFTER CONVERSION FROM UNIPEN TO JOT 47

TABLE 7. TABLET PC PACKETPROPERTY FIELDS AND THEIR DESCRIPTIONS.................... 52

TABLE 8. TABLET PC DRAWINGATTRIBUTES MEMBERS AND THEIR DESCRIPTIONS 53

TABLE 9. INK CLASSES IN ABSTRACT API.. 63

 ix

List of Figures

FIGURE 1. CROSSPAD INK CLASS AGGREGATION ... 19

FIGURE 2. TABLET PC PLATFORM SDK ARCHITECTURE .. 24

FIGURE 3. RELATIONSHIP BETWEEN TABLET PC INK, STROKE AND STROKES OBJECTS.... 27

FIGURE 4. TWO FUNCTIONALITIES OF RENDERER CLASS.. 28

FIGURE 5. UNIPEN VS. JOT CONVERSION.. 46

FIGURE 6. JAVA DELEGATION EVENT MODEL .. 54

FIGURE 7. C# EVENT MODEL ... 55

FIGURE 8. ARCHITECTURE OF ABSTRACTION API UPON CROSSPAD AND TABLET PC...... 61

FIGURE 9. EXAMPLE OF ABSTRACT INTERFACE AND DERIVED CLASSES 62

 1

CHAPTER 1 INTRODUCTION

1.1 The “What” and “Why” of Pen Computing

 Pen-based computing as a field broadly includes computers and applications in which

a pen is the main input device. A special pen, often called a stylus, is often used to write

on a digital tablet. The digitizer underneath captures the (x, y) coordinate data of the pen

tip movement. With some handwriting recognition engines, the handwriting can be

translated into text, commands, or otherwise just be left as digital ink.

 Pen-based computing has held promise for decades, since the first pen-based

computing device for handwriting was invented in late 1950s. It continues to draw a lot

of research attention today. The interest in pen computing stems from a number of

factors: First of all, for those small-size computing devices such as PDAs, Palm and some

new exploratory applications for cell phones or pagers, a keyboard and mouse are

obviously too big to accommodate. The pen is an alternative input mechanism. Second,

for entering letters in ideographic languages like Chinese, or entering drawings,

mathematical formulas, musical notation and other free form inputs, keyboard/mouse

input appears cumbersome or infeasible. Third, there are some situations where pen-

based input is superior to the usual style of input. For example, it is easier for a

supervisor to amend his student’s electronic articles on a pen-based computer. Finally,

pen-computing is essential in some modern technologies such as the interactive

whiteboard used in conference meeting or distance education.

1.2 Existing Technology in Pen Computing

 The earliest technology in pen computing can be traced back to 1957, when T. L.

Dimond presented a device call “Stylator” which could read handwritten characters. After

that, more tablet and stylus devices were developed, but the success was limited because

of their poor handwriting recognition capability and limited processing power. The Apple

Newton was one of the unsuccessful examples. It was one of the earliest PDA products,

sold from 1993 but discontinued in 1998. Besides its high price and large size (would not

 2

fit in a pocket), the public criticism to its handwriting recognition caused its failure in the

marketplace. It wasn’t until 1996 when Palm Inc. launched its personal digital assistant

(PDA) that mainstream acceptance from the public took hold.

 The market was never so promising and competitive as today. We have seen the

increased use of pen-based devices and computers. Companies such as Microsoft, IBM,

Fujitsu, HP, Toshiba, ViewSonic and Wacom have developed and released various

products. The most notable and widely used are the Palm Pilot, Pocket PC and Tablet PC.

There are other products such as the Wacom Graphire2, Intuos2 and Cintiq, which are

very professional pen tablets for image processing.

 With the development of this new generation of hardware, digitizers can provide more

powerful ink capture capabilities. In addition to recording (x, y) coordinates, these

devices can sense the pen pressure on the digitizer, the angle of the pen, and so on. For

example the Wacom Intuos2 has 1024 levels of pressure sensitivity and supports pen tilt.

This gives a complete natural feel and very good control.

 On-line handwriting recognition technology plays an important role in pen computing.

The type of built-in handwriting recognition software shipped with devices has achieved

a more satisfactory and acceptable feedback from public, but is still limited. Researchers

are trying to improve the accuracy and speed of handwriting recognition, and to broaden

the text recognition to other specific fields such as mathematical handwriting.

 Numerous standards and specifications for representing digital ink have existed since

the early 1990’s. Most notably, ITU T-150, UNIPEN and Jot are targeted directly at the

representation of digitized handwriting. Currently, a new specification, InkML, a XML

data format for representing digital ink, is being developed under the World Wide Web

Consortium (W3C).

 3

1.3 Thesis Objectives

 In view of the diversity of pen-computing devices developed by multiple vendors, the

objective of this thesis is to achieve interoperability of digital ink among heterogeneous

devices and platforms. This interoperability study is accomplished in two ways: to

investigate conversions among various digital ink data formats so that ink can be shared

in different applications; and to investigate unifying various ink APIs to achieve a device-

independent API.

 As mentioned above, there have existed numerous ink formats for some time. Since

different standards have different design foci, ink has been defined in different ways.

Some ink properties important in one format might be totally ignored in another. Some

standards are public, while others are proprietary. Different hardware/software vendors

store and represent digital ink using different data formats. This has severely limited ink

sharing between applications with different data formats. UNIPEN, Jot and InkML are

three well-known data formats. In this thesis we develop conversions among these

formats to study the sharing of ink between applications.

 It is often desirable to some users that they are provided some means to be able to port

applications that have been developed on one device to a different type of device.

However, in the current pen-computing world the application portability among different

devices has not been well explored. Different device vendors provide their own software

development toolkits (SDKs) for user’s development. Some devices only work on a

specific platform. For example, the Tablet PC and its SDK only work on the Microsoft

.NET framework. This has limited ink applications’ portability among different devices.

We need a unifying API that is device-independent enough to make applications portable

among devices. The current project of mathematical handwriting recognition in our lab

also motivates a unified API for Palm, Pocket PC, CrossPad and Tablet PC so as be able

to apply the mathematical handwriting recognizer to multiple devices. The second study

of this thesis is part of this unifying project, exploring an abstract API unifying the

CrossPad and Tablet PC.

 4

 In summary, the thesis objectives are twofold: first to develop converters among three

digital ink data formats: UNIPEN, Jot and InkML, second to develop a device-

independent abstraction API for the IBM CrossPad API and Microsoft Tablet PC API.

1.4 Organization of the Thesis

 In this chapter, we have given an introduction to pen computing and the objectives of

this thesis. The following is a brief overview of the remaining chapters.

 Chapter 2 presents in some details of three notable standards for representing digital

ink: UNIPEN, Jot and InkML. UNPEN and Jot have been widely used for years, while

InkML is still being developed under the W3C Multimodal Activity Working Group. For

each standard, its design goals and features are described.

 Chapter 3 presents two popular digital ink Software Development Kits (SDK). These

are the IBM CrossPad SDK and the Microsoft Tablet PC Platform SDK. The API of each

SDK are described.

 Chapter 4 and Chapter 5 concern digital ink data format conversions. In chapter 4, we

discuss the issues related to format conversions. Chapter 5 describes the implementation

of the conversions. Due to the incompleteness of the current InkML specification, only

the conversion between UNIPEN and Jot is presented in this thesis.

 Chapters 6 and 7 concern an abstraction API that covers both the CrossPad and the

Tablet PC. Chapter 6 identifies the incompatibilities between the two APIs. Chapter 7 is

the design of the new abstraction API that unifies the CrossPad API and the Tablet PC

API.

 Finally, chapter 8 presents our conclusions.

 5

CHAPTER 2 REVIEW OF DIGITAL INK DATA FORMATS

 This Chapter describes three digital ink data formats: UNIPEN, Jot and InkML. Please

note that the specifications of the three formats presented here are based on the current

publicly available information. The UNIPEN presented below is version 1.0, from 1994

[1]. Jot presented below is version 1.0, from 1993 [3]. Due to the demise of Slate

Corporation, the founder of the Jot format, and the proprietary nature of this format, it is

not guaranteed to be the most up-to-date version. Since InkML is still developing under

the supervision of W3C, no complete W3C Recommendation for InkML currently exists.

The InkML specification described here is based on currently available documents,

including the third W3C Working Draft of InkML published on 28 September 2004 [4].

2.1 UNIPEN

 This section is based on the UNIPEN 1.0 Format Definition [1] and the information

from UNIPEN project website [10], giving an overview of the UNIPEN format. UNIPEN

is a common data format to facilitate digital ink data exchange, primarily used by the

technical and scientific community to store handwriting samples. It was designed in

1993, and over 40 institutions participated the work. The UNIPEN format incorporated

the features of several institutions’ internal ink data formats, including IBM, Apple,

Microsoft, Slate (Jot), HP, AT&T, NICI, GO and CIC [10].

2.1.1 Motivation

 UNIPEN was motivated by the need to store handwriting samples for on-line

handwriting recognition research and development. In the early 1990’s, pen computers

and pen communication drew a lot of interest from the public, but handwriting

recognition was still disappointing. Companies and universities working in this field

collected their own handwriting databases for training and testing recognizers, but the

data was not publicly available. To remedy this problem, and to encourage researchers to

find better recognition techniques, the UNIPEN project was started, to make a large

 6

corpus of on-line handwriting samples publicly available, and the UNIPEN format was

then agreed upon.

2.1.2 Format Definition

 UNIPEN is an extensible ASCII format. It is self-defined from 3 basic keywords:

.COMMENT, .RESERVE and .KEYWORD. All keywords start with a dot. The UNIPEN

definition can be divided into three parts: part A defines data types using the keyword

.RESERVE; part B defines a number of new keywords using the keyword .KEYWORD;

in part C, reserved strings are defined using the keyword .RESERVE. Below are pieces

of a sample UNIPEN 1.0 format definition [1] :

.COMMENT A – DATA TYPES

.RESERVE [N] Integer or decimal number represented by digits separated by a dot; may
start with a sign; no commas allowed.

.RESERVE [S] String: any combination of keyboard ASCII symbols, except space, new-
line, tabulations and words starting by a dot in the first column.

.COMMENT B – KEYWORDS

.KEYWORD .KEYWORD [S] [R] [.] [F] Define a new keyword:
Keyword, argument types, documentation.

.KEYWORD .RESERVE [S] [F] Define a new reserved string:
reserved string, documentation.

.KEYWORD .PEN_DOWN [N] [.] Pen down component: repeated sequences of
coordinates as defined by .COOR, pen touching the
pad surface

.KEYWORD .PEN_UP [N] [.] Pen up component: same as .PEN_DOWN, but with
the pen not touching the pad surface.

.COMMENT C – RESERVED STRING GLOSSARY

.RESERVE T Time in MILLISECONDS.

.RESERVE P Pressure in units of P given by .UNITS_PER_GRAM.

2.1.3 The UNIPEN File

 A data file in UNIPEN format consists of successions of instructions, each consisting

of a keyword followed by arguments. The UNIPEN file is essentially a sequence of pen

coordinates, annotated with various information about recording conditions, device

information, writers, segmentation, data layout, labeling and so on.

 7

 The pen trajectories, the major part of the data file, are encoded as a sequence of

components .PEN_DOWN and .PEN_UP, containing pen coordinates X, Y and other

optional signals such as timestamp (T), pen pressure (P), rotational angle of the stylus

(RHO), and so on. What signals are recorded depends on the arguments of .COORD

specified. For example, if an ink stroke is recorded as a sequence of (X,Y) points indexed

in time and pen pressure of each pen point, then the ink data in UNIPEN format defines:

.COORD X Y P. Each line between the .PEN_DOWN and .PEN_UP pair (see following

example data) represents a pen point, where the first two numbers record the X and Y

coordinates of each point accordingly, and the third number records the pen pressure

placed on the surface on that point. Recorded signals such as timestamp, pen pressure and

angle of the pen provide the handwriting features and are important to the handwriting

recognition research.

.PEN_DOWN
 5194 2821 5
 5195 2821 7
 5196 2822 11
 5197 2821 15
 5198 2820 19
 5198 2820 21
.PEN_UP

 In a typical UNIPEN file, the keyword .VERSION specifies the version number of the

format, .DATA_ID specifies the name of the database. The recording conditions are

described by keyword .SETUP. The device information is described by the keyword

.PAD. Segmentation and labeling are provided by the .SEGMENT instruction.

Component numbers are used by .SEGMENT to delineate sentences, words, characters if

that information is available. Data layout is specified by .X_DIM, .Y_DIM and .H_LINE,

etc. Many more keywords and instructions may be used to record other data information.

The format also provides a unified way to encode recognizer outputs to be used for

benchmark purposes. A typical UNIPEN file from UNIPEN working group data

collection [10] is given in Appendix 1.

 8

2.1.4 Software Tools

 Uptools3 is the latest version of software tools for viewing, editing and transforming

UNIPEN files. It comprises a set of programs. Each program is described in Uptools3

introduction page [10] as following: upview is a X-Windows based program for

visualizing UNIPEN files; upread is a program for transforming or extracting data from

UNIPEN files; uni2animgif and unipen2eps transform data from UNIPEN files into

animated gifs and encapsulated postscript respectively; upworks is a program using

Tcl/Tk and X-Windows for browsing UNIPEN files and editing them. An example of the

visualization of the UNIPEN file by upview program is appended in Appendix 1.

2.2 JOT

 This section follows the presentation of the JOT specification [3] and gives an

overview of the Jot format. Jot defines a common data format for the storage and

interchange of electronic ink between software applications [3]. It was designed in 1992,

by the efforts of Slate, Apple, General Magic, GO, Lotus and Microsoft. Unlike

UNIPEN, whose design goal is to provide a standard format of digital ink samples for

handwriting recognition research, the goal of Jot is to provide a simple and convenient

format for digital ink exchange. It is intended to maintain complete likeness with the

original ink as it was drawn.

2.2.1 Motivation and Goal

 In the early 1990’s there was no standard format for storing or representing electronic

ink. This severely limited the capture, transmission, processing and presentation of digital

ink by users and applications. Jot was therefore motivated by the need to share ink-based

information. The goal of Jot was to provide application programs on the various

platforms and operating systems a way to store and exchange ink data. As described in

JOT specification [3], applications of Jot include: Sharing signatures and annotations

between mobile, pen-based computers and a central database; sharing electronic mail

 9

between handheld devices and desktop systems; taking and sharing notes throughout an

organization.

2.2.2 Jot Format Overview

 Jot is binary format and light-weight. It includes lossless compression with a “reserved

encodings” (see 2.2.4) scheme to reduce the space for ink storage. It also has the ability

to optionally reduce the amount of information retained for a particular piece of ink.

 To maintain the ink fidelity, Jot supports a wide variety of ink properties, including

multiple strokes of ink combined into single objects, bounds, scale, offset, color with

opacity, pen tips, timing information, height of the pen over the digitizer, stylus tip force,

buttons on the stylus and X and Y angle of the stylus. Applications can choose to

recognize or ignore properties as required. In addition to the above the specified

properties, new features can be added.

2.2.3 Format Definition

 Jot is a record-based binary format. Ink information is stored in predefined structures.

For example, the structure INK_POINT is defined to store data for one pen point,

including the (x, y) coordinate and other attributes such as pen pressure and pen angle if

available. The term “ink bundle” is used in the JOT specification to represent a piece of

ink. Each ink bundle must begin with an INK_BUNDLE_RECORD structure and end

with an INK_END_RECORD structure. Following is an example of ink bundle

representation given in the JOT specification [3]:

 INK_BUNDLE_RECORD required // for bundle number one
 INK_SCALE_RECORD optional // sets the scale for rendering
 INK_OFFSET_RECORD optional // sets the offset for rendering
 INK_COLOR_RECORD optional // sets the color for rendering
 INK_START_TIME_RECORD optional // sets the relative start time
 INK_PENTIP_RECORD optional // sets the pen tip for rendering
 INK_GROUP_RECORD optional // tags the following PENDATA
 INK_PENDATA_RECORD recommended // actual points
 INK_GROUP_RECORD optional // tags the following PENDATA

 10

 INK_PENDATA_RECORD recommended // actual points
 INK_PENDATA_RECORD recommended // more points in same group
 INK_SCALE_RESET_RECORD optional // resets to default scaling/offset
 INK_PENDATA_RECORD recommended // actual points
 INK_END_TIME_RECORD optional // relative time inking ended
 INK_END_RECORD required // end of bundle number one

 As we can see from the example, some records are required to record a stream of ink,

while some records are recommended, and others are optional. The

INK_BUNDLE_RECORD and the INK_END_RECORD are required. They indicate the

beginning and end of the digital ink stream. In INK_BUNDLE_RECORD, all the

features of ink stream are declared: whether the ink point value is compressed or not,

whether pen angle data is present, whether ink force data is present, whether rotational

data is present, and so on. The INK_PENDATA_RECORD is a key component in the

format containing the actual pen data: x, y coordinate and other optional information such

as force, angle, which varies in size depending on the flags set in the

INK_BUNDLE_RECORD header. Other records listed above are optional, and they

occupy space only when they are presented as required.

2.2.4 Encoding Schema

 Ink data can be encoded in either compacted or uncompacted format in Jot. Both

formats are delta-oriented formats. Each value is stored using a signed delta-value, which

is added to the previous one. The first point in an INK_PENDATA_RECORD is relative

to the defined default values for each component of the point. The difference between

compacted and uncompacted format is that the delta value stored in the former is fixed

length, while the delta value stored in the latter is variable length. Since the data is

written most significant byte first in compacted format, the reading applications can

determine how large the encoded delta is by reading the top 2 bits of the first byte (see

following compacted format definition).

 The “Reserved encodings” are applied in the compacted format. The reserved

encodings are described as follows in JOT specification [3]: “Reserved encodings are

 11

those encodings that, if real points, would fit into the next smaller delta size. The reserved

encodings for 16 bit deltas are all 16 bit delta pairs where both X and Y are within the

inclusive range MIN_S7 and MAX_S7. Similarly, the reserved encodings for 8 bit deltas

are all 8 bit delta pairs where both X and Y are within the inclusive range MIN_S3 and

MAX_S3.”

 Following is the compacted format definition described in JOT specification [3]:

32-bit absolute X/Y: Two 32 bit long words, first two bits are 00. Data is actually two S31s.

| 0 | 0 | (30 low-order bits of X) |
| X| (sign bit of X plus 31 bits of Y) |

16-bit short delta X/Y: Two 16 bit short words, first two bits are 0 1. Deltas are actually two
S15s. Values that would fit into an 8-bit byte delta are reserved.

| 0 | 1 | (14 low-order bits of delta-X) |
| X| (sign bit of X plus 15 bits of delta Y |

8-bit byte delta X/Y: Two bytes, first two bits are 1 0. Deltas are actually two S7s. Values that
would fit into a 4-bit nibble delta are reserved.

| 1 | 0 | (6 low-order bits of delta-X) |
| X| (sign bit of X plus 7 bits of delta-Y) |

4-bit nibble delta X/Y: One byte, first two bits are 1 1. Deltas are actually two S3s.

| 1 | 1 | (S3 delta-X) | (S3 delta-Y) |

 From the definition, we can see the data is encoded in the smallest power of 2 bytes

that will fit. If the both delta X and delta Y are within the inclusive range MIN_S15 and

MAX_S15 (–32768 ~ 32768), the data will be stored in two 16 bit short words with top

two bits 0 and 1. If the both delta X and delta Y are within the inclusive range MIN_S7

and MAX_S7 (–128 ~ 128), the data will be stored in two bytes with top two bits 1 and 0.

Similarly, if the both delta X and delta Y are within the inclusive range MIN_S3 and

MAX_S3 (–8 ~ 8), then the data will be stored in 1 byte with top two bits 1 and 1.

 For example, suppose we have an ink trace where the first two points are (1125, 8432)

and (1148, 8475). Then delta X is 23 and delta Y is 43. The uncompacted Jot

representation of the delta data is: 01000000 00010111 00000000 00101010; while the

compacted Jot representation of the delta data is: 10010111 00101010. Clearly, the

compacted encoding schema saves spaces, and is recommended to use.

 12

2.3 InkML

 InkML is an XML-based data format for representing, exchanging and storing digital

ink. It is currently still being developed following the W3C process, and is expected to

become an official W3C Recommendation. The work was first started in November

2000. IBM, Intel, Motorola, and the International UNIPEN Foundation have contributed

to the proposal. This section follows the presentation of the third and latest InkML

working draft [4] published on 28 September 2004, and give an overview of the InkXL

format.

2.3.1 The purpose of InkML

 Before InkML there already existed numerous standards for digital ink representation,

storage and transmission. UNIPEN and Jot, presented above, are two of these. None of

these standards, however, address all the concerns important for a digital ink standard.

For example, UNIPEN is very focused on handwriting recognition requirements, with

features to support labeling of ink data, but is not optimized for data storage or real time

data transmission. Neither is it designed to handle ink manipulation applications

involving colors, pen tip, image rotation, rescaling, etc. Jot is a proprietary format that

avoids any abstract characterization of ink.

 InkML is intended to unify various ink representations in a common modular format.

It is to be a non-proprietary standard under the supervision of W3C. It is to provide the

capability to capture, transmit, process and present ink across heterogeneous devices, and

to be suitable for web-based applications. InkML can be used for various ink

applications, some examples are: (1) real-time inking applications such as instant

messaging, (2) off-line ink applications that capture and store ink for later processing,

such as handwritten ink note archiving/retrieval, (3) interactive ink applications, such as

using ink gestures to indicate actions.

 13

2.3.2 InkML Elements

 The InkML data format consists of two types of elements: primitive elements and

application-specific elements.

2.3.2.1 Primitive Elements

 The primitive elements form a set of rudimentary elements sufficient for all basic ink

applications and have few semantics attached. All content of an InkML document is

contained within a top-level <ink> element. The defined primitive elements include: trace

and trace formatting elements, context elements and generic structure elements.

Trace and Trace Formatting Elements

 A trace is the trajectory of the pen as the user writes digital ink. <trace> is the basic

element used to record the actual trace data captured by the digitizer. It contains a

sequence of points encoded according to the specification given by the <traceFormat>

element. The simplest form of encoding specifies the X and Y coordinates of each sample

point. For compactness, it may be desirable to specify absolute coordinates only for the

first point in the trace and to use delta-x and delta-y values to encode subsequent points.

Some devices record acceleration rather than absolute or relative position; some provide

additional data that may be encoded in the trace, including Z coordinates or tip force. All

these variations in the recorded information are supported through the <traceFormat>

element.

 <traceFormat> contains a <regularChannels> element listing those channels whose

value must be recorded for each sample point (such as X, Y), and an

<intermittentChannels> element listing those channels whose value may optionally be

recorded for each sample point (such as F, pen tip force). Within a <regularChannels>

or <intermittentChannels> element, channels are described using the element <channel>

with name, type, default and mapping attributes. Following is an example of usage of

<traceFormat>. The ink trace contains 10 points, it records (x,y) coordinates in regular

channel and pen tip force in intermittent channel:

 14

<traceFormat>
 <regularChannels>
 <channel name="X" type="decimal">
 <channel name="Y" type="decimal">
 </regularChannels>
 <intermittentChannels>
 <channel name="F" type="decimal">
 </intermittentChannels>
</traceFormat>

<trace id = "id001">
84 652:5’1’2:’2”2”-1:”2 4 1:4-1 21:0 13-9:-2-3-5:2-9 10:0 15 18:-
2-4-7:0;
</trace>

The trace is interpreted as following:

Trace X Y F vX vY vF comments

84 652:5 84 652 5 ? ? ?

’1’2:’2 85 654 7 1 2 2 velocity values

”2”-1:”2 88 655 11 3 1 4 acceleration values

4 1:4 95 657 15 7 2 4 Implicit acceleration

-1 21:0 101 680 19 6 23 4

13-9:-2 120 694 21 19 14 2

-3-5:2 132 700 25 12 6 4

-9 10:0 135 716 29 3 16 4

15 18:-2 153 750 31 18 34 2

-4-7:0 167 777 33 14 27 2

Context Elements

 A number of devices, data format and coordinate system details comprise the context

in which ink is written and recorded. The <captureDevice>, <brush> and <context>

elements address the contextual details. The <captureDevice> element describes the

characteristics of devices, allowing specification of manufacture, model, sampling rate,

sampling uniformity, latency and channel list. The <brush> element describes attributes

of the brush used to capture the ink. The <context> element provides various attributes:

contextRef, canvas, canvasTransform, traceFormatRef, captureDeviceRef and brushRef,

 15

by which it both defines the shared context and serves as a convenient collection of

contextual attributes.

Here is an example to define a device using the element <captureDevice>:
<captureDevice id="device1"
 manufacturer="IBM"
 model="Cross Pad"
 sampleRate="100"
 uniform="TRUE"
</captureDevice>

Here is an example using the element <context>. It defines a context using the

predefined trace format “format1” and brush “brush1”, and it shares the predefined

canvas “canvas1”:
<context id="context1"
 canvas="canvas1"
 traceFormatRef="format1"
 brushRef="brush1">
</context>

Generic Structure Elements

 The most important elements of this category are <mapping>, <bind> and <def>

elements. The <mapping> element is provided for various mappings in InkML. The

mapping could be an identity mapping, a look-up table mapping or MathML mapping. A

predefined mapping can be referenced and reused by other elements using a mapRef

attribute. The following is a simple example of defining an identity mapping in a

<channel> element:
<channel name="X" type="decimal" units="point" default="0">
 <mapping type="identity"/>
</channel>

 The <bind> element is used to bind channels to entities. In the above identity-

mapping example, if the source channel name is different from the channel being defined,

then a <bind> element with a source attribute can be used to specify this as follows:
<channel name="X" type="decimal" units="point" default="0">
 <bind source=”sourceDevX”>
 <mapping type="identity"/>
</channel>

 16

 The <defs> element provides a container for reusable content definitions that can be

referenced by other elements via an id attribute. Three elements can be defined inside a

<defs> block, they are <context>, <brush> and <traceFormat>. Here is a simple

example to illustrate the usage of the <defs> element. Inside the context definition, it

refers to the brush and trace format predefined in the <defs> block:

<defs>
 <brush id="greenPenRoundPoint"/>
 <brush id="yellowPenRectanglePoint"/>
 <traceFormat id="x-y"/>
 <traceFormat id="x-y-withAngle"/>
</defs>
<context id="context1"
 brushRef="greenPenRoundPoint"
 traceFormatRef="x-y-withAngle"
<context/>

2.3.2.2 Application-specific Elements

 Application-specific elements provide a higher-level description of digital ink. They

provide elements that support a specific category of applications, and can reference the

primitive elements. For example, a document storage and retrieval application can use

primitive elements to represent handwritten inks, while using application-specific tags

such as <page> and <keyword> to organize the ink documents. Typically traces can be

grouped into <page>s. Within a page, traces may be tagged as <keyword> or

<message> etc. As another example, a handwriting recognition application can use

primitive elements to record handwritten ink, and use a rich set of UNIPEN-like elements

for annotation about recording condition, device information, writers, segmentation, data

layout and so on. This can be used to offer the functionality previously available with the

UNIPEN format to support the needs of online handwriting recognition developers.

 17

CHAPTER 3 REVIEW OF DIGITAL INK SDKs

 The CrossPad and Tablet PC are two popular pen-based devices. This chapter

describes their associated software development toolkits. Through these users can access

the handwritten ink captured by the device for further manipulation.

3.1 The IBM CrossPad SDK

 The IBM Ink Manager SDK is a software development toolkit for processing the ink

that originates on the devices including the IBM ThinkScribe™ digital notepad, or the

A.T.Cross CrossPad™ digital notepad. Because this thesis is interested in the

applications on the CrossPad, we will use the term “IBM CrossPad SDK” to refer to the

IBM Ink Manager SDK in the later chapters, even though it applies to all these devices.

3.1.1 Introduction

 The CrossPad portable digital notepads are pen-based input devices. They are used

with ordinary paper and a digital pen. The digitizer under the writing surface can sense

the pen, and capture and digitize the writing on the paper. The digitizer samples the pen

location approximately 100 times per second, and records the pen location as a sequence

of (x, y) coordinates. Handwriting is available in both physical ink on paper and digital

ink simultaneously with the CrossPad.

 The captured handwriting ink with the CrossPad can be uploaded to a computer via a

serial port by the InkTransfer application. Then the ink can be displayed, managed or

manipulated with a software application called the Ink Manager on PC.

 The ink files produced by the InkTransfer upload application are called “ink device

format files” (*.pad). The Ink Manager application uses a notebook format (*.nbk),

which is a collection of uploaded files. SDK-based applications are able to read device

format files and notebook files in addition to SDK created ink files (*.ink).

 18

 The IBM CrossPad SDK provides a rich set of programming operations for processing

the ink that originates on the CrossPad. It allows users to write their own applications that

use the CrossPad as a data input device. The Ink API is available in two variants, a C++

version and a Java version. IBM has achieved a very high level of consistency between

these two toolkits. Since this thesis uses C++, we will review the C++ version of Ink API

in the later sections.

3.1.2 Ink APIs

 This section is based on the description of IBM C++ Ink Manager Pro SDK 1.0

Application Writer’s Guide [5], and summarizes the C++ version of the CrossPad API’s

usages. The API is organized as eight packages. They are: api, forms, inkman, io, reco,

system, util and export. The system package is the lowest level package. It provides

system-level standard interfaces that all the other packages require. For example, Bytes

and Enumeration are two classes in this package. The inkman package is at the highest

level built on all the other packages. It provides the interface upon which the Ink

Manager application is built. The util package provides miscellaneous utility classes.

Besides packages mentioned above, the other five packages are most frequently used for

developing user digital ink applications. The api package provides the basic ink

manipulation functionality, such as creating new ink and modifying existing ink. The io

package enables the input and output of digital ink between the internal ink format and

the device file format. There is a handwriting recognition engine in SDK, and the reco

package is the one to support the handwriting recognition functionality. The forms

package provides the means for creating form specifications. The export package

provides the functionality to export digital ink to image formats such as bitmaps etc. The

remaining sections review and summarize the usages these packages.

3.1.2.1 API Classes

 The api package provides APIs for performing the basic ink data functionality, such as

creating, accessing and editing ink data. It includes five fundamental classes for

 19

representing ink: Point, Stroke, Scribble, Page and PageSet, as well as other auxiliary

classes such as BoundingBox and Attribute.

 Point, Stroke, Scribble, Page and PageSet are the core classes in the SDK to define

ink data structures. Their aggregation relationship is shown in Figure 1. The class Point

represents ink points on the screen. Each Point is record in its (x, y) coordinate. The class

Stroke represents ordered collections of Points starting from a “pen down” and ending

with a “pen up”. Every Stroke has a BoundingBox, a rectangle enclosing all the ink

points of this stoke. Every Stoke also has an immutable timestamp recording the creation

time of this stroke. The class Scribble represents ordered collections of Strokes. Like a

Stroke, every Strokes has a BoundingBox and an immutable timestamp as well. The class

Page represents the ink on a physical page of paper. A Page is composed of a collection

of Scribbles, a PageSize, a creation date, a modification date and a unique ID. The

creation date and ID of the Page are generated at creation time, so they are immutable.

The class PageSet represents any collection of Pages.

Figure 1. CrossPad Ink Class Aggregation

 In addition to the five core classes presented above, there are three sets of classes are

important and described in the following.

 The first set is attribute classes. User may attach attributes to a Scribble, Page, or

PageSet. The SDK defines a set of concrete attributes classes such as BookMarkAttribute,

HighlightAttribute, InkDisplayAttribute, TextAttribute (derived by KeyWordAttribute).

All Attributes eventually subclass from the abstract base class Attribute, and users are

also able to create concrete classes derived from it for their needed attributes. The

container AttributeSet class represents collections of Attributes on an ink object.

 The second set of classes is associate to event Handling. CrossPad SDK employs

Talker-Listener model to accomplish event handling. All relevant classes are eventually

Scribble StrokePage PageSet Point

 20

derived from two abstract base classes: Talker and Listener. Classes that wish to have

listeners attached should extend Talker. Within the SDK, the classes Scribble, Page and

PageSet have a private data member derived from Talker. Similarly classes that wish to

listen to some events should extend Listener. The derived classes ScribbleListener,

PageListener and PageSetListener represent Listeners interested in being notified about

modifications to Scribble, Page and PageSet, respectively. The container ListenerSet

class represents collections of Listeners attached to an ink object.

 The third set consists of the “walker” classes. There are three abstract base classes in

the API used to develop applications in Walker pattern (also known as Visitor pattern):

ScribbleWalker, ScribbleSetWalker and PageSetWalker. ScribbleWalker represents

walkers that walk through every Point of a Scribble; ScribbleSetWalker represents

walkers that walk through every Scribble of a ScribbleSet; similarly PageSetWalker

represents walkers that walk through every Page of a PageSet.

3.1.2.2 I/O Classes

 The io package provides interface for ink data read and write. It includes basic I/O, as

well as Attribute I/O.

 Basic I/O refers to classes that responsible for reading and writing ink file. Ink files

are read using the class Reader. The Reader class provides functionality for reading

upload device files (*.pad), notebooks files (*.nbk), and ink files generated by SDK-

based applications (*.ink). To write ink, the SDK provides class WriterV8, which writes

ink to files in the standard format used by SDK-based applications (*.ink).

 Basic I/O does not support Attributes reading or writing. Instead, the SDK provides a

pair of abstract base classes to enable applications reading and writing attributes attached

to the ink: AttributeDemarshaller for reading, and AttributeMarshaller for writing. When

an ink file is written, its attributes are converted to sequences of bytes using an instance

 21

of an AttributeMarshaller; when an ink file is read, an instance of AttributeDemarshaller

is used to convert sequences of bytes back into the Attribute instances they represent. [5]

 Other classes in this package provide facilities of monitoring I/O progress, handling

I/O errors, etc.

3.1.2.3 Reco Classes

 The SDK includes a handwriting recognizer via the Reco package. To perform

handwriting recognition, a user must create a Context object to specify the alphabet set

and the Wordlist that the recognition engine will use to constrain the recognition result.

This is then passed to the recognizer. The InkRecognizer, subclass of the interface

Recognizer, is the concrete class used to perform the recognition and translate the ink

Scribbles into characters.

3.1.2.4 Forms Classes

 The forms package provides APIs for form operations. The abstract base class Field

represents a general field in a form, and five derived classes: BinaryField, BooleanField,

CurrencyField, NumberField, StampField and StringField, are used to define particular

kinds of fields when creating a form. In addition, the class FormDB provides the ODBC

(Open DataBase Connectivity) database interface and the class FormIO provides methods

to perform reading or writing of a form.

3.1.2.5 Export Classes

 The export package provides APIs for exporting ink to various image representations.

The classes Raster provides the common raster formats interface; the classes BMP,

JPEG, PNG and TIFF are derived from the class Raster, and provide methods that

generate BMP, JPEG, PNG and TIFF image file representation of the ink. The ink also

can be exported to PDF and PostScript format via classes PDF and PostScript.

 22

3.1.2.6 Inkman Classes

 The Inkman package is at the highest level. It is built on all the other packages and is

an extension of lower-level packages to provide users more flexible means to develop ink

applications. The Ink Manager application is built on this package. The InkMan package

provides three groups of interface.

 The first group consists of classes necessary to represent a notebook and provides an

interface for manipulating ink on it. The classes include: InkManagerNotebook,

InkManagerSection, OrderedScribble and the concrete derived classes,

ScribbleAttributeIndex and its associated classes.

 The second group consists of various Attribute and associate classes. The Scribble-

Attribute classes are: AppointmentAttribute, DatedLabelAttribute, DatedTextAttribute,

InkDisplayAttribute, KeywordAttribute, LabelAttribute, TextAttribute,

TextNoteAttribute and ToDoAttribute. The Page-Attribute classes are:

BookmarkAttribute, HighlightAttribute and KeywordListAttribute. Each Attribute

describes an ink attribute and users can easily tell the attribute purpose from the class

name. For example, InkDisplayAttribute class specifies the manner in which ink is

rendered. When this attribute attached to a Scribble, it specifies the color and line-

thickness of the scribble for rendering.

 The third and smallest subset consists of four utility classes, for example the class

Color, which represents colors using RGB values.

3.2 The Microsoft Tablet PC Platform SDK

3.2.1 Introduction

 The Tablet PC is a format of tablet computers launched in 2002. Each is a general-

purpose computer with an integrated interactive screen, accepting a pen stylus as an input

device. A user can write on the screen with a pen stylus and thereby interact with the

 23

computer. The digitizer inside the Tablet PC detects a hovering pen and takes samples of

the pen’s locations at least 100 times a second. The handwriting captured by the digitizer

can be translated into text by some applications, or gestures by a built-in handwriting

recognizer, or just treated “as ink”, allowing the user to revise, edit, or re-purpose their

handwritten input on the screen.

 The Tablet PC uses the Microsoft Windows XP Tablet PC Edition operating system

which is a version of Microsoft Windows XP bundled with special Tablet PC features

that focus on the pen and digital ink. The Microsoft Tablet PC Platform SDK is a

Software Development Kit to enable input, output and manipulation of handwriting data

on Tablet PC as well as interchange of this data with other computers. It is based on

.NET framework.

3.2.2 Tablet PC Platform SDK Overview

 The remaining sections closely follow the presentation of the reference book

“Building Tablet PC Applications” [6] and web source of MSDN Library (Windows XP

Tablet PC Edition) [7], and give an overview of the Tablet PC platform SDK.

 The Tablet PC platform can be divided into three distinct areas: (1) Ink collection (Pen

API) for collecting ink from the digitizer; (2) Ink data management (Ink API) for

managing the collected ink; and (3) Ink recognition (Reco API) for converting the ink

into other types of data such as text [7].

 The Tablet PC ink API is available in both the COM automation library and the .NET

managed library. The automation library is the Tablet PC ink library with COM

(Component Object Model) technology. COM has been used for many years in Windows

applications, and enables software components to be linked and reused. The Tablet PC

platform still supports this model. It also provides an automation library allowing

developers more familiar with COM to write unmanaged codes with C/C++ and Visual

Basic 6. The Tablet PC managed library is an ink library for the .NET framework. It

 24

contains a set of managed objects that expose ink features. The term “managed” is .NET

specific. It means the codes target the common language runtime, and the resources and

services are managed at execution time. The majority of the objects in the Automation

Library are identical to those in the Managed API, and an object in one library has a

corresponding object in the other library. Figure 2 is a high-level view of the Tablet PC

Platform SDK architecture presented in [6] (page 67). The COM automation APIs is at

the lowest level, and directly uses Microsoft Win32 calls. The managed APIs are built on

top of the COM automation APIs, essentially providing a managed wrapper for that

functionality [6]. In addition, the Tablet PC Platform provides two controls: InkEdit and

InkPicture, which allows easily add ink and handwriting recognition to Tablet PC

applications.

Figure 2. Tablet PC Platform SDK architecture

3.2.3 Ink Collection APIs

 We have illustrated earlier that the Tablet PC ink API can be logically divided into

three sets. In this section, we will have a brief review at the first set -- Ink Collection

APIs. There are two key classes in this set that facilitate tablet input: the InkCollector

Win 32 APIs

Tablet PC Platform SDK

Managed APIs

Ink Collection

Ink Data Management

Ink Recognition

Ink Controls

InkPictureInkEdit

COM Automation APIs

.NET Framework

 25

class and the InkOverlay class. They are both objects used to capture real-time ink from

the tablet, and usually are used with windows form to capture ink. The difference

between them is that InkOverlay supports interactive operations, such as selecting,

moving, resizing and erasing, while InkCollector does not. InkOverlay has three different

input modes indicated by property EditingMode: Ink, Select and Delete. If in ink mode,

InkOverlay will act just like InkCollector. Once the digital pen touches the tablet, the ink

is captured and drawn on the screen. In select mode, ink is selected when user taps or

lassoes on it. In delete mode, ink is erased when it is touched by pen.

 InkCollector and InkOverlay provide an extensive set of event notifications that can be

used to trigger other operations. For better understanding, these events can be grouped

into a number of categories. The first category of events includes Stroke and Gesture

fired when ink is created. The second category can be referred as Pen Movement Events.

Events are fired when some pen actions occur. For examples, CursorButtonDown and

CursorButtonUp are two events fired when the button is either pressed or released. The

third category is Mouse Trigger Events such as DoubleClick, MouseMove. The fourth

category is Tablet Hardware Events including TabletAdded and TabletRemoved, occurs

when a tablet device is either added or removed from the system. Two more categories,

Rendering Events, and Ink Editing Events, are only provided in InkOverlay class.

 The InkCollector and InkOverlay classes expose packet properties via the property

DesiredPacketDescription. The packet property is used to describe an ink point such as

X, Y coordinate and pressure. The property value is captured from digitizer, so it is

device-dependant. For example, some devices support normal pressure, but some doesn’t.

By default, the DesiredPacketDescription property of InkCollector object is an array

containing the X, Y. The user can add more packet properties by modifying the

DesiredPacketDescription if the tablet hardware supports. Table 1 lists some of the

PacketProperty members and their descriptions selectively extracted from MSDN web

source [7].

 26

PacketProperty Member Name Description

X Specifies the x-coordinate in the tablet coordinate space.
The origin (0,0) of the tablet is the upper-left cornet.

Y Specifies the y-coordinate in the tablet coordinate space.
The origin (0,0) of the tablet is the upper-left cornet.

NormalPressure
Specifies downward pressure of the pen tip on the tablet
surface. The greater the pressure on the pen tip, the
more ink that is drawn.

TangentPressure Specifies diagonal pressure of the pen tip on the tablet
surface.

TwistOrientation Specifies clockwise rotation of the cursor about its own
axis

RollRotation Requiring a three-dimensional digitizer, specifies the
clockwise rotation of the pen about its own axis

Table 1. Some PacketProperty Members and their Descriptions

3.2.4 Ink Data Management APIs

 This section describes the second part of the Tablet PC APIs – the Ink Data

Management APIs. These provide the ability to interact with, manipulate, edit and save

ink data.

3.2.4.1 Ink Data Structures

 Ink, Stroke and Strokes are key classes for the representation of ink. The Ink class is

the fundamental data structure used to represent ink captured by the Tablet PC. An Ink

object is a container for Stroke objects, while a Stroke object is essentially an ordered

collection of packets that is captured in a single pen-down, pen-move and pen-up

sequence. A packet is the set of data that the tablet device sends at each sample point,

such as (x, y) coordinates, pen pressure, pen angle, and so on, as specified by

PacketProperty discussed in previous section. The Ink class typically exposes its Stroke

objects through another collection class called Strokes. The Stokes is actually a collection

of references to Stroke objects. Figure 3 shows the relationship between Ink, Stoke and

Strokes classes.

 27

Figure 3. Relationship between Tablet PC Ink, Stroke and Strokes objects

3.2.4.2 Ink Creation and Deletion

 An Ink object maybe created in two possible ways: either automatically created when

an InkCollector or InkOverlay object is created and ink is collected, or created explicitly

via constructors. Since a Stroke is always owned by an Ink object, the functionalities to

copy, delete, remove or construct new Stroke objects are exposed in Ink class. Some often

used methods are the following: The CreateStroke/CreateStrokes method constructs a

new Stroke/Strokes object within an Ink object, The AddStrokesAtRectangle method is

used to add existing strokes into an Ink object. The Clone method clones Stroke object.

The DeleteStroke and DeleteStrokes methods destroy Stroke objects. ExtractStrokes is a

method to copy or move Stroke objects from its owning Ink object into a new Ink object.

Each Stroke object is assigned a unique ID at the creation time. This ID is immutable and

remains unchanged for the Stroke’s lifetime until the Stroke is destroyed.

3.2.4.3 Ink Rendering

 The functionality for rendering ink strokes is encapsulated in class Renderer. Its

primary purpose is to draw ink into a viewport and maintain a transformation on the ink

space [6]. Figure 4 shows how a Reneder object draws ink strokes to a viewport,

presented on [6] (page 209).

 The Renderer class provide method Draw for drawing ink to either a Graphics object

or a Windows GDI device context (HDC). The Renderer class also provides methods

Ink

Stroke Stroke Stroke

Strokes

Ink.Strokes

 28

InkSpaceToPixel and PixelToInkSpace to convert from ink space to pixels or vice versa,

using either a Graphics object or an HDC to obtain the pixel dpi.

Figure 4. Two Functionalities of Renderer Class

 Another ability Renderer provides is transforming data in the ink space. This is very

useful to enable functionality such as zooming, rotating and resizing ink. There are two

transformations maintained in the Renderer class: one is view transformation, and the

other is object transformation. The difference between them is that view transformation

will scale thickness of a stroke, while object transformation will not. The methods

provided to work with the transformations are: Move, Rotate, Scale, GetObjectTransform,

GetViewTransform, SetObjectTransform and SetViewTransform.

 The Tablet PC provides the class DrawingAttributes to encapsulate the various

properties and information that determine the ink’s view when rendered to a device. The

properties include: AntiAliased, Color, FitToCurve (ink rendered as a series of straight

lines or Bezier curves), Height, IgnorePressure (whether the thickness of ink varies with

pressure data or not), PenTip (ball or rectangle), RasterOperation, Transparency and

Width.

3.2.4.4 Ink Interoperability

 Ink data is always saved at the Ink object level, and this is accomplished with the Ink

class’ Save method. There are four persistence formats ink data can be saved shown in

transformed
Ink

coordinates

Ink object

Renderer

Transform

Viewport
(Screen,

printer, etc.)

Application

original
ink

coordinates
pixels

 29

Table 2, quoted from [6] (page 325). The method Load allows user to reconstitute ink

from its persistence format into an Ink object.

PersistenceFormat

Enumeration Description

InkSerializedFormat The Ink Serialized Format (ISF), typically used to save and load
ink data.

Gif The Graphics Interchange Format, typically used for viewing
ink in Web browsers.

Base64InkSerializedFormat The ISF, which is then Base64-encoded, typically used for
storing ink in XML

Base64Gif The Graphics Interchange Format, which is then Base64-
encoded, typically used for viewing ink via .mht files.

Table 2. Ink Persistence Formats and Descriptions

 The ink SDK also provides the method ClipboardCopy to cut or copy ink data from an

Ink object to the clipboard in various formats according to the value of enumeration

InkClipboardFormats. This provides choices such as Bitmap, CopyMask, Metafile,

InkSerializedFormat, etc. Correspondingly, the method ClipboardPaste will read back

the ink data from the clipboard and merge it into an Ink object.

3.2.5 Ink Recognition APIs

 The third part of the Tablet PC APIs is the set of Ink Recognition APIs. Tablet PC ink

recognition comprises two types of recognitions: gesture recognition and handwriting

recognition.

 Gesture recognition is the ability to translate ink strokes in predefined shapes to

specific application commands, such as copy, paste, undo, and etc. For example, if the

user scratches-out on the tablet with the digital pen, this gesture can be interpreted as an

erasing command. The gesture recognition is accomplished by setting a proper ink

collection mode on an InkCollector or InkOverlay object.

 Handwriting recognition refers to the ability to translate handwritten ink into text for

languages. The easiest way to perform recognition is to use the Strokes class’ ToString

 30

method. The strokes are sent to the default recognizer, and the highest probability result

is returned as a string. The user also can perform more complex recognition by specifying

an appropriate recognizer instead of using the default recognizer, or requesting more

alternative recognition results instead of only having the highest probability result

returned. The recognition also can be performed in asynchronous mode to make the

process more interactive.

 The classes Recognizers, Recognizer, RecognizerContext, RecognitionResult and

RecognitionAlternate are the key classes provided to perform more advanced handwriting

recognition. The Recognizers is a collection of different recognizers installed and used in

the system. The Recognizer class represents the ability to translate the strokes into text.

By calling method CreateRecognizerContext, the recognizer creates a RecognizerContext

object, which is used to perform the actual handwriting recognition, retrieve the

recognition result, as well as alternates. The result of the recognition is represented by the

RecognitionResult class and the RecognitionAlternate class represents the possible

alternate results.

 Ink recognition is a computationally intensive operation. The Tablet PC therefore

supplies two usage models to perform the recognition: synchronous and asynchronous.

Synchronous recognition occurs when the thread requesting recognition results blocks

until computation is complete. Asynchronous recognition is non-blocking: the thread

requesting recognition result is allowed to continue, and is later notified that computation

is complete [6]. So asynchronous mode allows more interactivities than synchronous

mode. Another important concept is partial recognition, which refers to an incrementally

recognition – the recognition begins as soon as any ink is given, and incrementally

adjusts the computation as ink added or removed, or recognition properties change [6].

Partial recognition also improves the recognition’s timely performance, since the strokes

associated are kept up-to-date at all times, and computation is continuous. Otherwise the

recognition is performed all at once, which may lead to pauses.

 31

 To perform advanced recognition with recognition APIs, the following steps are

involved: The first is to obtain a recognizer. The Tablet PC platform allows multiple

recognizers to be installed. The method GetDefaultRecognizer serves to get the default

recognizer, and the method Item serves to get a specific recognizer by specifying an

index in the collection. A recognizer’s specific capabilities are obtained through the

Recognizer class’ Capabilities property, which returns a RecognizerCapabilities

enumeration. For example, the value DownAndRight means the recognizer supports

downward and rightward text flow as in the Chinese language.

 After obtaining a Recognizer, a RecognizerContext needs to be created by invoking

the Recognizer’s CreateRecognizerContext and setting the ink stroke to be recognized.

This RecognizerContext object represents a recognition session, in which all the context

information required for the recognition is associated. It contains the actual ink strokes to

be recognized, parameters determining the recognition mode or improving the

recognition accuracy, and any recognition results. An example of contextual information

is the Factoid. A user may pass in the constant Factoid.TELEPHONE to

RecognizerContext, which tells the recognizer that the ink it will perform recognition on

is probably representing a phone number. This helps the recognizer can distinguish

between letters and numbers such as 0 or O, and 1 or l.

 The recognition results can be obtained either synchronously or asynchronously as

discussed earlier. The Recognize method of the RecognizerContext class is used to obtain

recognition results synchronously; while either the method BackgroundRecognize or the

method BackgroundRecognizeWithAlternates is called to perform asynchronous

recognition. If we also consider partial recognition, recognition can be in one of four

modes: synchronous, synchronous with partial recognition, asynchronous, and

asynchronous with partial recognition. Recognition results are encapsulated in

RecognitionResult object, including result alternates, confidence and stroke association.

The TopAlternate property of the RecognitionResult provides the top alternate for the

result, returning an instance of the RecognitionAlternate class, while the method

 32

GetAlternatesFromSelection is called to return a collection of other alternates by the way

of the RecognitionAlternates class.

 33

CHAPTER 4 ISSUES IN CONVERSION BETWEEN DATA
FORMATS

 In Chapter 2, we saw that UNIPEN, Jot and InkML are very different digital ink data

standards with different design goals, focusing on different aspects of ink properties. This

has limited what the ink applications can do in heterogeneous environments. We

therefore want to develop conversions among the different ink formats to promote the

portability of ink services. This chapter discusses some issues in the conversions among

UNIPEN, Jot and InkML formats.

4.1 UNIPEN ↔ Jot

4.1.1 Correspondence of Data between Formats

 This section illustrates the counterparts between UNIPEN and Jot, so we can convert

from one format to the other without losing information.

 The most basic component in recording ink is the set of ink points of the pen

trajectory. Each point of the ink should at least store its (x, y) position, and can have

optional data channels, such as pen pressure, pen angle, etc., depending on the

capabilities of the digitizer. In the UNIPEN format, the keyword .COORD declares the

data channels for the points, and actual data goes between .PEN_DOWN and .PEN_UP

components. In Jot format, the data channel is specified by INK_BUNDLE_FLAGS, and

all data is encapsulated in the INK_POINT structure. Table 3 compares the ink data

channel recorded for each pen point in both formats. Most of the channels have

correspondences between the formats, and the conversion is straightforward. The main

exception is the T (time) channel, which is optional. In the UNIPEN format it is recorded

for each point, i.e., each point has a timestamp. In Jot format, there is not a timestamp for

every point. Instead the time is recorded in the structure INK_STRART_TIME_RECORD

and INK_END_TIME_RECORD to indicate the timestamp of the first point and the last

point for a sequence of “point values”. This reduces the space occupied when the amount

 34

of point data is large, and makes the Jot format more compact. Time information for the

intermediate points may be reconstructed using knowledge of the sampling frequency.

UNIPEN Jot Description
X, Y Position X, Y position of the pen on the tablet

P Force Pen pressure on the tablet
Z Height Altitude of stylus above the tablet

BUTTON Buttons Barrel button states

RHO RHO Rotational angle of the stylus, measured in degrees from
some nominal orientation of the stylus.

THETA, PHI Angle Tilt along the x-axis or y-axis
T Time in milliseconds

Table 3. Data Channels for Pen Point in UNIPEN and Jot

 Turning now to other parameters, both formats provide means to represent the x

amd y resolutions of the data collection device (see Table 4). In UNIPEN, the keywords

.X_POINTS_PER_INCH, .Y_POINTS_PER_INCH, .X_POINTS_PER_MM,

.Y_POINTS_PER_MM are used. Correspondingly, in Jot, INK_BUNDLE_RECORD

contains data members penUnitsPerX and penUnitsPerY to store this information. Some

standard correspondences are as follows:

 1000 points per inch digitizer == 39370 pen units per meter

500 points per inch digitizer == 19685 pen units per meter

200 points per inch digitizer == 7874 pen units per meter

254 points per inch (1/10 mm)== 10000 pen units per meter [3]

UNIPEN Jot Description
.X_POINTS_PER_INCH
.X_POINTS_PER_MM penUnitsPerX X resolution of the data collection device

.Y_POINTS_PER_INCH
.Y_POINTS_PER_MM penUnitsPerY Y resolution of the data collection device

Table 4. Other Corresponding Data Channels in UNIPEN and Jot

 35

4.1.2 Information Lost in the Conversion

 Unfortunately, not all data in one format has a counterpart in the other format. From

the design point of view, UNIPEN is aimed to suit the needs of people testing

handwriting recognition algorithms on large amounts of data, while Jot is application-

oriented, to provide a terse and sufficient standard for applications running on small

platforms like PDAs and pen-based notebook computers. UNIPEN therefore takes a lot

of space for data annotations about ink file documentation, device information, recording

condition, writers, segmentation, data layout, data quality, labeling and recognition

results. But Jot does not have provisions for this information. As a result, this data will be

lost when converting from UNIPEN to Jot. On the other hand, UNIPEN has no

provisions for pen tip and ink color, but Jot has, since pen tip and ink color are more

application-relevant properties. Therefore in conversion from Jot to UNIPEN, pen tip

and ink color data will be lost.

4.1.3 Stroke Group

 In UNIPEN, pen data is grouped in the unit of the stroke, i.e., ink data between a

.PEN_DOWN and a .PEN_UP instruction is a stroke. In Jot, the smallest unit to record a

sequence of ink points is INK_PENDATA_RECORD. It contains the actual pen data for

one or more pen strokes. Multiple strokes are typically grouped into one record to

increase the efficiency of the compression algorithm, though strokes may be stored

individually, if desired. This causes the problem that there is no way to tell how many

strokes are there in one INK_PENDATA_RECORD. Multiple strokes are not separated

stroke by stroke as UNIPEN requires.

4.1.4 Ink Point Computation

 UNIPEN is an ASCII format, and data in UNIPEN is recorded explicitly in absolute

value. While Jot is a binary format, and data stored in Jot can be either in loss-less

compression mode or non-compression mode. The detailed encoding schema of Jot was

 36

described in section 2.2.4, and will not be repeated here. The computations of delta-

calculation and compressing/uncompressing point data are needed in the conversion.

 Jot records pen position relative to the lower-left (0, 0) corner of a logical page or

window, and scale and offset properties cumulatively operate on the data. UNIPEN

records ink positions in absolute values, therefore computation may required in the

format conversion. In our conversion from UNIPEN to Jot, the scale is set to unity and

offset is set to 0 by default.

4.1.5 Summary

 In summary, the conversion between UNIPEN and Jot loses some information,

especially form UNIPEN to Jot, where a large set of annotations is lost. Computation

involved includes system unit transformation, scale and offset computation, compression

and decompression.

4.2 JOT ↔ InkML

4.2.1 Overview

 Jot is a format to maintain a complete likeness of the original ink as it was drawn, and

is used for the storage and interchange of digital ink between applications running on

small devices. It doesn’t define any structures for applications in a specific area such as

handwriting recognition. InkML however provides handwriting recognition specific

elements and attributes. The conversion between Jot and InkML can be realized as a

conversion between Jot and InkML primitive elements, since the set of primitive

elements of InkML is sufficient for all the basic ink applications.

4.2.2 Ink Point Channels

 As stated earlier ink point data in Jot is recorded through a sequence of INK_POINT

structures, and whether an ink property, such as force or angle, is present depends on the

specification given by the INK_BUNDLE_FLAGS. Similarly, InkML defines channels to

 37

describe the ink data that may be encoded in a trace. Contiguous ink points are encoded

within a <trace> element, and the <traceFormat> element defines the sequence of channel

values that occurs within <trace> element. The comparison of ink data channels in both

formats and their interpretation are listed in Table 5. The conversion of ink point data is

realized by the conversion of INK_POINT structure in Jot and the <trace> element in

InkML, and INK_BUNDLE_FLAGS structure in Jot and the <traceFormat> element in

InkML.

Jot InkML Description
Position X, Y X, Y position of the pen on the tablet
Force F Pen pressure on the tablet
Height Z Height of pen above the tablet
Buttons B1 … Bn Barrel button / side button states

RHO R Rotation about the pen axis
Angle Tx, Ty Tilt along the x-axis or y-axis

 S Tip switch state (touch/not touching the tablet)
 Az Azimuth angle of the pen
 EI Elevation angle of the pen

Table 5. Comparison of Ink Point Data Channels in Jot and InkML

 Form Table 5, we can see InkML provides more comprehensive channels for encoding

ink data. Most ink properties have counterpart channels in both formats, except S, Az, EI.

So the conversion from Jot to InkML can preserve all point data. On the other hand, in

the conversion from InkML to Jot, the information about tip switch state, azimuth angle

and elevation angle is lost if they are originally present.

 There is a difference between Jot’s INK_BUNDLE_FLAGS and InkML’s

<traceFormat>. InkML defines <regularChannels> whose value must be recorded for

each sample point, and <intermittentChannels> whose value may optionally be recorded

for each sample point. On the contrary, in Jot format, once a point element present is

asserted in INK_BUNDLE_FLAGS of an ink bundle, the value of that element must be

recorded for each ink point. This difference needs to be handled in the conversion

between both formats.

 38

4.2.3 Ink Mapping

 Ink mapping often occurs in ink applications, especially in ink sharing among multiple

devices. For example, an ink stream or file may contain traces that are captured on a

tablet computer, a PDA device, and an opaque graphics tablet attached to a desktop. The

size of these traces on each capture device and corresponding display might differ, yet it

may be necessary to relate these traces to one another. They could represent scribbles on

a shared electronic whiteboard, or the markings of two players in a distributed tic-tac-toe

game. This may include two kinds of mapping: one is from original data captured by

digitizing device to recorded trace values, the other is from the recorded trace to canvas

coordinate system.

 Recall that in InkML the correspondence between the trace data and the device

channels is recorded using the mapping attribute of the <channel> element in the

<traceFormat>. The transformation from trace coordinates to the shared canvas

coordinate system is declared via the mapping attribute of the <context> element. In Jot,

the INK_SCALE_RECORD and the INK_OFFSET_RECORD structures facilitate ink

mapping and transformation. Ink scale and offset values are set by the storing application

to be applied by the rendering application. For instance, if the storing application

collected ink at scales of (2.0, 2.0), the storing application should insert an

INK_SACLE_RECORD with a scale of (0.5, 0.5) for the rendering application to multiply

all ink X and Y coordinates. This more likely corresponds to the mapping of the

<channel> element in InkML, while the rendering in differing devices with Jot is left for

the different rending applications. In addition, the scale and offset operations in Jot are

cumulative, and the INK_SCALE_RESET record resets to the identity transformation

matrix and zero offset. The conversion of ink mapping between InkML and Jot formats

requires appropriate calculations. Form Jot to InkML, scale and offset can be converted

to mapping attribute of the <channel>, but from InkML to Jot, the mapping attribute of

the <context> may be lost.

 In the conversion from InkML mapping attribute of <channel> in the <traceFormat>

to Jot’s scale and offset records, the information may not be reserved in some

 39

applications. An example case is given below. In InkML, the mapping attribute has three

forms. One is the value of “*” describing the identity mapping. Another is specifying an

expression contains only channel names in the form of a “formula()”. The third is using a

mapping value of the form “uri()” refers to a resource such as a MathML document to

describe more complex relations. Examples of these three formats are as follows:
<channel name=“X” type=“decimal” mapping=“*”/>

<channel name=“X” type=“decimal” mapping=“formula(3*X+5)”/>

<channel name=“X”

 type=“decimal”

 mapping=“uri(‘http://www.uwo.ca/orcca’)”/>

If the InkML file uses the third form, and the mapping rule is complicated (such as

involving an integral), the information cannot be converted to Jot without explicitly

computing all the points. Since the scale and offset in Jot is specified by a fixed value,

only linear transformations will be considered. In the most general cases, the mapping

will not be so complicated, and the computation to achieve the conversion between two

formats is trivial.

4.2.4 Ink Encoding

 As described earlier, in InkML, data is recorded in a <trace> element either with a

regular channel or an intermittent channel. The specification defines that regular channels

may be reported as explicit values, differences, or second differences, but intermittent

channels are always encoded explicitly. Here is the example from 2.3.2.1:
<traceFormat>

 <regularChannels>

 <channel name="X" type="decimal"/>

 <channel name="Y" type="decimal"/>

 </regularChannels>

 <intermittentChannels>

 <channel name="F" type="decimal"/>

 </intermittentChannels>

</traceFormat>

 40

<trace id = "id001">

84 652:5’1’2:’2 ”2”-1:”2 4 1:4-1 21:0 13-9:-2-3-5:2-9 10:0 15

18:-2-4-7:0;

</trace>

The trace is interpreted as following:

Trace X Y F vX vY vF comments

84 652:5 84 652 5 ? ? ?

’1’2:’2 85 654 7 1 2 2 velocity values

”2”-1:”2 88 655 11 3 1 4 acceleration values

4 1:4 95 657 15 7 2 4 Implicit acceleration

-1 21:0 101 680 19 6 23 4

13-9:-2 120 694 21 19 14 2

-3-5:2 132 700 25 12 6 4

-9 10:0 135 716 29 3 16 4

15 18:-2 153 750 31 18 34 2

-4-7:0 167 777 33 14 27 2

In addition, the alphabetic characters may be used to encode small integer values. The

letters “a” to “y” are interpreted as –1 through –25, “A” to “Y” are interpreted as 1

through 25, and “z” and “Z” are interpreted as zero.

 The question of ink compression in InkML is still an ongoing debate. The readability

of non-binary XML is an advantage, while the inefficiencies stemming from the

document size is a disadvantage. It is believed by the working group that a binary

encoding of InkML can be specified, however it hasn’t been incorporated in the current

specification.

 With Jot, ink data can be written in either uncompressed or compressed format. In

uncompressed format, delta values are stored to represent a sequence of points, where the

first point is always relative to the defined default values for each component of the point.

This delta-oriented format corresponds to the single difference encoding of InkML. In

 41

compressed format, point values stored are delta-oriented and compressed by reserved

encodings as described in section 2.2.4.

 In summary, in the conversion of ink data between two formats, string manipulations

of InkML trace data, compressing and uncompressing of Jot data, and delta computations

are involved.

4.2.5 Ink Group

 Ink can be grouped in both Jot and InkML formats, and groups are nestable in both.

Recall that, in Jot, INK_GROUP_RECORD groups INK_PENDATA_RECORDs, and

each group is assigned a group number. In InkML, the elements <traceGroup> and

<traceRefGroup> are used to group a number of traces. The conversion concerning the

ink grouping between Jot and InkML is not straightforward.

 When converting Jot to InkML, a single group of ink data can be encoded as a

<traceGroup> or <traceRefGroup>, while nested ink groups must be encoded into

<traceRefGroup>. Another issue is that users may change pens or colors when writing.

This may cause the INK_COLOR_RECORD or INK_PENTIP_RECORD to be changed

within an ink group in Jot because the interpretation of grouping is up to the application.

For example, grouping could be used in drawing programs for the user to move or copy

an entire group of ink with different pen tips or colors. This would cause a new

<traceGroup> to be created within a group in the conversion due to the grouping criteria.

On the other hand, InkML usually groups successive traces with common characteristics

such as the same brush.

 In the other direction, converting InkML to Jot, when a <traceRefGroup> is

referenced in multiple groups, the trace may be copied multiple times in the resulting Jot

format, since Jot does not provide any way for an ink record to refer to other records.

 42

4.2.6 Ink TimeStamp

 Jot and InkML both support ink timestamping, and time is measured in both

milliseconds. Compared with Jot, InkML provides a relatively more flexible

timestamping mechanism.

 In Jot, INK_START_TIME_RECORD and INK_END_TIME_RECORD are used to

record the start and end time of an ink bundle. There is no absolute time in Jot, all

timestamps recorded are relative to the previous one, and the base timestamp is arbitrary.

 In InkML, the element <timestamp> and attributes start, duration, timeOffset and

timeRef are used for this purpose. The start time can be recorded either in an absolute

value or a relative value. The absolute timestamp refers to the time in milliseconds since

1 January 1970 00:00:00 UTC. The attribute timeOffset along with the attribute timeRef

is used to specify a relative timestamp. The timeRef refers to a <timestamp> element,

and the timeOffset is the relative value to that timestamp. The attribute duration records

the duration of a trace.

 Thus, the ink time conversion from InkML to Jot is trivial. The start time in Jot is

arbitrary and relative relationship is used, so the value of the end time in Jot format is

actually the value of duration in InkML. However, this conversion loses information if an

absolute start timestamp, or a reference timestamp is used in InkML format. On the other

hand, it is not possible to convert timestamp in Jot to InkML accurately, because there is

no way to set the timeRef attribute due to the fact that the base time in Jot is arbitrary.

4.2.7 Other Issues

 INK_COLOR_RECORD and INK_PENTIP_RECORD are two records in Jot to

describe ink attributes. In InkML, these attributes are captured in the <brush> element.

The conversion between them is straightforward.

 43

4.2.8 Summary

 InkML is a more comprehensive ink data specification than Jot. For the records in Jot,

there is always a corresponding element in InkML, so the conversion from Jot to InkML

is almost lossless. However, the conversion from InkML to Jot is a lossy-conversion,

because a large set of information in InkML has no appropriate way to be recorded in Jot.

This includes context information for capture devices, canvas, and so on. In the above

discussion, we have covered almost all records defined in the Jot format, but just some of

elements definitions in InkML.

4.3 InkML ↔ UNIPEN

4.3.1 Overview

 InkML provides a set of application-specific elements for handwriting recognition,

which incorporate the features of the UNIPEN format. Like UNIPEN, it is intended to

support the needs of online handwriting recognition developers requiring large corpora of

handwriting samples stored in a common format. InkML provides the same rich

annotation possibilities as the current UNIPEN format, and adds a number of

improvements. Therefore, the conversion between UNIPEN and InkML can be realized

as a conversion between UNIPEN and handwriting recognition-specific InkML. This

uses InkML primitive elements to tag the ink data and application-specific tags to

organize the document.

4.3.2 UNIPEN and UNIPEN-like InkML

 All the keywords in the UNIPEN format have corresponding elements in InkML. For

example, the keyword .DATA_SOURCE in UNIPEN corresponds to the element

<source> in InkML, .DATA_ID and .HIERARCHY correspond to the <dataBlock>

element’s attributes id and hierarchy. An appropriate table matching all corresponding

keywords and elements can be used by the converter when performing the conversion

from UNIPEN to InkML, and vice versa.

 44

 On the other hand, the InkML handwriting recognition-specific schema not only offers

the UNIPEN functionality, it also adds some improvements. Since InkML is XML based,

one of the improvements comes from the use of XML complex types to group related

annotations. For instance, in UNIPEN, the writer information is described with the

keywords .STYLE, .WRITER_ID, .COUNTRY, .HAND, .AGE, .SEX, .SKILL line by line.

In InkML, all this information is grouped together. The element <writerInfo>, with

attribute id, contains elements <style>, <country>, <hand>, <age>, <sex> and <skill>,

describing a given writer. As a result, in the conversion from UNIPEN to InkML, the

UNIPEN components must be re-arranged and the related components must be grouped

to conform to the InkML schema. For the other direction (converting from InkML to

UNIPEN), the ungrouping of XML components and rearrangement to conform the

UNIPEN format is necessary.

4.3.3 Summary

 The conversion between UNIPEN and InkML is actually the conversion between

UNIPEN and UNIPEN-like InkML. Regardless of the various improvements of InkML

mentioned in the previous section, the conversion is lossless in both directions.

Rearrangement of keywords in UNIPEN, elements in InkML, and computations of point

values in both formats are involved. As to the ink encoding, UNIPEN records points

using explicit values, while in InkML the values can be explicit values, differences, or

second differences. The details of the InkML encoding have been discussed in the

previous section, and will not be repeated here.

 Being familiar with the ink data encoding in the above discussion of UNIPEN vs. Jot

and Jot vs. InkML conversions, the computation of ink point data between UNIPEN and

InkML is similar and straightforward.

 45

CHAPTER 5 IMPLEMENTATION OF DATA FORMAT
CONVERSIONS

5.1 Notes to the Conversions

 The issues in converting among UNIPEN, Jot and InkML have been discussed in the

previous chapter. This chapter is about the implementation of these conversions. Because

the InkML specification is still evolving, we will have to leave the conversions of InkML

vs. UNIPEN and InkML vs. Jot for future work. Here we describe the implementation of

the conversion between UNIPEN and Jot. As mentioned earlier, the conversion is based

on the UNIPEN 1.0 definition and the JOT 1.0 specifications.

5.2 UNIPEN ↔ JOT Conversion

5.2.1 Principle Design

 The specification of JOT 1.0 is written in the C language, thus we have chosen to do

the conversion between Jot and UNIPEN in C. The data having counterparts in both

formats shown in Table 3 and Table 4 can be converted from one format to another

without losing information. Two programs accomplish the conversion: one converts

UNIPEN to Jot, another performs the conversion in the opposite direction. The

conversion scheme (see Figure 5) is straightforward.

 To convert UNIPEN to Jot, (1) we read a data stream from the UNIPEN file, (2) parse

and extract the data that can be converted, (3) convert to Jot format by the mapping rules,

and then (4) write the stream to the output file. The mapping rules for conversion are

hard-coded in the programs. The rules are based on the correspondence representation

between the two formats shown in Table 3 and Table 4. Similarly, to convert Jot to

UNIPEN, we read the data stream from the Jot file, and convert the Jot structures to the

UNIPEN format. The length of the data stream to read is encapsulated in the header of

each structure.

 46

Figure 5. UNIPEN vs. Jot Conversion

 As discussed in previous chapter, ink data in UNIPEN is recorded using absolute

values, while in Jot uses delta values. The ink point data in Jot can be written in either

compacted or uncompacted format, as specified by compactionType in

INK_BULDLE_RECORD. Therefore computation is involved in the conversions. This

includes the delta-value computation, and compression/de-compression. The program

converting UNIPEN to Jot uses a command line argument to determine whether ink to be

compacted or not.

 In Jot format, the first ink point in a pen data record is always written using an

absolute value, while the proceeding points are stored in signed delta values, each added

to the previous value. If the data is compacted, the encoding algorithm uses “reserved

encodings” (we have described earlier in 2.4.4). Let us take the point position

compression from UNIPEN to Jot as an example. For clarity, we show the compact

format definition for (x, y) position again (quoted from [3]), and then give the pseudo-

code for compressing (X, Y) position data in conversion from UNIPEN to Jot:

32-bit absolute X/Y: Two 32 bit long words, first two bits are 00. Data is actually two S31s.

| 0 | 0 | (30 low-order bits of X) |
| X| (sign bit of X plus 31 bits of Y) |

16-bit short delta X/Y: Two 16 bit short words, first two bits are 0 1. Deltas are actually two
S15s. Values that would fit into an 8-bit byte delta are reserved.

| 0 | 1 | (14 low-order bits of delta-X) |
| X| (sign bit of X plus 15 bits of delta Y |

8-bit byte delta X/Y: Two bytes, first two bits are 1 0. Deltas are actually two S7s. Values that
would fit into a 4-bit nibble delta are reserved.

| 1 | 0 | (6 low-order bits of delta-X) |
| X| (sign bit of X plus 7 bits of delta-Y) |

4-bit nibble delta X/Y: One byte, first two bits are 1 1. Deltas are actually two S3s.

| 1 | 1 | (S3 delta-X) | (S3 delta-Y) |

JOT

format

UNIPEN
format

read

writeread

write

Mapping Rules

 47

The pseudo-code for compressing (X, Y) position is as follows:
if (the first point)
 write as 32-bit absolute X/Y
else
 compute deltaX, deltaY
 if((MIN_S7<deltaX<MAX_S7)&&(MIN_S7<deltaY< MAX_S7))
 write as 8-bit byte delta X/Y
 else if((MIN_S3<deltaX<MAX_S3)&&(MIN_S3<deltaY<MAX_S3))
 write as 4-bit nibble delta X/Y
 else
 write as 16-bit short delta X/Y

5.2.2 Results

 The UNIPEN-Jot converter was tested by a set of data, publicly available at the

UNIPEN official website (http://hwr.nici.kun.nl/unipen/) [10]. All ink point data was

converted from one format to another successfully. The set of data used to test UNIPEN-

to-Jot converter is composed of UNIPEN files collected by Apple, Go, IBM, NICI and

MIT. The files record ink with (x, y) position and pressure data.

 Unfortunately, we could find no standard Jot format data set. We therefore tested the

Jot-to-UNIPEN converter using the Jot data previously converted from the original

UNIPEN data mentioned above. The results of converting UNIPEN format to Jot are

summarized below.

Original UNIPEN File (byte) Converted Jot
uncompacted (byte)

Converted Jot
Compacted (byte)

apple001.dat 87601 34887 11547

go001.dat 17672 13431 6183

ibm001.dat 34817 38249 12635

nici001.dat 621944 228893 71669

mit001.dat 3636 805 403
Table 6. Comparison of Size after Conversion from UNIPEN to Jot

 The results conform to the features of both formats well. In general, when UNIPEN

format is converted to Jot, the file size decreases because all the annotation information is

lost. Compared with uncompacted Jot, the compacted Jot format further decreases the file

size by 1/2 to 2/3, which supports the claim that Jot is relatively light-weight.

 48

CHAPTER 6 INCOMPATIBILITIES BETWEEN THE TBLET PC
AND CROSSPAD APIs

 The IBM CrossPad API and the Microsoft Tablet PC API are both application

programming interfaces aimed at processing digital ink captured by pen-enabled devices.

They have many similar concepts in representing and manipulating ink, which makes the

abstraction of a common API based on them possible. However they are two software

development toolkits developed by two separate vendors, and serve two rather different

devices - the CrossPad and the Tablet PC - so they have many incompatibilities. This

chapter examines these issues. To preserve the logical progression, we repeat a few

details, at times, that have been previously mentioned.

6.1 Managed and Unmanaged Code

 Recall that the IBM CrossPad API provides two highly consistent versions: a C++

version and Java version. It is obvious that C++ is the only choice to implement an

abstract API for the CrossPad and Tablet PC, given that the Tablet PC API is not

available in Java. On the other hand, the Tablet PC API is available both in a Managed

Library and an Automation Library for the .NET framework. The automation library is

implemented for the Microsoft COM interface. Due to the inconvenience of COM type

libraries, we chose to use the managed library interface for this thesis.

 Any incompatibility then stems from the managed library of the Tablet PC for the

.NET framework. As we know, the Common Language Runtime is the foundation of the

.NET framework. Code that targets this runtime is known as “managed” code, while code

that does not target the runtime is know as “unmanaged” code. Any development on the

CrossPad is written in native C++, which is unmanaged. In contrast, on the Tablet PC, we

need to use C++ with managed extensions to access managed objects on the .NET

framework. The need to mix unmanaged and managed code brings some difficulties in

our abstraction API implementation.

 49

 Managed Extensions for C++ are extensions to the Visual C++ compiler and language

to allow them to create managed C++ code and enable access to the functionality of the

.NET Framework. Managed C++ is an extension to C++, the runtime defines a particular

object model but unfortunately does not support all features of the C++ language. For

example, multiple inheritance of classes is not supported, const modifiers on member

functions are not supported either. Many syntax incompatibilities also occur. For

instance, a managed array is itself a __gc object, inheriting from System::Array. In

contrast, an ordinary C++ array is not self-describing, so we have to specify the length of

the array if we want to pass an array as parameter in a method. With __gc array, this is

not the case. Another problem is that the mixture of managed and unmanaged codes is

restrictive. For example, a managed class cannot be derived from an unmanaged class; an

unmanaged class cannot contain a pointer pointing to a managed object, and so on.

6.2 A Document Model of Ink

 Collections of ink can conform to various different semantically structured models.

For example, if one is developing a “PowerJot” application in which the user writes

words and sentences, these are the semantic elements. On the other hand, maybe the

application is “Super-Doodle”, in which case the digital ink is most likely a series of

small drawings.

 The Tablet PC API does not support a particular document model. It provides only a

flat view of digital ink, an Ink object is simply a container for Stroke objects, and a

Strokes collection references Stroke objects. The Stroke objects are essentially a

collection of packets, and that’s it.

 In contrast, the CrossPad API supports a document model with semantic meanings for

ink. Strokes are collected into a Page, representing the ink on a physical page of paper

with a page size. Pages of ink are collected into a PageSet, representing any collection of

Pages, say a notebook. A Scribble attached with an AppointmentAttribute represents an

 50

appointment. A Scribble attached with a KeywordAttribute represents a keyword. A Page

attached with a BookmarkAttribute represents bookmarks on a page.

 The different document models of the Tablet Ink and CrossPad Ink bring concerns in

defining the ink objects for an abstraction API. Will the abstract API follow the CrossPad

model, or otherwise simply leave the ink as a plain view of ink like the Tablet ink?

6.3 Memory Management of Ink

 Recall that Point, Stroke, Scribble, Page and PageSet are five ink data classes to

represent ink in the CrossPad. Each can exist by itself, and their relationship is

aggregation: A Stroke is an array of Point, Scribble is an array of Stroke, Page is an array

of Scribble, and PageSet is an array of Page. The memory management system allows a

given Scribble to be a member of multiple Pages, a given Page to be a member of

multiple PageSets, and to be added to or deleted from a given Page or PageSet without

affecting its status on other Pages or PageSets. As to the Point, Stroke and Scribble, an

existing Point may not be altered, an existing Stroke may not be altered by any change to

its constituent Points, and an existing Scribble may not be altered by any change to its

constituent Strokes.

 In the Tablet PC, the ink data classes are Ink, Stroke and Strokes. The Ink class is the

outermost entry point into the Ink Data API. An Ink object owns a collection of Stroke

objects, and a Stroke cannot exist without an Ink object as its owner. Although a Stroke

may be transferred between different Ink objects, it can be contained by exactly one Ink

object. That’s why there is no explicit Stroke constructor in the Stroke class. A new

Stroke is constructed through the CreateStroke() method in the Ink class. In here, the

Stokes collection is actually just a collection of references to Stroke objects.

6.4 Ink Input

 Another key area of difference is the way the two APIs use input. The Tablet PC uses

real-time inking, but the CrossPad uses a fetch model. The Tablet PC API has packaged

 51

real-time inking functionality into the InkCollector and InkOverlay classes. They use a

Windows Forms-based window as an ink canvas to capture ink on the tablet. For

example, the following two lines of code implement ink collection using any installed

tablet device on the Tablet PC:
 InkCollector * inkCollector = new InkCollector(Handle);
 inkCollector -> Enabled = true;
Here we create a new InkCollector, and we use a windows form for the host window by

passing the form’s handle property in the InkCollector. We then activate the inking

functionality by setting the Enabled property to true. At this point the user is free to write

on the form interactively, and the handwritten ink is collected.

 On the other hand, in the CrossPad API, there is no collection class and it is not

necessary to take care of ink input because the CrossPad ink collection mode does this for

us. The ink is recorded by the CrossPad offline, when the user writes on the tablet and

simultaneously on the physical paper. The ink is later uploaded to a computer by the Ink

Transfer application.

 The Tablet PC API is composed of three subsets: the Tablet Input API, the Ink Data

Management API and the Ink Recognition API. On the other hand, the CrossPad API

only provides functionalities in Ink Data Management and Ink Recognition. For our

abstraction API, we invent a friendly “Ink Player” to simulate the ink collection scenarios

on the CrossPad.

6.5 Ink Properties available from the Hardware

 The Tablet PC supports much richer ink properties than the CrossPad. The CrossPad

digitizer captures the pen movement (x, y) coordinates of ink, and records the timestamp

of each Stroke, and each Page. In addition to the (x,y) coordinates of the cursor and

timestamp information, the Tablet PC digitizer hardware may provide other data such as

pen pressure, tilt angle and rotation angle depending on the device. The various

properties available from the digitizer are known as packet properties. These properties

are represented through PacketProperty class in the Tablet PC API. The API uses

 52

globally unique identifiers (GUIDs) to identify packet properties. Table 7, extracted from

[7], shows a partial list of the packet properties supported in the Tablet PC platform and

their descriptions. The proposed abstraction API must have a way to represent these

properties on CrossPad even though they are not real.

Field Description

X The x-coordinate in the tablet coordinate space.

Y The y-coordinate in the tablet coordinate space.

Z The z-coordinate of the pen tip from the tablet surface.

PacketStatus Private Wisptis data

TimerTick The time that the packet was generated.

SerialNumber Identifies the packet.

NormalPressure Downward pressure of the pen tip on the tablet surface.

TangentPressure Diagonal pressure of the pen tip on the tablet surface.

ButtonPressure Pressure on a pressure sensitive button.

XtiltOrientation The angle between the y,z-plane and the pen and y-axis plane.

YTiltOrientation The angle between the x,z-plane and the pen and x-axis plane.

AzimuthOrientation Clockwise rotation of the cursor about the z-axis.

AltitudeOrientation The angle between the axis of the pen and the tablet surface.

TwistOrientation Clockwise rotation of the cursor about its own axis.

PitchRotation Whether the tip is above or below a horizontal line that is perpendicular to
the writing surface.

RollRotation The clockwise rotation of the pen about its own axis.

YawRotation Whether the tip is moving left or right around the center of its horizontal
axis (pen is horizontal).

Table 7. Tablet PC PacketProperty Fields and their Descriptions

6.6 Ink Rendering

 The C++ version of the CrossPad SDK does not provide any graphics features. In the

Tablet PC SDK, the class Renderer is designed to provide the ink rendering functionality.

The Renderer class is to used to draw ink into a viewport and maintain a transformation

on the ink space. It supports drawing ink to either a Graphics object or a Windows GDI

device context (HDC) with the Draw method. It also provides two methods

 53

InkSpaceToPixel and PixelToInkSpace to convert from ink space to pixels or vice versa,

using either a Graphics object or an HDC to obtain the pixel dpi. Another ability

Renderer provides is maintaining the transformation that is very useful to facilitate

functionality such as zooming, resizing and scrolling ink.

6.7 Ink Display/Drawing Attributes

 In both APIs there are classes to support various properties that define the ink’s visual

characteristics. In the CrossPad API, the class InkDisplayAttribute represents the manner

in which ink is displayed, likewise in the Tablet PC API, the class DrawingAttributes

encapsulates the formatting information that defines the style ink is rendered with.

 The CrossPad’s InkDisplayAttribute is attached to a Scribble. It defines two attributes

of the ink display: color and line-thickness. The Tablet PC’s DrawingAttributes can be

associated to a Stroke or a Cursor, and specifies more settings to make ink rendered more

realisticly or in more styles than the CrossPad. Table 8, quoted from [6] (page 225), lists

the members of DrawingAttributes and their descriptions.

Property name Type Description

AntiAliased Bool Turns antialiasing on (true) and off (false).

Color Color The color used to draw the ink.

FitToCurve Bool Whether ink is rendered as a series of straight lines
(false) or Bezier curves (true).

Height Float The height of the ink specified in ink coordinates when
using the rectangle pen tip.

IgnorePressure Bool Whether to avoid varying the thickness of ink with
pressure data (true) or not (false).

PenTip PenTip The style of tip used to draw ink: Ball or Rectangle.

RasterOperation RasterOperation
The raster operation used when drawing ink. The most
common value is RasterOperation.CopyPen, though
highlighter ink use RasterOperation.MaskPen

Transparency Byte The transparency amount of the ink, where 0=opaque,
and 255=invisible

Width Float
The thickness of the ink when using the ball pen tip, or
the width of the ink specified in ink coordinates when
using the rectangle pen tip.

Table 8. Tablet PC DrawingAttributes members and their Descriptions

 54

6.8 Point Value

 In the CrossPad, the (x, y) coordinates of the Point are floating point values. They

measure in virtual units, which happen to correspond to centimeters, with a resolution of

0.01cm. The origin (0, 0) is at the upper-left corner of the screen. In contrast, the (x, y)

value of each ink packet within tablet coordinate space is measured in HIMETRIC units,

which are integer values. Each HIMETRIC unit is 0.01 millimeter. The origin (0,0) of the

tablet is also the upper-left corner. The float-valued points lead to CPU-intensive

computation. Unifying the measurement unit is necessary in the abstraction API.

6.9 Event Handling

 The CrossPad and the Tablet PC API employ different event models. The former is

based on Java Delegation Event Model, while the later is based on C# Event Model.

Java Delegation Event Model – CrossPad Event Handling

 The Java Delegation Event Model is based on four concepts of Event Source, Event

Listeners, Event Listener Interface and Event Message. An event source generates an

event and sends it to all the registered event listeners. The event source object notifies an

event listener object by invoking a method on it and passing it an event message. All

event listeners for a particular type of event must implement a corresponding event

listener interface.

Figure 6. Java Delegation Event Model

Event Source
Object

Message

Listener Object

Listener
Interface

Message
Message

Listener Object

Listener
Interface

Listener Object

Listener
Interface

 55

 In the CrossPad API, the classes Scribble, Page and PageSet are concrete event source

classes derived from abstract base class Talker. They a provide registration method

addListener, a de-registration method removeListener to add or remove corresponding

listeners. It implements notification methods as well. For instance, in the Page class, the

method notifyScribbleAttributeChanged notifies all attached PageListeners that the

Attributes of a Scribble on the Page changed. The abstract base class Listener provides a

common base class for all Listeners. The three pre-defined abstract Listeners

ScribbleListener, PageListener and PageSetListener provide an event listener interface,

and define a set of “update” methods. A concrete event listener object must implement

the interface. Listeners are stored in a ListenerSet maintained by the corresponding event

source classes. For example, users will subclass PageListener and implement various

update methods such as updateAttributeChanged, updateScribbleAdded,

updateScribbleDeleted. The appropriate methods of the class Page are defined to call the

appropriate update-methods of all attached PageListeners, so that, the particular task will

be invoked when an Attribute of its Page is changed, when a Scribble on its Page is added

or deleted.

The C# Event Model – Tablet PC Event Handling

 The C# event model is similar to Java Delegation-Event model. It still has the event

source, event consumer (event listener) and the event object (event message). However,

unlike the Java Delegation-Event model, the C# event model uses a special type of

“delegate”.

Figure 7. C# Event Model

Event
Source

Message

Event Consumer

Delegate

Message
Message

Event Consumer

Delegate

Event Consumer

Delegate

 56

 The “Delegate” is a new concept in the .NET framework. It provides the first class

support events as class members. Delegates can be thought of as a special type –

something like a class. It is a class type derived from System.Delegate in the .NET

Framework. Its main job is to encapsulate one or more methods. When you invoke a

delegate instance, the methods it encapsulates are also invoked. Therefore, a delegate

allows one to pass methods of one class to objects of other classes that can call those

methods. Delegates are similar to C++ function pointers. However, unlike function

pointers, delegates are object-oriented.

 As mentioned just now, the C# event model is based on the concepts of event source,

event consumer and event object. The event source is the object that potentially causes an

event to happen. It provides a way for interested event consumers to register, and keeps a

list of registered event consumers so that when the event occurs, the registered consumers

in the list are notified. The event consumer is the object interested in listening to a

particular event. An event consumer contains a special method called the event handler.

This method takes the event object as parameter. When an event occurs in the event

source, a new event object is created. This event object is then passed over to the event

consumer’s event handler method as parameter.

 The following is an example of how the Tablet PC handles events. CursorDown is one

of events in InkCollector class. The event is fired when the cursor tip has touched the

surface of the digitizer. The API is:
 public delegate void InkCollectorCursorDownEventHandler(

 object sender,

 InkCollectorCursorDownEventArgs e);

 public event InkCollectorCursorDownEventHandler CursorDown;

In this case, the InkCollector object is an event source. It maintains a list of registered

event consumers. The delegate InkCollectorCursorDownEventHandler is an event

consumer registered in InkCollector, listening to the cursor down event. To add this event

consumer to the event source InkCollector, one uses the += operator:
ic.CursorDown += // ic is an InkCollector object

 new InkCollectorCursorDownEventHandler(inkCollector_CursorDown);

 57

inkCollector_CursorDown is a user-defined function encapsulated in the delegate which

is called when the event is fired. It has the same signature as the delegate, and takes an

sender object and an event object as parameters:
void inkCollector_CursorDown (object sender,

 InkCollectorCursorDownEventArgs e){

 // user-defined to deal with the event

}

InkCollectorCursorDownEventArgs is an event object, which contains the event data. It

is passed from event source over to the event consumer’s event handler method as a

parameter.

 In summary, the difference between two event models stems from the concept of

delegate. To implement an event is a two-step process with both APIs. With the CrossPad

API we must: (1) create a concrete listener inheriting from listener interface, and

implement the behavior of its update methods; (2) attach listener to the event source

object by invoking the method addListener. With the Tablet PC API we must: (1) attach a

defined event to the event source object using the += operator; (2) define the function,

encapsulated in the delegate to be called when the event fired (for example

inkCollector_CursorDown in the above analysis).

6.10 Ink Persistence and Interoperability

 Ink persistence and interoperability are important features for an application that uses

ink. The Tablet PC accomplishes ink persistence and interoperability by allowing users to

save/load ink data with full fidelity through the Ink class’ Save and Load methods, and

move to and from other Microsoft windows-based application using the clipboard though

Ink class’ ClipboardCopy and ClipboardPaste method.

 The Save method produces a byte array in one of the four formats that we have

discussed in section 3.2.4.4 (See Table 3): Base64Gif, Base64InkSerializedFormat, Gif

and InkSerializedFormat. With the byte array, ink can be further written to files, exported

to .gif image, or stored in RTF, HTML or XML-based formats. Reconstitution of ink is

 58

done with the Load method, which takes the byte array previously returned by the Save

method. The ClipboardCopy method can cut or copy ink data from an Ink object to the

clipboard in many different formats. The ClipboardPaste method will read the supported

data formats from the clipboard and merge it into an Ink object.

 The CrossPad also provides facilities allowing the user to save and load ink data, but

the capability of ink interoperability with other applications is not available. As we have

seen in section 3.1.1, the device format (*.pad), notebook format (*.nbk) and ink format

(*.ink) are three relevant file formats for the CrossPad. Both *.pad and *.nbk files are

produced by InkTransfer upload application. With CrossPad API, the ink read and write

is accomplished by Reader and Writer classes. The Reader class can read all three

formats mentioned above, while the ink files written by Writer class is in *.ink format. In

addition, the CrossPad provides ink-data export classes allowing the user to export ink to

images in BMP, JPEG, PDF, PNG, PostScript and TIFF formats.

6.11 Handwriting Recognition

 Tablet PC ink recognition comprises gesture recognition and handwriting recognition.

Two usage models are supplied to perform the recognition: synchronous mode and

asynchronous mode. Synchronous recognition occurs when the thread requesting

recognition results blocks until computation is complete. The method Recognize performs

recognition synchronously. For asynchronous recognition, the thread requesting a

recognition result is allowed to continue, and is later notified that computation is

complete. The methods BackgroundRecognize and BackgroundRecognizeWithAlternates

perform recognition asynchronously. Another important concept of the Tablet ink

recognition is partial recognition. This refers to an incremental recognition – the

recognition begins as soon as any ink is given, and incrementally adjusts the computation

as ink added or removed, or recognition properties are changed. Partial recognition

improves the recognition time performance, since the strokes associated are kept up-to-

date at all times, and computation proceeds.

 59

 The CrossPad recognition API is relatively simpler. It does not distinguish the

synchronous, asynchronous, or partial concepts. The Recognition class provides one

recognize method to translate scribbles to characters all at once. Since recognition is off-

line, the question of synchronicity is not relevant.

6.12 Some Advanced Functionalities of the Tablet PC not on the CrossPad

 This section identifies some functionalities supplied by the Tablet PC, but not

available in the CrossPad, beyond what we have seen in previous sections.

Bezier Curve Fitting

 Curve fitting is the process of taking some points and figuring out a smooth curve that

passes near all the points [6]. The Bezier curve was developed in 1970’s for CAD/CAM.

The algorithm is able to detect inflection points, or cusps. In the Tablet PC API, the

Stroke class’ BezierPoints property provides the control points of the Bezier curve. The

method GetFlattenedBezierPoints computes the actual (x, y) points that approximate the

Bezier curve. Unfortunately, the CrossPad doesn’t provide any functionality to calculate

Bezier Curve, Bezier Curve fitting is one of the most significant improvements to digital

ink that Tablet PC provides. To implement the curve fitting with CrossPad API is non-

trivial.

Cusp

 A cusp in ink data is defined as a point at which the direction of the ink changes in a

discontinuous fashion [6]. Cusps are useful for logically dividing a stroke into segments,

and aid in performing gesture/handwriting recognition or stroke segment erasing. The

Tablet PC can compute two kinds of cusps: polyline cusps and Bezier cusps. The Stroke

class’ BezierCusps and PolylineCusps properties return an array of integer point indexes

at which a cusp was determined. However, the CrossPad doesn’t provide any way to

compute cusps. Cusp implementation is also non-trivial.

 60

Intersections

 Computing the intersections of ink strokes can be useful for performing recognition.

The Tablet PC provides three kinds of intersections: self-intersection (a stroke crosses

itself); stroke intersection (a stroke crosses another stroke); and rectangle intersection (a

stroke crosses the bounds of a rectangle). The Stroke class’ SelfIntersections property,

and methods FindIntersection and GetRectangleIntersections compute these three

intersections respectively. The returned intersection points are floating-point indexed. A

floating-point index is a value that defines an arbitrary position along the length of an ink

stroke. For example, index 2.2 means that the point is 20 percent of the way along the

line segment between point at index 2 and 3. However, the CrossPad does not provide the

functionality to compute intersections.

6.13 Some Advanced Functionalities of the CrossPad not on the Tablet PC

 This section identifies some functions supplied by the CrossPad, but not available on

the Tablet PC, beyond what we have seen in previous sections.

Form Processing

 As described in section 3.1.2.4, the CrossPad provides APIs for forms processing. It

defines many different kinds of fields of form, provides the ODBC (Open DataBase

Connectivity) database interface for forms, as well as methods to perform stream I/O of

the specifications of the fields of forms. This enables applications to collect form field

data and permits the data to be automatically entered in a database. The Tablet PC API

does not specifically support form processing.

Walker Pattern

 As we have seen in section 3.1.2.1, the CrossPad API provides three abstract base

classes ScribbleWalker, ScribbleSetWalker and PageSetWalker, each of which is a walker

interface. It allows flexible definition of new operations by users without modifying the

interface of the ink data classes. In contrast, the walker pattern is not provided by the

Tablet PC API.

 61

CHAPTER 7 IMPLEMENTATION OF A COMMON ABSTRCT API
FOR THE TABLET PC AND CROSSPAD

 We have completed a partial implementation of an abstract API for the Tablet PC and

CrossPad. In this chapter, we describe the principle design and issues in the

implementation.

7.1 Primary Design

 The task of creating a common abstract API for the Tablet PC and CrossPad is

essentially to wrap Tablet PC objects and CrossPad objects on their own platform, extract

the common part, extend the uncommon part, and provide them with the same API. The

architecture of the abstract API is shown in Figure 8.

Figure 8. Architecture of Abstraction API upon CrossPad and Tablet PC

 The abstract interface consists of abstract base classes defining pure virtual

functions that are implemented in their derived classes: the CrossPad wrapper classes

and Tablet PC wrapper classes. The wrappers are classes that contain a pointer or a

reference to a real object, and must implement all functions provided by the abstract

interface. For example, both the CrossPad and Tablet PC have a Stroke class. The

abstraction API for stroke defines the interface IgStroke class. The derived classes are

CrossPad
Library

CrossPad Platform

Abstract API
device-independent Abstract

Interface

CrossPad
Wrapper API

Tablet PC
Wrapper API

Tablet PC
Library

Tablet PC Platform

 62

CrossPad::gStroke and TabletPC::gStroke (see Figure 9). The private member of the

CrossPad::gStroke class is a pointer to a CrossPad::Stroke object, while the private

member of the class TabletPC::gStroke is a pointer to a TabletPC::Stroke object. In this

way, the abstract API can provide the common functionalities available in both devices,

as well as extend as many functionalities as possible that are available in one device but

not another.

Figure 9. Example of abstract interface and derived classes

7.2 Abstraction Ink Classes

 The abstraction API uses the CrossPad document model to represent ink. The key

classes are gPoint, gStroke, gStrokes, gInkPage and gInkPages to represent a point, a

stroke, a collection of strokes, a page of ink and pages of ink respectively. The class

name starts with small letter “g” meaning generic. These ink classes are wrapper classes

actually wrapping the corresponding object of the CrossPad or Tablet PC (see Table 9).

ElectricInk is the namespace to access ink library on CrossPad, while Microsoft::Ink is

the namespace to access the ink library on Tablet PC.

IgStroke

virtual void move (float x, float y) = 0

gStroke

Stroke * _stroke;

void move (float x, float y)

gStroke

gcroot<Stroke *> _stroke;

void move (float x, float y)

CrossPad Tablet PC

 63

Wrapped Object
Abstraction API

CrossPad Tablet PC

gPoint ElectricInk::Point System::Drawing::PointF

gStroke ElectricInk::Stroke Microsoft::Ink::Stroke

gStrokes ElectricInk::Scribble Microsoft::Ink::Strokes

gInkPage ElectricInk::Page Microsoft::Ink::Ink

gInkPages ElectricInk::PageSet Microsoft::Ink::Ink

Table 9. Ink Classes in Abstract API

7.3 Managed and Unmanaged C++

 As discussed in section 6.1, the abstraction API is implemented in C++. The abstract

interface, and derived classes on the CrossPad are implemented in native C++. Since we

are using the managed library of the Tablet PC, the implementation goes differently on

the Tablet PC side. The fact that a managed class cannot inherit from an unmanaged class

determines that the classes derived from the abstract interface on Tablet PC must be

unmanaged. We want the unmanaged wrapper class to contain a pointer to the managed

Tablet PC object. Unfortunately, it is illegal for an unmanaged class to declare a member

to have a managed pointer type. In order to point to a managed object from the C++ heap,

the header file vcclr.h provides the type-safe template gcroot. Use of this template allows

the programmer to embed a virtual __gc pointer in an unmanaged class and treat it as if it

were the underlying type. Therefore, all the wrapper classes on Tablet PC will have a

virtual __gc pointer to the corresponding managed object as its data member. For

example, the private data member declaration of gStroke class on Tablet PC will be

gcroot<Stroke *> _stroke.

 64

CHAPTER 8 CONCLUSIONS

 The objective of our research has been to achieve ink interoperability and application

compatibility among heterogeneous devices and ink formats. This thesis has studied both

digital ink formats and pen computing APIs. We give here some conclusions on these

two aspects of our work and discuss some possibilities for future investigation.

8.1 Digital Ink Format Conversion

 Three notable digital ink data formats: UNIPEN, Jot and InkML have been studied

and compared. In general, InkML is going to be the most comprehensive specification for

capturing, transmitting, processing and presenting digital ink. It incorporates the features

of UNIPEN and Jot, but is an improvement over them. Jot is a proprietary format, which

severely limited the opportunities for using ink as a communications medium. InkML is

an open XML-based format that allows exchange of digital ink across heterogeneous

devices developed by multiple vendors and web-based applications. Jot is a binary

format, while InkML supports binary mode as an optional layer. This appeals to

application developers who object to a binary encoding of ink. Jot does not support any

abstract characterization of ink, in contrast to InkML with application-specific schemas.

InkML is an improvement over UNIPEN because it replaces UNIPEN’s flat attribute

organization and record-like structure by supporting a more sophisticated labeling

scheme and by leveraging other standards.

 We wanted to realize the conversions among UNIPEN, Jot and InkML. The

conversions could be valuable for sharing ink between applications, especially the

conversions between UNIPEN and InkML and between Jot and InkML. The conversion

between UNIPEN and Jot will lose a large set of information because of their very

different design goals and format definitions. We have implemented the conversion

between UNIPEN and Jot. As to the other conversions, because the InkML is still not a

finalized standard, we have to leave the conversions between it and UNIPEN and Jot for

future work. In this thesis, we have pointed out the issues of conversions between InkML

and UNIPEN/Jot, which should be useful for this future work.

 65

8.2 API Interoperability

 Our goal was to develop an abstraction API for the IBM CrossPad and Microsoft

Tablet PC to achieve application compatibility between these two devices. We have

studied these two APIs and identified the incompatibilities between them. We have also

made a partial implementation of the abstraction API. Generally speaking, the Tablet PC

API provides more comprehensive and powerful functionalities. On the CrossPad, to

provide Tablet PC functionalities sometimes is not trivial. For example, the

implementation of Bezier curve on the CrossPad is difficult. After having identified the

incompatibilities between the two APIs, the principle design of the abstract API has been

completed. The basic abstract ink classes have been designed and partially implemented.

Future work will focus on the identified incompatibilities between the two APIs.

 There remains considerable work to do in the area of portability of ink data and ink

handwriting programs. This thesis has made some progress in this area by studying

format conversions and API abstraction.

 66

References

1. Isabelle Guyon. UNIPEN 1.0 Format Definition. AT&T Bell Laboratories, 1994.

2. Isabelle Guyon, Lambert Schomaker, Réjean Plamondon, Mark Liberman, and Stan

Janet. UNIPEN project of on-line data exchange and recognizer benchmarks.

3. Slate Corporation. JOT – A Specification for an Ink Storage and Interchange

Format. 1993.

4. Ink Markup Language, W3C working Draft 28 September 2004. W3C®, 2004.

http://www.w3.org/TR/2004/WD-InkML-20040928/ .

5. IBM. IBM C++ Ink Manager Pro SDK 1.0, ApplicationWriter’s Guide. 2001.

6. Rob Jarrett and Philip Su. Building Tablet PC Applications. ISBN: 0-7356-1723-6,

Microsoft Press, 2002.

7. MSDN Library. Windows XP Tablet PC Edition.

http://www.msdn.microsoft.com/library/default.asp

8. Heng Ngee Mok. From Java to C#: A Developer’s Guide. ISBN: 0-321-13622-5,

Addison-Wesley, 2003.

9. Microsoft. Managed Extensions for C++ Specification.

http://www.gotdotnet.com/team/cplusplus/articles/mcspec.doc

10. UNIPEN project web page. http://hwr.nici.kun.nl/unipen/

 67

Appendix1 A Typical UNIPEN File and Upview Visualization

.VERSION 1.0

.COMMENT File s001n19

.COMMENT See "A Comparison of Approaches to On-line
 Handwritten Character Recognition"
 (Rob Kassel, MIT PhD Thesis, 1995)
 for complete specifications and
 benchmarks on this data.

.DATA_SOURCE MIT_LCS_SLS
.DATA_ID MIT_Natural_Handprint_95
.DATA_CONTACT
 Name: Rob Kassel
 Email: rob@goldilocks.lcs.mit.edu
 Phone: 1-617-253-3049
 Fax: 1-617-258-8642
 Address: Spoken Language Systems Group
 Laboratory for Computer Science
 Massachusetts Institute of Technology
 Room NE43-601
 Cambridge, MA 02139, USA

.SETUP
 Site: MIT
 Writer motivation: Paid
 Writer physical position: Seated at desk
 Instructions given to the writer: Minimal; printing required;
 capitalize initial letter; no correcting; writing to be
 examined later.
 Prompting: Aural prompts, both string and spelled
 Recognizer feedback: no
 Form layout: large writing area, no guides, minimal left/right bias

.DATA_INFO
 Alphabet: English alphanumerics plus symbols to indicate
 connections, ligatures, embellishments, and pen skips
.PAD
 Machine name: Wacom 648A
 Brand: Wacom
 Type: 648A
 Serial Nr.: 160039
 Sensor: Electromagnetic, wireless pen
 Pen: Untethered, tip switch only

 68

 Driver: Mircosoft Windows for Pen Computing V1.0
 Sampling mode: Using Microsoft Visual Basic 2.0 controls
 Sampling rate: 193 Hz
 Resolution: 0.001 inches/unit
 Accuracy: 0.01 inches
 Display: Backlit LCD screen, 640x480
 Inking: 1 pixel wide black on white
.X_DIM 4975
.Y_DIM 3058
.X_POINTS_PER_INCH 100
.Y_POINTS_PER_INCH 100

.ALPHABET "A" "B" "C" "D" "E" "F" "G"
 "H" "I" "J" "K" "L" "M" "N"
 "O" "P" "Q" "R" "S" "T" "U"
 "V" "W" "X" "Y" "Z"
 "a" "b" "c" "d" "e" "f" "g"
 "h" "i" "j" "k" "l" "m" "n"
 "o" "p" "q" "r" "s" "t" "u"
 "v" "w" "x" "y" "z"
 "0" "1" "2" "3" "4"
 "5" "6" "7" "8" "9"
 "!" "&" "*" "+"
.WRITER_ID 1
.STYLE PRINTED
.HAND R
.AGE 29
.SEX M
.WRITER_INFO
 Group: Training
 Weight: 190
 Student: Yes
 Where educated: OH
 Home language: English
 Name: Jim

.COORD X Y T
.HIERARCHY WORD LETTER
.SEGMENT WORD 0-5 ? "10342"
.SEGMENT LETTER 0 ? "1"
.SEGMENT LETTER 1 ? "0"
.SEGMENT LETTER 2 ? "3"
.SEGMENT LETTER 3-4 ? "4"
.SEGMENT LETTER 5 ? "2"

.COMMENT Prompt string: "10342"

 69

.COMMENT Recognizer string: "10342"

.COMMENT Transcriber Comment: ""

.PEN_DOWN
1319 718 0
1298 739 5
1298 698 10
1308 635 16
1319 583 21
1329 520 26
1371 448 31
1392 395 36
1392 343 42
1402 302 47
1433 260 52
.PEN_UP

.PEN_DOWN
1663 677 275
1652 635 280
1631 541 285
1610 458 291
1631 375 296
1704 354 301
1829 364 306
1944 427 311
2017 500 317
2017 541 322
1944 593 327
1798 645 332
1673 677 338
1663 677 343
1683 666 348
.PEN_UP

.PEN_DOWN
2142 645 659
2121 666 664
2121 687 669
2183 729 675
2319 750 680
2423 729 685
2454 698 690
2454 656 695
2381 614 701
2340 583 706
2340 583 711

2340 583 716
2392 562 722
2444 520 727
2475 468 732
2485 427 737
2465 375 742
2413 323 748
2350 302 753
2288 270 758
.PEN_UP

.PEN_DOWN
2683 698 1209
2673 698 1214
2673 687 1219
2673 645 1225
2683 573 1230
2715 520 1235
2767 479 1240
2860 448 1245
2944 448 1251
3017 448 1256
3079 458 1261
.PEN_UP

.PEN_DOWN
3017 698 1428
2996 604 1433
2985 500 1438
2965 385 1444
2965 302 1449
2996 229 1454
3027 218 1459
.PEN_UP

.PEN_DOWN
3183 708 1648
3183 718 1653
3194 729 1658
3246 750 1664
3371 750 1669
3444 718 1674
3496 677 1679
3496 635 1684

 70

3444 562 1690
3402 500 1695
3371 458 1700
3360 416 1705
3392 364 1710
3433 343 1716
3496 323 1721

3558 323 1726
3610 323 1731
3642 323 1737
.PEN_UP

.COMMENT End of File

UniPen Viewer upview 4.02

 71

VITA

Name:

Xiaojie Wu

Post-secondary
Education and
Degrees:

Shanghai JiaoTong University
Shanghai, China
1991 ~ 1995 B.Eng

University of Western Ontario
London, Ontario, Canada
2000 ~ 2001 B.Sc

University of Western Ontario
London, Ontario, Canada
2002 ~ 2004 M.Sc

Honors and
Awards:

Dean Honor List, 2000 ~ 2001

Faculty Association Scholarship, 2001

Ontario Graduate Scholarship, 2002 ~ 2003

Related Work
Experience:

Teaching Assistant, 2002 ~ 2003
Computer Science Department
University of Western Ontario
London, Ontario, Canada

Software Developer, 2003 ~ present
Liberate Technologies
London, Ontario, Canada

