
Supporting Mathematical Handwriting

Recognition through an Extended Digital Ink

Framework

(Spine title: Supporting Mathematical Handwriting Recognition with Digital Ink)

(Thesis format: Monograph)

By

Kevin Durdle

Graduate Program in Computer Science

Submitted in partial fulfillment

of the requirements for the degree of

Master of Science

Faculty of Graduate Studies

University of Western Ontario

London, Ontario, Canada

© Kevin J. Durdle 2004

 ii

Certificate of Examination

THE UNIVERSITY OF WESTERN ONTARIO
FACULTY OF GRADUATE STUDIES

Supervisor Examining Board

______________________________ ________________________________

Supervisory Committee ________________________________

______________________________ ________________________________

The thesis by

Kevin James Durdle

entitled:

Supporting Mathematical Handwriting Recognition through an
Extended Digital Ink Framework

is accepted in partial fulfillment of the
requirements for the degree of

Master of Science

Date__________________________ _______________________________

Chair of the Thesis Examination Board

 iii

Abstract

The success rates of recognizing mathematical and other visual languages have fallen

significantly behind those of textual language recognizers. The failure of mathematical

recognizers is attributed to the many difficulties encountered during recognition, resulting

in unacceptably low rates of accuracy. By creating a framework that focuses on

supporting mathematics with digital ink, it is expected that the improved development

environment will contribute to the flexibility and successfulness of future mathematical

handwriting recognizers.

In creating such a mathematical framework, the following factors influencing recognition

are examined: hardware and software requirements; digital ink requirements; properties

of mathematical expressions; differences of visual and textual languages; methods of

recognition; user interface requirements; and our contribution, the requirements of a

development environment friendly to mathematics which supports digital ink. Using

these guidelines, the success rates of future work in recognizing handwritten mathematics

should improve, further enhancing this emerging technology.

Keywords

Recognition of handwritten mathematics; Portable Digital Ink Architecture; Digital ink;

Stylus; Tablet PC; Pocket PC

 iv

Acknowledgements

I want to especially thank my fiancée and soon to be wife Amy, for her intense editing

and critical analysis of this document. Without her support, this would have been a very

difficult assignment. Furthermore, this thesis would have been impossible without the

help of my supervisor, Dr. Stephen Watt. Special thanks to the ORCCA Pen Group

including Clare So, Elena Sminovia, Xiaofang Xie and Xiaojie Wu for their assistance in

many places. There are other Professors, students and colleges who also helped in

various ways with my M.Sc., it would be impossible to list them all. Lastly, thank you to

my parents and family for encouragement and your non-technical assistance with my

M.Sc.

 v

Table of Contents

Certificate of Examination ii

Kevin James Durdle ii

Abstract iii

Keywords iii

Acknowledgements iv

Table of Contents v

List of Tables ix

List of Figures x

List of Appendices xi

Glossary xii

Chapter 1 Introduction 1

1.1 Overview 1
1.2 Demand for a Mathematical Recognizer 3
1.3 Thesis Introduction 4
1.4 Thesis: Objective 4
1.5 Thesis: Contributions 5
1.5.1 Chapter 2 Review of Hardware & Software Platforms 5
1.5.2 Chapter 3 Attributes of a Mathematical Ink Recognition Engine 5
1.5.3 Chapter 4 Portable Digital Ink Architecture 5
1.5.4 Chapter 5 Mathematical Expression Properties 6
1.5.5 Chapter 6 Math Recognition Survey 6
1.5.6 Chapter 7 User Interface Requirements 6
1.6 Conclusions of Introduction 6

Chapter 2 Review of Previous, Existing and Targeted Hardware and Software Platforms 7

2.1 Overview 7
2.2 A History Lesson 7
2.3 Pencil, Paper and the Calculator versus Pen Computing 9
2.4 Digital Styli, Handhelds and Tablet PCs 9

 vi

2.5 Unacceptable Hardware Platforms 10
2.6 Hardware Requirements of Targeted Devices 12
2.6.1 Hardware used in Benchmark Tests 12
2.6.2 Interactive Screens 12
2.6.3 Processing Power 13
2.6.4 Memory 15
2.7 Targeted Software - Requirements 15
2.7.1 Stylus Down 16
2.7.2 Stylus Move 16
2.7.3 Stylus Up 16
2.8 Contrast of Targeted Platforms - Hardware 16
2.9 Contrast of Targeted Platforms - Software 17
2.10 Conclusion 18

Chapter 3 Attributes of a Mathematical Ink Recognition Environment 19

3.1 Overview 19
3.2 Portable Digital Ink Architecture 21
3.3 Platform Independence 21
3.4 Consistent High-Level Ink Manipulation 22
3.5 Device Evolution Abstraction 23
3.6 Abstract Resource Availability 24
3.7 Conclusions 24

Chapter 4 Portable Digital Ink Architecture 25

4.1 Overview of Portable Digital Ink Architecture (PDIA) 25
4.2 Creating an Architecture for PDIA. 26
4.2.1 Manufacturer Approach: Single Tier Architectures 26
4.2.2 Platform Independence: Two Tier Architectures 26
4.2.3 Standardization and PDIA: Three Tier Architecture 28
4.3 Class Hierarchical Design of PDIA 29
4.3.1 Class Objects: Point 31
4.3.2 Class Objects: Line 31
4.3.3 Class Objects: Rectangle 32
4.3.4 Class Objects: Stroke 32
4.3.5 Class Objects: Strokes 32
4.3.6 Class Objects: Ink 34
4.4 Persistent Storage of Ink 34
4.5 Existing Formats of Ink 35
4.5.1 Jot 35
4.5.2 UNIPEN 35
4.5.3 InkML 36
4.6 Conclusions on PDIA 36

Chapter 5 Certain Mathematical Expression Properties 38

5.1 Overview 38

 vii

5.2 Properties and Notations of Mathematical Expressions 38
5.2.1 Symbol Identification 40
5.2.2 Segmentation 41
5.2.3 Context 42
5.3 Visual versus Written Languages 43
5.4 Conclusions 44

Chapter 6 Mathematical Recognition Survey 45

6.1 Overview 45
6.2 Overview of Recognition Process 45
6.3 Stage 1: Data Collection and Normalization 48
6.4 Symbol Recognition 49
6.5 Structural Analysis 50
6.6 Context Analysis 51
6.7 Conclusions 52

Chapter 7 User Interface Requirements 54

7.1 Overview 54
7.2 Text Based Mathematics Today 55
7.3 Early Requirements for Stylus Input Applications 59
7.4 Stylus Supported User Interface Requirements 60
7.5 User Interface Requirements 60
7.5.1 Interactivity 61
7.5.2 Display Medium Restrictions 63
7.5.3 Entry of Mathematics 64
7.5.4 Persistent Storage and Transmission of Data 64
7.5.5 Support for Programming and Computation 64
7.5.6 Output of Mathematics 65
7.5.7 Support for Symbol and Handwriting Variations 65
7.6 Conclusions 65

Chapter 8 Implementation and Experiments 67

8.1 Overview 67
8.2 Priorities of Properties within a Math Framework 67
8.3 Choosing a Language 68
8.4 Building for Individual Platforms 68
8.4.1 Build Environment 69
8.4.2 Tablet PC 69
8.4.3 Desktop PC 70
8.4.4 Pocket PC 71
8.5 Extending to the Microsoft .Net Framework 71
8.6 Extending to Java 72
8.7 Data Collection Survey 75
8.8 User Interface Experiments 76
8.8.1 Ink Tester: User Interface Results 79

 viii

8.8.2 Questionnaire: User Interface Results 79
8.9 Efficiency of PDIA Implementation 80
8.10 Finding Intersection Points 82
8.10.1 Brute Force Intersection Algorithm 82
8.10.2 Bentley-Ottmann Line Sweep Intersection Algorithm 82
8.10.3 Conclusions in Intersection Point Algorithms 84
8.11 Conclusions 85

Chapter 9 Conclusions & Future Work 87

9.1 Future Work 89
9.2 Automatic Creation of Strokes Objects 89
9.3 Networking Capabilities 89

References 91

Appendixes 95

Curriculum Vitae 119

 ix

List of Tables

Table 2-1 Hardware used for benchmark algorithms implemented in this thesis 13
Table 2-2 Comparison of Targeted Hardware Platforms... 17
Table 2-3 Comparison of Targeted Software Platforms.. 17
Table 5-4 Examples of Ambiguous forms of equations with their Unambiguous possible definitions, as

presented by Martin ... 39
Table 5-5 Two pairs of equations that are understood by hard conventions to have the same meaning. Both

pairs use soft conventions to place the primary operator limits in different positions 40
Table 6-6 Categorization of symbol recognition methods used in different systems by Chan et al............. 47
Table 7-7 Notational differences between three popular, high level, technical math solution engines for the

formula ∫
π

π

2

)sin(x ... 56

Table 7-8 Screenshots and Instructions on how to use Microsoft Equation Editor to enter a common

formula: ∫
π

π

2

)sin(x . Equation Editor is an add-on for Microsoft Office.. 57

Table 7-9 Notational differences between four conventions used to display or otherwise present the formula

∫
π

π

2

)sin(x .. 58

Table 7-10 Contrast of original PEN requirements and a theoretical application with similar goals but
which uses a stylus for input. ... 61

Table 7-11 Illustration of the Microsoft Address Smart Tag and the options presented to the user............. 62
Table 8-12 C# code that utilizes the Tablet PC SKD to acquire the bounding box of an Ink object 70
Table 8-13 PDIA Managed C++ code that determines the bounding box of an Ink Object 70
Table 8-14 Illustration of how to extend Native C++ code with Managed Extensions for C++. Once

extended to the Microsoft .Net Frame, all supported languages such as C# or Visual Basic.Net can
make use of the original c++ classes... 73

Table 8-15 Type of data collected by Tablet PC version of the ORCCA Ink Survey................................. 76
Table 8-16 Sample of public functions within the Stroke class along with respective worst case runtime .. 81
Table 8-17 Pseudo code and respective runtimes for using the Bentley-Ottmann line sweep algorithm to

find self intersection points within a Stroke object .. 83
Table 8-18 Pseudo code and respective runtimes for using a brute force algorithm to find self intersection

points within a Stroke object .. 84

 x

List of Figures

Figure 2-1 Requiring 32 Vertices, the Chinese Symbol for Brave as displayed by the 1968 Harvard Project
presented by Hayashi et al ... 11

Figure 2-2 Samples of Ink from the Tablet PC, representing sets of data that include 100, 500 and 2500 data
points, respectively. ... 14

Figure 4-3 Single Tier Architecture: Manufacturer Implementations.. 26
Figure 4-4 Two Tier Architecture: Abstracting Manufacture APIs ... 27
Figure 4-5 Three Tier Architecture: The PDIA Solution .. 29
Figure 4-6 Identified Classes by Wu in an Abstraction API.. 30
Figure 4-7 PDIA Class Hierarchical Overview .. 30
Figure 4-8 Example of syntax used to describe Points in each quadrant ... 31
Figure 4-9 Illustration of the components of a Line object.. 31
Figure 4-10 Illustration of the components of a Rectangle object ... 32
Figure 4-11 Illustrating the components of a Strokes Object... 33
Figure 4-12 Additional Illustration of Strokes Objects ... 33
Figure 4-13 Illustration of an Ink object. Ink could be thought of as all the Strokes collected by a logical

container, such as a page or screen. .. 33
Figure 6-14 Application layer exists on top of PDIA, and may access C++, JNI or .Net extensions of PDIA

.. 46
Figure 6-15 Examples of hybrid shapes with recognition results inYu and Cai’s domain independent sketch

recognition application... 49
Figure 6-16 Typographical centers for different types of symbols .. 51
Figure 6-17 Ink collected by the Tablet PC. Once processed by a spell checker, it will be clear that the text

should say “hello world”.. 51
Figure 7-18 Dynabook Mockup provided by Larry Press [54]. While Kay's goal was a machine less than

2.5cm thick, the first version of the Dynabook, the "Interim" Dynabook was built using a desk-sized
workstation.. 54

Figure 7-19 Recognized Integral with visual clues of where to enter parameters....................................... 63
Figure 7-20 After entering a function, users will expect a feature rich application to provide them with the

computational result to the provided equation... 65
Figure 8-21 Implementation hierarchy from within Visual Studio.Net 2003 ... 69
Figure 8-22 Screen shot from the PDIA test application. Designed only as a means of testing inking

functionality, it was noticed in this application that putting menu driven functionality below the
inking experience was more convenient than above. ... 77

Figure 8-23 A representative, digitally composed image comprising of three sections from different pages
of the ORCCA ink collection survey. Each section in this image is separated by a horizontal line,
which was not a part of the survey application.. 78

Figure 8-24 A representative image illustrating the sequences of data points that once connected by a solid
line, constructs the word "hello", with arrows indication intersection points.................................... 82

Figure 8-25 Overview of Brute Force compared to Bentley-Ottmann algorithm, illustrating the time
required number of points in the Stroke object. The scale of this graph represents Sets of Stroke or
Strokes objects, of the size to represent entire equations.. 84

Figure 8-26 Overview of Brute Force compared to Bentley-Ottmann algorithm, illustrating the time
required per number of points in the Stroke object. This scale of this graph represents expected size
of Stroke objects, of the size to represent individual characters. .. 85

 xi

List of Appendices

Appendix A: Copy of Survey Used to Collect Mathematical Handwriting Samples on the IBM Crosspad
and Tablet PC Computers

xii

Glossary

API: An acronym for Application Programming Interface. APIs allow developers to create applications

that interact with previously provided functionalities.

Digital Ink, Ink: An electronic or digital representation of ink. Displays that support input, typically

through touch screens or electromagnetically, are capable simulating the use of a pen, by leaving

behind a digital ink representation.

DPI: An acronym for Dots (or pixels) Per Inch.

OCR: An acronym for Optical Character Recognition, it is a technology reads text from paper and

translates the image into a format that permits manipulation by a computer.

Offline Recognition: A form of OCR, offline recognition is used to translate digital ink into text at a

later date, often when additional input is non possible or convenient. The IBM Crosspad used this

technology; after accepting input, users would then process the input as a separate process.

Online Recognition: A technology that permits the immediate translation of digital ink into text, as

input is being accepted. The Tablet PC uses this technology.

PDA: An acronym for Personal Digital Assistant, these handheld devices include Palm Pilots and Pocket

PCs are palm sized, and offer an assortment of features including calendars, address books, email

access and multimedia streaming.

PDIA: An acronym for Portable Digital Ink Architecture, PDIA is a solution which provides a means of

using digital ink from one device or platform on another, without having to worry about

conversions of data formats.

Textual Language: Languages that rely on the use of discrete characters to portray all information

that is desired to be displayed.

Visual Language: Languages that rely on the use of two or more dimensions to portray meaning.

Mathematics and music are two examples, both convey information by the placement of symbols

relative to other symbols.

 1

Chapter 1 Introduction

1.1 Overview

For millennia people have used diagrams as a means of preserving ideas or

communicating with others: Native societies used symbolic drawings, the Egyptians had

hieroglyphs. By 3000 BCE the Babylonian and Egyptian cultures had advanced

sufficiently enough to permit the study of mathematics to aid with practical affairs. As

mathematics evolved in complexity, the adoption of a two-dimensional format was a

natural means of communicating as efficiently as possible.

The use of two-dimensional notation is still used in mathematics, in addition to various

other fields including engineering, chemical and biological sciences, and music, among

others. In these disciplines the ability to use visual aids to communicate may permit a

better understanding of someone’s intentions than is possible with a linear formed

grammar. This is because visual languages allow for a simpler and more concise

expression using fewer symbols than is possible with textual languages.

The introduction of the computer introduced the first major changes in documents since

the printing press, almost five centuries earlier. Initially, computers supported the input

of small character sets of approximately 64 characters and then 256 ASCII characters,

enough for most Western European languages. Today, 16 bit character codes enable us

to represent 65,536 characters, providing support for symbols from most of the world’s

languages. Even if the number of characters supported by computers were large enough

to support all characters in two-dimensional languages, they would become impossibly

difficult to enter. The result is that these languages continue to rely on textual

representations if one is to enter them into a computer.

Using current technologies, computers are capable of manipulating, processing and

displaying mathematics, along with many other two-dimensional languages. However

the task of entering the required and often non-intuitive notations has been the

Introduction 2

responsibility of the user, as reliable recognition processes do not exist that support

generalized inputs.

Unlike mathematics and other two-dimensional languages, automatic recognition of

textual information has benefited from significant amounts of research since the early

1960s [1, 2]. From the 1960s through to the 1980s, technological improvements

permitted software to produce natural language handwriting recognition applications for

the first time. Over the past two decades, character recognizers using both online and

offline methodologies have advanced enough to enable users to write input with a stylus

or pen based device, instead of entering their input through a keyboard. Furthermore,

Optical Character Recognizer applications have enabled users to convert paper

documents to electronic formats with scanner technologies, avoiding the use of keyboards

altogether.

Although research in structure analysis of two-dimensional patterns coincided with

textual recognition in the early 1960s [3], the advances seen in string recognition have

not been observed in mathematical or two-dimensional recognition. As noted by other

authors [4, 5, 6, 7], the degree of complexity of structural analyzing combined with the

required CPU power, prevented considerable progress in mathematical recognition.

The 1980s and 1990s saw the introduction of personal computers with processors

powerful enough to permit handwriting recognition. Unfortunately, the embracing of

handwriting and digital ink by industry during this time was lethargic. When supported,

available ink data formats were proprietary and device dependent, recognition accuracies

were low and vendor support was short lived.

In 1993, Graffiti was introduced by Palm Corporation. Similar to the “Unistroke

Symbols” research originally by Xerox, Graffiti takes advantage of a limited character

domain, requiring users to learn a special alphabet where each character can be drawn in

a unique manner, without lifting the stylus from the device. The results are accuracy

rates that are near perfect for experienced users. Since this time, natural language

Introduction 3

handwriting recognition has continued to improve steadily, whereas the recognition of

mathematics has not received similar attention.

It is our belief that by taking advantage of previous research results - today’s powerful

processors, hardware improvements and the recognition of a pen as a valid input device -

a unique opportunity arises that necessitates revisiting the creation of a mathematical

handwriting recognition application. By relieving the user of the burden of translation

from mathematical notation to ASCII text, a mathematics recognition system would

enhance the usefulness of computers as a tool for mathematics and document handling.

1.2 Demand for a Mathematical Recognizer

From a general commercial point of view, investment in digital ink is synonymous with

risk and isolated market opportunities. There is no single dominant platform or even a

device to target: customers who use digital ink want both ultra mobility (PDA’s and

Cellular Phones) as well as processing power (Tablets and laptops). These hardware

options, when combined with a selection of operating systems, result in further

proprietary development models, inconsistent APIs, ink formats and fragmented

marketing opportunities.

The creation of a mathematical handwriting recognition, end-to-end experience is a

vision driven by researchers at the Ontario Research Centre for Computer Algebra

(ORCCA) research lab. As this vision progressed, the topics within this thesis document

emerged. Also emerging was an understanding that a math ink framework must be

created to allow the successful implementation of a math recognizer.

Introduction 4

1.3 Thesis Introduction
The research presented in this thesis supports the following:

The creation of a framework that supports digital ink for mathematics is

necessary for constructing a flexible and successful mathematical handwriting

recognition engine.

By framework we mean the necessary foundations and supporting elements that are

necessary for a math recognizer to succeed. Each chapter of this document refers to a

specific element of this framework. By flexible we refer to the modular architecture that

is detailed within this thesis. Successful indicates our belief that forthcoming chapters

detail elements beyond the mathematical recognizer that are necessary for general

adoption of any recognizer.

1.4 Thesis: Objective

The creation of a mathematical handwriting recognizer is a nontrivial task; most

prototypes make such insurmountable assumptions that functional applications are never

produced. Examples of such assumptions have included: assuming segmentation is

completed, assuming character recognition is perfect and assuming context is previously

define, among others. As part of a greater vision at ORCCA is the anticipation of a

complete mathematical handwriting recognition engine, of which this thesis’s objectives

assists twofold: First to identify areas where previous researchers had made assumptions

and second to create a unified digital ink interface.

Each of the assumptions addressed in this thesis will present either conclusions from my

research as well as others, or introduce a much larger topic that are addressed by other

members of the ORCCA research group. For instance, it is possible to draw from

conclusions in areas such as hardware or software requirements without significantly

increasing the scope of the thesis. In contrast, an entire thesis could be dedicated to the

topic of creating a “mathematical dictionary” alone as there are enough intrinsic details.

In these cases only an introduction and outline of requirements or suggestions are

presented here to show how the works are related.

Introduction 5

Secondly, we aim to cover in detail the creation of unified digital ink architecture. This

unified architecture will assist in the success of future recognizers that are produced by

ORCCA. Furthermore, a detailed architecture is implemented and conclusions based on

our experiments are presented in this document.

1.5 Thesis: Contributions

Each chapter presents discussions, which progress from hardware and software

requirements, to inking requirements, to user interface requirements and finally the

conclusions we present based on experiments.

1.5.1 Chapter 2 Review of Hardware & Software Platforms

This chapter describes existing hardware platforms that are suitable to operate a math

recognition engine. The basic hardware requirements are identified as well as an

introduction to the minimal requirements of each platform targeted by a mathematical

recognizer. Minimal software requirements are also identified, targeted Operating

Systems must provide the ability to capture Stylus Down, Stylus Move and Stylus Up

events. With these events, it is possible to simulate the entire inking experience, which is

necessary to ensure a unified interface is created.

1.5.2 Chapter 3 Attributes of a Mathematical Ink Recognition Engine

This chapter details each of the attributes identified as critical to the success of a

mathematical handwriting recognition engine. Here we account for how we arrived at

our conclusions as to why these attributes are essential.

1.5.3 Chapter 4 Portable Digital Ink Architecture

Detailing the architecture which will enable us to address each prerequisite as identified

previously, this chapter illustrates how our inking solution satisfies the requirements. We

Introduction 6

present a novel solution based on C++, C# and Java that will enable third party

developers to extend and add to our framework.

1.5.4 Chapter 5 Mathematical Expression Properties

Introducing the properties of mathematical expressions, this chapter illustrates many of

the challenges that exist in recognizing mathematics. Also presented are fundamental

differences between two-dimensional mathematical languages and text based string

languages.

1.5.5 Chapter 6 Math Recognition Survey

Presenting the commonly practiced processes of industry leaders in addressing

mathematical handwriting recognition, this chapter introduces ORCCA’s vision of how

we can expand and improve on these practices.

1.5.6 Chapter 7 User Interface Requirements

Acknowledging no recognizer will yield 100% accuracy, it is equally important to

consider how the user will interact with an application to correct translation errors.

Presented in this chapter are several methods of interacting with users that have proven

effective.

1.6 Conclusions of Introduction

Evolving from a long history of simple two-dimensional diagrams used by early

civilizations to ASCII renditions of mathematics in computers today, there is a need to

return mathematics to means of natural communication methods when interacting with

computers. Continual improvements in both hardware and software have helped in

recent years to improve handwriting recognition; it is our expectation that this thesis will

further assist in overcoming the problems encountered in recognizing handwritten

mathematical expressions.

 7

Chapter 2 Review of Previous, Existing
and Targeted Hardware and
Software Platforms

2.1 Overview

After examining the potential of a mathematical recognizer, this chapter describes

existing hardware platforms that are suitable for interoperating with a math recognition

engine. Identified are the basic hardware requirements such as screen and input devices

as well as an introduction to the minimal processing requirements of targeted platforms.

Also identified are the minimal software requirements of these targeted platforms:

targeted Operating Systems must support event based triggers, at a minimal Stylus Down,

Stylus Move and Stylus Up events. Using these three events, it is possible to simulate the

entire inking interface.

In presenting a history of mathematical tools from early devices to modern calculators,

we illustrate our expectation of how a mathematical handwriting recognizer will become

a key tool for mathematicians upon integration into industry supported applications such

as Maple, Mathematica, etc.

2.2 A History Lesson

The use of hardware to support mathematics is not new; astronomical calendars have

existed for nearly two millennia. The Antikythera mechanism, a mechanical device used

by the Greeks circa 82AD [8] to aid in or possibly completely replace astronomical

calendars illustrates the long lasting importance of external hardware supporting

mathematics. Since the first commercial calculator1 in 1954 [9], today’s calculators are

1 The IBM Type 601 was introduced in 1931, but was not commercially available. The Type 603
Electronic Multiplier was less of a calculator, more of a multiplier, capable of only multiplying two

Review of Targeted Hardware and Software Platforms 8

capable of most all common numerical calculations and have displays that are used to

display or plot results instantly.

Unlike the original calculators by IBM and others during the same era, dependence on

dedicated hardware by mathematical tools and computers has become less common. The

standardizations that occurred during the 1980s and 1990s have given increased power to

computers and handheld devices, enabling software controlled devices.

Pen computing, or computing where a pen-like device is used as a primary means of

input, is relatively new. Introduced in 1963, Ivan Sutherland documented one of the first

non-theoretical pen-based computing solutions, the Sketchpad [10]. Although the theory

of pen computing goes back to at least 1945 [53], it is only in the last decade that the use

of a pen has become practical. This is understandable; it took until 1993 for Xerox’s

Unistroke Symbols and Palm’s Graffiti to provide a widely accepted means of

handwriting recognition, a feature that is expected in pen-based systems.

While textual or natural language handwriting recognition has improved steadily, the

recognition of mathematics has only very recently become generally available with the

introduction of xThink’s MathJournal in July of 2004 [11]. Previous efforts at

mathematical handwriting recognition include [12, 13, 14, 15, 37, 38, 39, 41, 42, 43, 45,

46, 49, 50, 51]; the majority of these have been academic pursuits with little commercial

intent. While their product is capable of recognizing mathematics in limited domains, the

MathJournal product is bound to the Tablet PC platform because of its reliance on the

Tablet PC APIs. Relying on a single platform owned by Microsoft, it is unlikely xThink

will expand its solutions to the larger scope of handheld devices.

As interactive displays become increasingly popular and varied, Palm Pilots, Pocket PCs,

Tablet PCs and other pen-based computers are suitable replacements for many of today’s

calculators and are an obvious platform of choice for a math recognition engine. In

existing software-based calculators, dedicated hardware has already become obsolete. It

is only a matter of time before these soft calculators which resembled their hardware

numbers together. Only 100 were built; it was quickly replaced by the Type 604, which had the capability
for addition, subtraction, multiplication, and division.

Review of Targeted Hardware and Software Platforms 9

based predecessors, are replaced with intelligent digital whiteboards that are capable of

freeform mathematical handwriting recognition, allowing researchers to focus on the

problem at hand versus learning to use new tools.

2.3 Pencil, Paper and the Calculator versus Pen Computing

Sobel’s 1973 article “Electronic Numbers” [16] describes the many advantages of using

now primitive instruments with digital displays to aid various mathematical calculations.

Today’s calculators have improved significantly in many aspects, notably in usability and

the ways results are displayed to users. Pen computing today can be compared to the

circa 1973 or earlier stages of calculator development: it is not seen as necessary,

deriving significant competition from basic tools, the pencil and paper.

Often overlooked, paper has always been a key instrument for mathematicians. To

replace paper as a medium, a pen computing solution will need to be as simplistic as

paper while offering additional benefits – just as the calculator had to offer additional

benefits while justifying the exceptional cost. In comparison to an acceptable expense, in

1973 a scientific calculator cost approximately $5001. Today, accounting for inflation,

these same calculators would cost $2200, as determined by the Bank of Canada inflation

statistics, the price of a low-end Tablet PC. This expense is justifiable only if the features

added will save the investor in other areas such as time, productivity, research, etc. The

creation of a math recognition engine has the potential to combine the openness of paper

with the power of complex math processing software, easily justifying the costs.

2.4 Digital Styli, Handhelds and Tablet PCs

Each device or platform, either palm- and pocket-sized PC or WAP-enabled mobile

phone, each running its respective operating system, supports a well targeted paradigm

regarding the purpose and applicability of mobile computing [17, 18]. With the

1 In 1973 the actual price for a HP-80 Business Calculator was $395 US plus tax; a Victor Electronic 1800
Series Scientific calculator was $495, plus tax. The 1973 timeframe was used for consistency with Sobel’s
article “Electronic Numbers”.

Review of Targeted Hardware and Software Platforms 10

introduction of the Tablet PC in 2002, a new paradigm of mobile computing was

introduced: fully functional, pen-based computing that offered a user interface designed

for stylus input. A comprehensive timeline of computing advances leading to the release

of the Tablet PC is available in [19, pages 9 - 17].

The Tablet PC is one hardware platform targeted by this thesis. Physically, they are

comparable and often identical to laptops, often as powerful as desktop computers.

Tablet PCs provide users with a fully functional, general purpose operating system, in

this case Windows XP Tablet edition. Screen size on Tablet PCs range from 4 inches to

14 inches or larger, and can be oriented vertically or horizontally, providing users with

the option to use that which they feel most natural with.

While Tablet PCs easily meet minimal standards of display size, memory and processing

power, handheld computers represent a device classification that will be much closer to

the necessary minimal requirement for a mathematical framework, as discussed in section

2.6. A larger concern with handheld devices is with their display size. Most current

models of Palm Pilots support a 320 x 320 resolution screen, whereas Pocket PCs support

a minimum 320 x 480, with some newer devices capable of 480 x 640. Both of these

devices are oriented vertically, although Pocket PCs running the Windows Mobile 2003

operating system are capable of changing to a horizontally oriented screen layout,

providing a more natural reading or user interface experience.

Another option is the use of a digital stylus, similar to the products that Wacom

Technologies Company produce. For the purpose of this thesis, only digital styli that

provide visual feedback are considered. As a stylus is only a peripheral device, assuming

its input resolution is sufficient there should be no concerns about meeting minimal

hardware standards.

2.5 Unacceptable Hardware Platforms

The importance of immediate feedback was recognized by Hayashi et al in 1968 [20]

when they presented a system that was capable of recognizing, storing and processing

Review of Targeted Hardware and Software Platforms 11

Chinese characters. Using a lightpen, users were able to draw the desired Chinese

character on a grid by indicating the source and end vertices. After each pair of points

was selected, the specified line was automatically drawn on the grid, as seen in Figure

2-1.

Figure 2-1 Requiring 32 Vertices, the Chinese Symbol for Brave as displayed by the 1968 Harvard

Project presented by Hayashi et al

Over the past four decades, visual feedback has progressed significantly beyond the

16x16 grid used by Hayashi et al. Technologies now exist for real-time processing of

solid strokes with significantly improved resolutions. Today’s touch screens have

resolutions of 16 dots per inch (DPI) or better while digitizers for use with

electromagnetic styli have resolutions beyond 600 DPI. Speed or timing information,

pressure capabilities and other features such as stylus tilt are also possible using today’s

Tablet PCs.

For online recognition visual feedback provides immediate clues to the user on the

recognition that has occurred. With the high complexity of recognizing mathematics, the

ability to provide immediate clues to the user on the assumptions made by the recognizer

will improve results. For instance, immediate results of online recognition could be

Review of Targeted Hardware and Software Platforms 12

provided through a pop-up list of most probable matches or visual clues that illustrate

segmentation and grouping of ink strokes. These visual results require that devices which

are targeted have a suitable means of visual display.

Devices that support offline recognition – such as the older IBM CrossPad and the newer

Logitech IO Digital Pen are not targeted in this thesis or the mathematical editing

framework produced by ORCCA. Although both of these devices support offline

recognition and manipulation of ink, this class of device does not provide the interactivity

required to ensure math recognition is as accurate as possible.

2.6 Hardware Requirements of Targeted Devices

Processing power is no longer a key obstacle in creating a mathematical recognition

engine. Current handheld technologies are fast approaching gigahertz speeds, with some

Pocket PCs currently containing CPUs in excess of 600 MHz. What has been recognized

as being the most critical requirement is the resolution and size of the interactive screen.

This factor has been the most dominant in choosing acceptable platforms to be targeted

by this thesis in creating a mathematical framework.

2.6.1 Hardware used in Benchmark Tests

Results presented in this thesis were produced using hardware as illustrated in Table 2-1.

2.6.2 Interactive Screens

While collecting data for analytical use, it was noted that the size of a handwritten

equation was roughly twice that of an easily visible equation, for most writers a size 24

font on a 14” display with 1024 x 768 resolution (refer to section 8.8). In addition to

needing a large screen area for input, displays that support a landscape or horizontal

display will be favored as most mathematical input reads left to right first, then top to

bottom. While Tablet PCs and other large displays are typically square or horizontally

oriented, most mobile devices are oriented vertically which is an inherent disadvantage to

applications expecting long lines of input.

Review of Targeted Hardware and Software Platforms 13

Most current models of Palm Pilots support a 320 x 320 screen, where as Pocket PCs

support a minimum of 320 x 480, with some newer devices capable of Quarter VGA

(QVGA) or 480 x 640. QVGA devices offer the same resolution as original VGA

monitors, but in approximately a quarter of size, presenting users with high resolution

mobile devices. Both the Palm and Pocket PCs are oriented vertically, although Pocket

PCs running Windows Mobile 2003, or newer, operating systems are capable of changing

to a horizontally oriented screen layout. For development and prototype purposes, 320 x

320 resolutions appear acceptable. In discovering that individuals match a size 24pt font

for handwriting input, we conclude that QVGA devices should be the minimal target

once a production quality application is released to end users. This higher resolution will

enable individuals to write enough mathematics to make meaningful use of their device.

Table 2-1 Hardware used for benchmark algorithms implemented in this thesis
 Pocket PC Tablet PC

Operating System Windows Mobile 2003 Windows XP Tablet PC 1.0

Processor 400 MHz Intel XScale 700 MHz Pentium III

Memory 64 RAM, 64 ROM 384 MB RAM

Display Size 320 x 480 1024 x 768

Input Resolution 1 X display resolution 10 X display resolution1

2.6.3 Processing Power

Ink manipulation is nontrivial task, but with next Pocket PCs and Palms soon breaking

gigahertz speeds as predicted by Moore’s Law[21], these platforms should provide

minimal processing delays. Furthermore, advances in mobile processors have become

more rapid as these devices will now evolve together: the newest Palms will use

1 Exact hardware specifications could not be found. Instead, the general guideline presented by Microsoft
of the input resolution being ten times that of the monitor.

Review of Targeted Hardware and Software Platforms 14

processors once built for Pocket PCs. In creating prototypes for this thesis, the most CPU

intensive calculation (determining the intersections of an ink stroke) was used for

benchmarking. For details on these tests, refer to section 8.10.

In creating a benchmark, we used ink strokes with 100, 500 and 2500 data points for the

Tablet PC, and 25, 50 and 250 for the Pocket PC. These sizes are representative of the

sizes of individual characters, a small group of characters and a simple equation, as seen

in Figure 2-2.

Figure 2-2 Samples of Ink from the Tablet PC, representing sets of data that include 100, 500 and
2500 data points, respectively.

Using strokes with 100, 500 and 2500 line segments took approximately 0.04, 0.28 and

1.74 seconds, respectively, to complete self intersection on the Tablet PC. At 0.28

seconds the delay in computing intersections was barely noticeable. As intersections are

a possible feature that will be used in mathematical character recognition, we conclude

that the Tablet PC has suitable processing power and memory requirements for math

handwriting recognition.

Using the Pocket PC, times to compute self-intersections of strokes with 25, 50 and 250

line segments required .05, .25 and 1.20 seconds, respectively. Given the smaller the

input region on a Pocket PC and lower resolution of the touch screens compared to a

mouse or Tablet stylus, these stroke sizes are similar to Figure 2-2, although the

resolution and smoothness is significantly less. None of these stroke sizes incurred

Review of Targeted Hardware and Software Platforms 15

noticeable delays in computing on the tested Pocket PC, implying the hardware is

sufficiently powerful, given the current screen size and resolutions.

2.6.4 Memory

Memory requirements of a math recognizer are significant; expansive databases of

samples will be required to ensure recognition can occur. In 1994 Jonathan Hull

compiled a collection of 20,000 samples of Cities, States and ZIP codes from mail sent

through the United States Postal Service [22]. Consisting of 8 bit grayscale images, the

database was over 600 MB in size. Further discussed in section 8.7, I was a part of an ink

data collection survey prepared by ORRCA which collected a comparable database of

common math notations – approximately 20,000 samples in only 90 MB of

uncompressed data. Once compressed, it is possible that only a third or less of this

capacity will be needed. A 30 MB size database is a significant requirement for a

handheld computer, especially as high end models currently have only 128 MB of

memory. With the addition of expansion ports that support expandable memory cards, 30

MB of memory is achievable. Significant additional databases of expression samples

will be needed, so we see that Pocket PCs may need to connect to remote servers for

some time. We have had success with Tablet PCs and desktop computers having 512

MB of RAM, tests have shown that 394 MB is insufficient.

2.7 Targeted Software - Requirements

One of the advantages of the mathematics framework referred to in this thesis is platform

independence. Furthermore, the ink architecture proposed will take advantage of

supplied software support where possible, complementing missing functionality as

necessary to ensure the digital ink architecture standards are implemented fully.

Although it is always possible to implement missing functionality, it remains that certain

minimum software requirements must be met. Inking relies on an event supportive

model; operating systems must provide the ability to capture at least three events: 1)

Stylus Down, 2) Stylus Move and 3) Stylus Up.

Review of Targeted Hardware and Software Platforms 16

By supporting these three minimal events, it is possible to simulate all inking actions; a

stroke object simply becomes a collection of X, Y coordinates as collected by these three

events. Without these events, it is impossible to create a stroke and the inking actions

become impossible. We therefore define these events in more detail.

2.7.1 Stylus Down

This event is activated once the stylus is pressed against an interactive display. It must

include the ability to acquire X, Y coordinates of the stylus and should also include a

method of acquiring timing information. Future recognition engines may use timing

information to help in recognizing ink.

2.7.2 Stylus Move

This event occurs after activating the Stylus Down event, while the stylus is pressed

against an interactive display, movements of the stylus must be recorded in X, Y

coordinates. Timing information is not necessary, as long as the Stylus Down and Stylus

Up events each generate a time stamp, as data collected by Stylus Move could then

simulate time stamps, using this information.

2.7.3 Stylus Up

This event is activated as the stylus is released from the interactive display. It is not

necessary to acquire X, Y coordinates although it is necessary to collect the time of this

event relative to the Stylus Down event.

2.8 Contrast of Targeted Platforms - Hardware

Table 2-2 illustrates a simplified overview of identified hardware features that are typical

of high-end models of Tablet PCs, handhelds and graphical digital styli. The chosen

hardware features represented have been identified as being the most important in a Math

framework.

Review of Targeted Hardware and Software Platforms 17

2.9 Contrast of Targeted Platforms - Software

Table 2-3 provides an overview of potential software platforms that can make use of a

math recognition engine. It illustrates the extent of the existing infrastructure’s support

for inking, as well as the native purpose of the stylus for input.

Table 2-2 Comparison of Targeted Hardware Platforms

Currently, only the Tablet PC running Windows XP Tablet edition supports a full inking

architecture, providing developers a means of manipulating digital ink via the provided

manufacture APIs. Tablets running on Linux as well as PDAs and graphical tablet styli

typically support only mouse simulation or simpler forms of character recognition such as

Palm’s Graffiti recognition scheme.

Table 2-3 Comparison of Targeted Software Platforms
 Supported OS Functionality Primary Use

Tablet PC Windows XP Tablet Full ink support Input, ink manipulation, recognition
 Linux Limited Input only; recognition plans for future
PDA Windows Mobile Basic events Input, full character recognition
 Palm Basic events Input, shorthand character recognition
 Linux Basic events Input, shorthand character recognition

Windows Mouse input Graphical applications Graphical
tablet with
Stylus Linux Mouse input Graphical applications

 CPU Memory Input Resolution Screen Size

Tablet PC Pentium M,
1.3+ GHz 1+ GB 1024 x 768 or equivalent,

 > 100 samples / second 4 – 14” or larger

Pocket PC Intel XScale
623+ MHz

64 MB
+ expansion 480 x 640 3.5" – 4”

Palm Pilot Intel XScale
400+ MHz

64 MB
+ expansion 320 x 320 3"

Graphical
tablet with
Stylus

N/A N/A 1024 x 768 or equivalent 14" - 18"

Review of Targeted Hardware and Software Platforms 18

At this time a large number of targeted platforms - handheld computers as well as Tablets

running Linux - do not provide a means of ink manipulation. To accommodate the lack

in functionality it will be necessary to provide a Portable Digital Ink Architecture (PDIA)

to ensure that full ink manipulation and API support is provided. This will allow a level

of abstraction allowing a single math recognition engine to operate on all platforms.

2.10 Conclusion

In creating a parallel between the use of early tools in aiding mathematics and a

mathematical handwriting recognizer, we argue for the importance of such a tool. By

establishing the requirements of a recognizer both in hardware and software

specifications, we ensure that our solution will provide an experience that is positive,

productive and natural.

The three software requirements; stylus down, stylus move and stylus up are essential if

inking actions are to be provided to users. Furthermore, the requirements of hardware,

including interactive screen, processing power and memory, ensure real time interaction

with the user will be possible, although complex mathematical equations may cause

delays. The importance of real time interaction and feedback and its impacts on user

interfaces is further discussed in Chapter 7

 19

Chapter 3 Attributes of a Mathematical
Ink Recognition Environment

3.1 Overview

To ensure the success of the mathematical recognition engine developed by ORCCA, this

thesis has identified the need for a digital ink architectural framework. This chapter

describes why attributes of a mathematical recognition are chosen. Chapter 4: Portable

Digital Ink Architecture (PDIA) describes in detail how each attribute should be

addressed in our solution. Chapter 8: Implementation, Experiments and Results explain

the results of our experiences in implementing PDIA.

The requirements necessary for a mathematical recognition engine are not unrelated to a

standard handwriting recognition engine; many could be addressed by increasing minimal

resource requirements. Instead it is the requirements that will make a math recognition

engine successful that differs significantly from handwriting recognition.

Handwriting recognizers, either through shorthand notation or full text recognition

schemes, are inherently successful or must evolve to become successful. The release of

Apple’s Newton in 1993 illustrates this notion. The Newton device was well equipped

and offered a wide range of software; however it lacked accurate handwriting

recognition. The Newton was discontinued in 1998 after a second release of the product

failed to reverse market opinions of the first generation Newton. By failing in

handwriting recognition, the Newton lost its audience which moved to alternative

solutions that had evolved into more successful products.

Manufactures are aware of the importance of handwriting recognition in pen-based

computer systems. To consumers, handwriting recognition is not a feature of pen

computing, it is a requirement. The result is proprietary technologies that target single

devices offered by each manufacture, in an attempt to provide a competitive advantage

Attributes of a Mathematical Ink Recognition Environment 20

and incentive to use a single device. One exception is Palm’s Graffiti software which is

available for licensing to other manufactures.

Further driving the need for accurate handwriting recognition is the diverse range of

software applications that provide opportunity for input by ink, utilizing the capabilities

of text recognition engines. These programs offer customers a suite of applications in

many areas of computing and the result is a large market base. If one category of

software titles were to fail as a result of poor recognition results, others might continue

until accuracy improves.

While the proprietary approach has worked for handwriting recognition, it is less

desirable for mathematical recognition for two reasons. First, a mathematical recognition

solution should have multiple targets spanning dozens of manufactures and several

platforms (including Windows XP and XP Tablet edition, Windows Mobile, Palm, Linux

and others). While solutions have existed in the past that have been capable of spanning

multiple platforms, they often take the “lowest common denominator” approach.

Mathematical recognition will require high level ink manipulation, or the ability to

manipulate ink though a comprehensive set of APIs; the result is a need to identify a

“common denominator” without being bound by the “lowest denominator”. Once this

denominator is discovered, it will be necessary to implement missing functionalities on

each platform.

Second, although individual platforms may or may not have accurate recognition

capabilities, most have comprehensive list of software titles that take advantage of the

existing recognition support. While some of these titles may fail because of poor

recognition, others will survive until a better recognizer is made available. In the end the

platform endures because of the success of its applications, something a math framework

is not guaranteed.

A math recognizer will have only a limited number of software titles, all of which will be

dedicated to mathematics: a virtual calculator representing previous interfaces at worst, or

a whiteboard with the ability to allow free form entry solving domain independent

Attributes of a Mathematical Ink Recognition Environment 21

equations at best. While useful, the market size for math recognition API is considerably

smaller than a general handwriting recognition API. The result is undesirable conditions

for 1) potential developers – poor adaptation of API and 2) consumers – fewer software

titles to choose from.

3.2 Portable Digital Ink Architecture

The need for a PDIA and the ability to directly access or analyze ink collected within a

document is more prominent in a mathematically oriented application than typical

handwriting recognition applications. Most handwriting to text applications are required

to do little analysis beyond the grouping of textual characters. Math applications

however, need to be able to recognizer symbols beyond text, such as fractional lines,

matrix borders and many others.

To ensure as successful as possible adoption of our mathematical framework and

recognition engine, we identify a need to include with our solution a Portable Digital Ink

Architecture. Our proposed math recognition solution will need to address the following

requirements1, made possible with PDIA. These requirements will ensure the greatest

possibility of success while preventing an unfeasibly large set of features from creeping

into our designs.

1) Platform Independence

2) Consistent High-Level Ink Manipulation

3) Abstract Device API Evolution

4) Abstract Resource Availability

3.3 Platform Independence

Often considered a holy grail for many architectures, platform independence is an

essential requirement for a math recognition application. As identified in sections 2.4

1 This section describes why each requirement has been identified. Please refer to Chapter 4 for details on
how each requirement is implemented in our solution.

Attributes of a Mathematical Ink Recognition Environment 22

through to 2.9, there are several hardware devices each with different operating systems

that are targeted devices for our math framework and recognition engine. While each

combination of hardware and operating systems has a positive future in mathematical pen

computing, it will be necessary to target as large a subset as possible to maximize the

likelihood of success. Similar to Sun Microsystem’s platform independent Java and

Linux’s hardware independent nature, the benefits of portability is in the choices

presented to both developers and users. In the case of our math framework, it will be

possible for third party developers to take advantage of the unified inking interface and

math recognition engine in a manner that addresses their specific needs. For users, it

means choices in finding software that runs on devices they prefer to use.

Platform independence is closely related to the requirement identified in section 3.4,

High-Level Ink Manipulation. Platform independence when combined with inking

capabilities offers the potential for a single recognition engine to operate consistently on

each targeted platform as described in the following section.

3.4 Consistent High-Level Ink Manipulation

The ability to treat Ink as a native data object is not unique, yet many platforms including

all current Palm and Pocket PC handhelds do not come with manufacturer support for ink

manipulation. The creation of a mathematical recognition engine and an appropriate user

interface will require full support of ink manipulation, well beyond the limited X, Y

coordinate reference support currently provided by handheld manufactures.

Providing a uniform API across each of the targeted platforms will be necessary to ensure

a single recognition engine supports each platform, providing a consistent means of

easily manipulating ink. Missing functionalities from the manufacturer APIs will need to

be implemented, yet it will also be desirable to take advantage of existing functionalities

and data structures, as in the case of the Tablet PC.

Attributes of a Mathematical Ink Recognition Environment 23

In addition to consistency between devices, a homogeneous API provides an opportunity

to address the next requirement; that PDIA easily accommodates device and API

evolution.

3.5 Device Evolution Abstraction

Given the fast pace of change in the mobility market, it is reasonable to anticipate that

device APIs will not remain constant. Two examples of this notion are1:

1) Palm’s 2002 release of the Palm OS 523; since their 1996 debut

Palm has averaged 19 months per release as of 2004.

2) Microsoft’s upcoming Tablet PC version 1.724 due to be released

in 2005 is the third revision to the Tablet PC API since 2000, is

also averaging 19 months per version.

Further evidence suggests that the Tablet or Pocket APIs may change again within the

next year; internally Microsoft moved the Tablet PC to the Windows Mobile team and

announced that a new generation of small 5 inch Tablet PCs will ship in 200525. It is

foreseeable that these new devices will merge with the Pocket PC platform, or potentially

acquire a lightweight implementation of the Tablet API.

As the use of a standardized ink interface will require the addition of an abstraction level

on top of manufacture inking support, this abstraction could also be used to accommodate

rapidly changing APIs. Additionally, this layer of abstraction can also be used to

accommodate the remaining requirement – that algorithms and calculations be aware of

the platform of execution, ensuring timely results and appropriate CPU usage

respectively.

1 Palm’s period of release was calculated from their 1996 debut though to 2004, using their latest OS
release. Information regarding betas were not included. Microsoft’s Tablet release period was determined
using beta release dates, originating in 2000 through to the expected 2005 release of version 1.7

Attributes of a Mathematical Ink Recognition Environment 24

3.6 Abstract Resource Availability

It is acceptable to assume significant amounts of resources are available to perform

recognition on a Tablet PC, or on a remote server which is also expected to exceed

minimal resource requirements. Moving to a handheld platform, however, could result in

code that is bulky and use more than the available amounts of memory and CPU

processing power.

It will be necessary for PDIA to be aware of each platform’s limitations and to provide

implementations of algorithms that are sensitive to these restrictions. It may be that

approximate algorithms are implemented, or algorithms that are aware of the type and

amount of input expected. For instance, a device with a high resolution electromagnetic

screen versus a touch screen will provide much more data, often significantly more than

necessary. The touch screen device however, will provide only a minimal amount of

input data, all of which is likely to be significant. By being aware of the platforms

hardware and the expected amounts of input, it is possible to influence initial object sizes

in memory, as well as determine thresholds that influence when one algorithm should be

used over another. For example, devices with large amounts of input will use an

intersection detection algorithm that has a high overhead but low average runtime

complexity (n log(n)), with n representing the number of data points collected. Devices

with low amounts of input can use an intersection algorithm with no overhead but a

higher runtime (polynomial).

3.7 Conclusions

Each of these four requirements: Platform independence, High-level ink manipulation,

Device API abstraction and Resource abstraction can be addressed in a well-crafted

implementation of PDIA. The next chapter illustrates how precisely defined interfaces

and abstraction layers provide a means to address each requirement in a reasonably

lightweight manner.

 25

Chapter 4 Portable Digital Ink
Architecture

4.1 Overview of Portable Digital Ink Architecture (PDIA)

As indicated in [26], the domain of mobile computing is diverging, just as desktop

computing was two decades ago. As in early days of home computing when computer

manufactures failed to recognize the benefits of standards, often while producing

incompatible products within their own range of devices, similar situations are seen

today. The mobile computing market has numerous examples of devices that exclude

alternative products. While standards have ensured that cellular phones are generally

capable of broadcasting and receiving calls from different manufacturers and networks,

there are no standards in place to permit these same phones from sending contact or

calendar information to each other.

This thesis introduces a common architecture centered on several device types, each of

which is manufactured by a separate company and whose primary purpose varies. This

chapter is dedicated to overcoming the specific shortcomings of handheld, tablet and

desktop platforms, providing a means to implement core application logic only once for

execution on each targeted platform.

Section 4.2 introduces the three-tier architectural model created for this thesis and

identifies how each of the attributes of a math API (platform independence, ink

manipulation, API evolution and resource limitations) will be addressed in PDIA.

Section 4.3 identifies the objects necessary for ink manipulation and Sections 4.4 and 4.5

present problems in persistent storage of ink (existing ink formats) and identifies our

decision to use the standardized InkML [27] to represent ink.

General Digital Ink Architecture 26

4.2 Creating an Architecture for PDIA.

Presented in this section is an examination of how the proposed architecture from that of

manufacturer approaches to the three-tier architecture that is capable of platform

independence. Using the modular approach presented also allows for the development of

additional functionality by both internal and external developers working with PDIA,

providing users with the option to use third party applications.

4.2.1 Manufacturer Approach: Single Tier Architectures

Manufacturers that currently support Ink, notably Microsoft with the Tablet PC, provide

an uncompromising implementation of their Architecture. The single tier architecture,

illustrated in Figure 4-3, clearly benefits manufactures by constraining developers and

consumers to a single device or platform.

Figure 4-3 Single Tier Architecture: Manufacturer Implementations

This single stage architecture provides only an implementation of inking APIs. In this

single tier architecture resides all responsibility for Ink manipulation, including the ability

to modify, recognize or serialize ink to a persistent storage medium. These capabilities

are provided through private or publicly-provided manufacturer APIs and are often a part

of the operating system. With little or no flexibility in these platforms, no single

manufacture architecture is suitable for use in PDIA. We therefore introduce a second

tier into our architecture, providing a manufacturer and platform-independent

architecture.

4.2.2 Platform Independence: Two Tier Architectures

When targeting multiple devices, platforms often introduce a wrapper that achieves

portability by supporting a lowest common denominator approach. With a math API and

our targeted devices, the lowest common denominator result would be that of handheld

General Digital Ink Architecture 27

computers and the ability to draw a point at a given X, Y coordinate. Requiring the full

support of ink manipulation, our math framework will have to approach platform

independence with a more feature rich solution.

The introduction of a second tier in our architecture provides the ability to give each

targeted device any features necessary for ink manipulation. With this new layer come

changes to the foundational implementation tier, as illustrated in Figure 4-4. As all

devices are expected to provide complete support for ink manipulation, it is necessary to

produce a custom implementation. This permits for device wrappers that simply make

use of manufacturer APIs or when necessary a hybrid combination of our custom and

manufacturer APIs.

Figure 4-4 Two Tier Architecture: Abstracting Manufacture APIs

Introducing a “device wrapper” tier to our architecture provides the agility necessary to

accommodate multiple devices and operating systems. Wrappers are meant to be the

only method code that interacts with native APIs; they should be as thin as possible,

incurring a minimal penalty in resource overhead. The result is a concentrated area of

source code that will need to be updated should native APIs be modified. Similarly, if a

new device or platform were to be targeted by PDIA, the addition of a new wrapper

would permit easy expansion onto that device.

The creation of a wrapper for each platform targeted by PDIA presents an opportunity to

take advantage of existing infrastructure. These wrappers also provide the ability to

optimize functionality for the expected type and amount of data received while observing

resource limitations. For example, wrappers on handhelds can expect much coarser

General Digital Ink Architecture 28

stroke information with X, Y coordinates in integers. Tablet PCs, on the other hand, will

require floating point numbers to record X, Y coordinate information.

Third party developers who make use of PDIA will want to interact with these wrappers,

and even create new wrappers, expanding the range of devices that can be used. With

consistency being a key requirement of a math framework, we wish to enforce

standardization between device wrappers. We therefore need to introduce a third tier to

our architectural design.

4.2.3 Standardization and PDIA: Three Tier Architecture

By permitting the addition of new wrappers to any device, the need for consistency is

essential if PDIA is to meet the needs of a math framework. To enforce consistency

between device wrappers we introduce a third tier to our design, a unified interface.

The unified interface layer provides consumers of PDIA with the only public interface

necessary to manipulate ink for recognition or other purposes. The public methods of

this layer are the product of this thesis, and may be the primary means of ink

manipulation for forthcoming ORCCA projects, including a math recognition engine1.

Each interface defined within the Portable Interface is guaranteed to be implemented

fully in its respective device wrapper, using custom or native APIs. The necessity of

implementation and conformity guarantees that PDIA yields consistent and reliable

results across platform borders.

Figure 4-5 illustrates the three tiers of our PDIA solution as implemented by this thesis.

In our implementation, we also provide an extension of PDIA to the Microsoft .Net

framework. We leave it to future persons to extend PDIA to Java through Java Native

Interfaces (JNI). Extending PDIA to .Net will enable developers to create user interfaces

that take advantage of rapid prototyping applications while providing the full power of

PDIA.

1 Presented by Dr. Stephen Watt and Xiaofang Xie at ECCAD, May 20004.

General Digital Ink Architecture 29

Figure 4-5 Three Tier Architecture: The PDIA Solution

Together the implementation, device wrapper and unified interface produce a three-tier

architecture which fulfills the identified requirements for unified digital ink architecture,

which were first identified in Chapter 3. The unified interface ensures consistency

between device and platform implementations by providing guidelines for developers to

adhere to. The device wrapper allows for cross device and cross platform support,

enabling the abstracting away of device API evolution and resource abstraction. Finally

by providing a complete, custom implementation we provide the necessary functionalities

to ensure a transparent inking experience can be achieved on each targeted platform,

completing an architecture that is fully independent from other operating systems,

platforms and devices.

4.3 Class Hierarchical Design of PDIA

Similar to the PEN architecture described in [28], we recognize the need to “generalize

internal structures beyond the hardware used” [28]. In Xiaojie’s Wu’s work, “Achieving

Interoperability of Pen Computing among Heterogeneous Devices and Digital Ink

General Digital Ink Architecture 30

Formats” [29], she presents the similarities and differences between the Tablet PC and

IBM CrossPad APIs. It was Wu’s paper that introduced the concept of an Ink

Abstraction API. Figure 4-6 illustrates the classes Wu identified as to allow for the

greatest common functionality between the two devices of focus in her thesis, the Tablet

PC and CrossPad.

Figure 4-6 Identified Classes by Wu in an Abstraction API

Figure 4-7 PDIA Class Hierarchical Overview

To accommodate as many platforms and devices as possible, we continue Wu’s work in

creating the abstraction layers of PDIA. This thesis extends her proposal, through an

architecture that operates on each of the platforms targeted by a math recognition engine.

In creating PDIA we realize that ink classes, as well as those necessary to support inking,

need to be made publicly available. The relationships between classes of our custom

implementation of the inking inexperience are illustrated in Figure 4-7. The result was a

Point class with three composite classes: Stroke, Strokes, and Ink. There is also a need

for two child classes of Point: Line and Rectangle. We believe our solution is considered

to be the lowest denominator possible while still supporting ink manipulation and

recognition. In fulfilling the need to supplement existing APIs with missing

functionality, it was necessary to provide a complete implementation of these classes,

which we have made available in the namespace “OpenInk”. For additional details on

implementation and experiment results, please refer to Chapter 8.

General Digital Ink Architecture 31

4.3.1 Class Objects: Point

The Point class represents a two-dimensional vertex that contains X and Y coordinates

and definitions deemed necessary of a Point object. The unit of measure for the

coordinates should be flexible; most handhelds could use an integer whereas a Tablet PC

may require a decimal object. It is suggested that a typedef of the unit desired is used,

which can be instantiated in a configuration file unique to each device. As most

languages read from the upper left to lower right, it was also appropriate to use the fourth

quadrant representation as being positive for the Point object. Figure 4-8 illustrates how

data in the fourth quadrant is represented, as well as the remaining three quadrants.

Figure 4-8 Example of syntax used to describe Points in each quadrant

4.3.2 Class Objects: Line

While a Stroke object is conceptualized as a series of Line segments, it is in fact a

collection of Points. Not required for inking, the Line object, illustrated in Figure 4-9,

allows developers to visualize functionality such as intersections within other Line or

Rectangle objects. Composed of two Point objects, a source and target, the primary

purpose of the Line class will remain the aiding of low-level ink manipulations.

Figure 4-9 Illustration of the components of a Line object
Source Vertex Target Vertex

General Digital Ink Architecture 32

4.3.3 Class Objects: Rectangle

The Rectangle is also composed of two Points: upper left and lower right as seen in

Figure 4-10. The primary use of a Rectangle is to easily identify the bounding box of

Strokes objects. Other examples of use include: Scaling a Stroke to a particular

Rectangle, Stroke normalization by removing Points beyond a specified Rectangle or for

hit tests that determine if the bounding boxes of two Strokes overlap each other.

Upper left
vertex

Lower right
vertex

Figure 4-10 Illustration of the components of a Rectangle object

4.3.4 Class Objects: Stroke

A Stroke consists of a continuous set of Points representing a single pen stroke, normally

supplied by an end user but may be added programmatically. The Stroke is the heart of

the inking interface, and is a means of treating ink as a native data type instead of an

image. Because all ink recognition and manipulation must use data located within the

Stroke object, it is necessary to provide a sufficient set of accessing and manipulative

functions. Examples of such functionality include the ability to find bounding boxes and

intersections, stroke normalization, rotation and skewing. As the stroke is a primitive

object in the digital ink framework, all functions must run in optimal time and space

complexities.

4.3.5 Class Objects: Strokes

Conceptually, a Strokes object could be visualized as an organized grouping of Stroke

objects, forming a distinguished object. For instance, Figure 4-11illustrates how three

Stroke objects are needed to create a Strokes representation of the letter ‘I’. Furthermore,

Strokes objects can be combined to create larger sets of strokes objects, as illustrated in

Figure 4-12. Here the Strokes objects are the results of combining two smaller Strokes,

each of which contained a word: “hello” and “world”.

General Digital Ink Architecture 33

Figure 4-11 Illustrating the components of a Strokes Object

Figure 4-12 Additional Illustration of Strokes Objects

Figure 4-13 Illustration of an Ink object. Ink could be thought of as all the Strokes collected by a

logical container, such as a page or screen.

General Digital Ink Architecture 34

4.3.6 Class Objects: Ink

Ink is the hierarchical manager of all Ink recorded from an end user, and is the primary

interface for external applications. Strokes are added and destroyed through Ink, and it is

the Ink object’s responsibility to provide serialization capabilities for persistent storage of

Ink data. Figure 4-13 gives an example of where Ink objects reside, in context to other

Strokes, Stroke and the other data types presented.

4.4 Persistent Storage of Ink

Further paralleling the problems of early personal computers with today’s mobile devices

are inconsistencies in communicating between applications on devices. Today the

possibility of cross-platform data exchange between mobile devices is moderate at best.

Many devices are not even capable of communication with others; cell phones for

example use proprietary methods to store contact or calendar information or fail to

provide the hardware necessary for exchanging this data. Magerkurth states in [26] that

“rarely is there a way to exchange this simple data even if similar communication

hardware and protocols are used”, referring to the problems of exchanging data between

mobile devices.

With contact and calendar exchange formats, a single standard has been imposed by the

Internet Mail Consortium1 for nearly a decade. Unfortunately many cellular device

manufactures continue to ignore this standard today. Given the high degree of

complexity of inking, compared to calendar or text information, along with the lethargic

embracing of digital ink by industry, it is unfortunate that adaptation of standards

continue to be a problem. The results are proprietary and device-dependent ink formats

that have become the topic of this thesis and others, alike [29, 26].

1 vCard (.vcf) an electronic business card and vCalander (.vcs) an electronic calendaring and scheduling
exchange format are trademarks of Internet Mail Consortium. Introduced in 1996, these two standards
were developed to ensure communication between electronic devices is quick, reliable stored, organized
and easily located. For full details, visit http://www.imc.org/pdi

General Digital Ink Architecture 35

4.5 Existing Formats of Ink

With the establishment of the internal memory representation of ink in section 4.3, it is

necessary to identify how Ink will be saved to a storage medium. Given that three major

existing ink formats exist (Jot, UNIPEN and InkXML), it is logical to implement one of

these formats as opposed to creating another format specific to PDIA. Drawing on Wu’s

conclusions from her research in creating interoperability between digital ink formats

[29], we present a summary of each ink format:

4.5.1 Jot

A now defunct ink format, Jot was a proprietary format owned originally by a Slate

Corporation. Jot offered limited opportunities as a communication medium. A light

weight binary format, it was based on a lossless compression scheme and included

abilities to reduce the amount of information retained in ink.

Supported ink features of Jot include: multiple strokes of ink, bounds, scale, offset, color

with opacity, pen tips, timing information, height of the pen over the digitizer, stylus

pressure, button usage of stylus and, X, Y tilt angles of stylus. Applications can choose

to recognize or ignore properties as required. Because existing applications may choose

to ignore properties, new features could be added without affecting their performance.

4.5.2 UNIPEN

Designed in 1993 by a consortium of over 40 companies, UNIPEN was created to

facilitate digital ink data exchange and the storage of handwriting samples. Using a flat

attribute organization in ASCII format, it uses self-definition from three basic keywords:

comment, reserve and keyword.

Through self definition, UNIPEN is able to record all attributes of ink. New attributes

may be added as desired, as applications are hard-coded to recognize only those of

interest.

General Digital Ink Architecture 36

4.5.3 InkML

An open standard InkML1 was designed to replace the flat attributes of UNIPEN with an

XML based schema. Promoting the exchange of data across heterogeneous devices,

InkML is poised to become the de-facto standard if manufacturers adopt it.

With the option for binary encoding, InkML’s usage is divided into three main

categories: Ink streaming applications (instant messaging, whiteboards), persistent

storage, and interactive ink (gestures). Furthermore, each XML element has both a

primitive, standardized element as well as the ability to add application specific

information. This allows for additional information to be added without the need to

update existing applications.

Due to the standardized nature of XML, PDIA will embrace the InkML working draft

standards as our choice of a digital ink format. InkML provides the greatest flexibility

for PDIA, and meets both our current and future needs: Currently, the ability to serialize

ink, storing it on persistent storage is necessary, however as addressed in Section 9.3,

future additions to PDIA may include networkability. Designed with streaming abilities,

InkML is an obvious choice to ensure these future additions are possible.

4.6 Conclusions on PDIA

Commercially, investment in digital ink is linked to risk and isolated market

opportunities. Unlike desktop computing, there exists no dominant platform. Those who

use digital ink want both ultra mobility (PDA’s) as well as processing power (Tablets and

laptops). These hardware alternatives, when combined with a selection of operating

systems result in further proprietary development models, inconsistent APIs, ink formats

and fragmented adoption opportunities.

Our PDIA design hopes to remove these risks, while making a mathematical framework

possible. Taking advantage of existing infrastructure, PDIA ensures as little overhead as

1 In 2002 the World Wide Web Consortium started to develop a standardized ink format InkML
(http://www.w3.org/TR/InkML), but industry has not yet widely adapted this unfinished standard.

General Digital Ink Architecture 37

possible while meeting all of the requirements of a math framework: Platform

independence, consistent ink manipulation, device evolution abstraction and resource

abstraction.

Our three-tier approach ensures functionality is optimized for the type of data received

and that resource limitations are observed. Initial versions of PDIA will support the

desktop, Tablet PC and Pocket PC platforms. As expected, thin wrappers will sit on top

of manufacturer implementations, with PDIA implementing missing functionality.

 38

Chapter 5 Certain Mathematical
Expression Properties

5.1 Overview

In order to understand the full relevance and difficulties of creating a math recognizer or

framework, it is necessary to understand some of the properties of mathematical

expressions. After examining these properties it will be possible to provide further

insight as to how a mathematical framework can assist the recognition process, further

contributing to our thesis. Presented in this chapter is an overview of the properties and

common notations found within mathematical expressions. After examining the

properties of mathematical expressions, we introduce the differences of mathematics or

two dimensional languages with those of text based or one dimensional languages.

5.2 Properties and Notations of Mathematical Expressions

Thirty years ago, W. Martin suggested that the first step in automating mathematical

recognition is to ensure the notation is well defined and studied [30]. Further supporting

his hypothesis and the need for standards-like consistency in mathematics, Martin

presented a list of ambiguous conventions used by mathematicians in technical

publications at the time of publication. Table 5-4 illustrates some of the expressions

Martin presented.

We also believe that before one can recognize a mathematical expression, it is important

to understand how such an expression is constituted. Unfortunately, mathematics

includes both hard (well-defined) and soft (poorly or undefined) conventions [31].

Examples of hard notations include the meaning of an expression, its characters and

symbols: i.e., ∑ (sigma) is understood to represent the sum of a series of terms. A soft

convention is often illustrated by the position of information around a given operator. In

Table 5-5 two pairs of equations are presented that are generally understood to have the

Mathematical Expression Properties 39

same conceptual meaning. Soft conventions permit the placement of informational

variables which interact with the primary operators in different locations.

Table 5-4 Examples of Ambiguous forms of equations with their Unambiguous possible definitions,
as presented by Martin

Ambiguous Unambiguous

c
b
a

c
b
a

 or
c
b

a

∑

∑
100

10

5

i

j
∑
∑
100

10

5

i

j or ∑
∑

100

10

5
j

i

∫
+−

2

dc
b

a
dx

dx
b

a
dc∫ +−

2 or dx
cb

a
d∫

−
+
2

2
2 wy

x ++
2

2 wx y ++
− or

2
2 wx y +
−+

∑
++

=

100

0

2
dc

a

i
i ∑

++

=

)100(

0

2
dc

a

i
i or

⎟
⎠

⎞
⎜
⎝

⎛ ∑
++

=

100

0

2
dc

i

i

a

yx yx or the pre-subscript yx
()BA
2A

C
BA×

BA∗ or the function ()BA
2∗A or the variable 2A

C
BA∗ ,

C
BA× (variable x) or

C
BA∗

∑
=

+
10

5i

Yi Yi
i

+⎟
⎠

⎞
⎜
⎝

⎛∑
=

10

5

 or ()∑
=

+
10

5i

Yi

dt
dx

td
xd

∗
∗ or x

dt
d

In both the integral and summation formulas of Table 5-5, it is acceptable if these two

minor variations in variable placement are used interchangeably. To a math recognizer

looking for operator parameters, such ambiguity in parameter placement will require

additional CPU processing, or additional user interactions, further complicating the

recognition process.

Mathematical Expression Properties 40

Table 5-5 Two pairs of equations that are understood by hard conventions to have the same meaning.
Both pairs use soft conventions to place the primary operator limits in different positions

∫
π2

0

2 dxx ∫
π2

0
2 dxx

∑
=

10

0i

ix ∑ =

10

0i

ix

To prevent undertaking a complete survey of the notation of mathematics, we limit

ourselves to certain factors that influence recognition, as listed below. Believed to have

significant impacts on expression meanings, we further discuss each factor and related

sub-factors in upcoming sections.

1) Symbol Identification: Factors include implicit and explicit

operators and identify characters versus operators.

2) Segmentation: Factors include operator precedence and range, use

of fence and binding operators and operator symbols that imply

grouping.

3) Context: Related to categories 1 and 2, it is necessary to ensure a

symbol has been correctly recognized according to its context,

allowing proper grouping and identification to occur.

5.2.1 Symbol Identification

Symbol identification involves identifying symbols that will result in implicit or explicit

operators, as well as identifying operands versus operators.

5.2.1.1 Symbol Identification – Operators and Operands

The correct identity of a symbol influences every step of the recognition process. Often it

is possible to determine if a character is an operator or operand, which helps determine if

Mathematical Expression Properties 41

an implicit or explicit operator is implied. One significant problem with identifying a

symbol in mathematics instead of a written language was identified by Blostein et al [32]:

… there is a large character set (roman letters, greek letters, operator symbols)

with a variety of typefaces (normal, bold, italic), and a range of font sizes

(subscripts, superscripts, limit expressions). Certain symbols have an enormous

range of possible scales (e.g. brackets, parentheses, ∑, ∏, ∫).

5.2.1.2 Symbol Identification – Explicit or Implicit Operators

As said, symbols may either be operators or operands, although there are exceptions to

this as well. Usually, if a symbol is defined as an operator, it is an explicit operator, but

this is not always true. More difficult to recognize are implicit operands, because of their

subjective nature. Chan et al [33] provides the following definition and excellent

example on implicit operators:

Also called spatial operators, relationships between operands are identified by

implicit operators by their relative position. For example, in “a2”, 2 is the

superscript of a representing the square of a. However, in “a2” 2 is the subscript

of a representing only a variable name. Although unusual, “a2” can be used to

represent the multiplication of a and 2.

5.2.2 Segmentation

In identifying segmentation properties of mathematical expressions, it is necessary to

examine operator precedence and range, the use of fence and binding operators as well as

operator symbols that imply grouping.

5.2.2.1 Segmentation – Basic and Combined Symbols

Even if each character has a well defined meaning, it is possible that symbols grouped

together will have another meaning. When formed together, digits typically become a

unit: i.e., 22 represents an integer, twenty two; however 22 represents a different integer,

Mathematical Expression Properties 42

four. Likewise characters may be grouped together to form units. Examples of common

units of characters include sin, cos, and tan. To decide if individual symbols are to be

grouped, it is the context of the characters that will provide this information.

5.2.2.2 Segmentation – Range Operators

Each operator has a pre-determined range over which it is effective, which is typically

based on conventional usage. The example in Table 5-5 illustrates how these ranges

differ between conventions – the bounds on the integral and summation operator appear

in two different locations: Above and below the operator as well as to the left of the

integral. Because mathematical notation is a visual language (refer to section 5.3), the

use of subtle spatial relationships are subject to variation. For additional examples

representing ambiguity arising from subtleties in spatial relationships, refer to Table 5-4

or [30, page 83].

5.2.2.3 Segmentation – Binding Operators

Binding operators are those which create a group of symbols meant to be treated as a

single unit. For instance, 3 3 27+x is meant to be a single unit bound by the root

operator.

5.2.2.4 Segmentation – Fencing Operators or Precedence

Fencing operators are related to binding operators in that they group series’ of operators

and operands, allowing the creation of a single unit. Fencing operators are typically

parentheses, but are also used in matrixes. For example in “)(cba + ”, the parentheses

groups)(cb + into a single unit with a higher precedence than the implicit multiplication

operator between a and)(cb + . As a result the sum of)(cb + is calculated and then

multiplied by a.

5.2.3 Context

Introduced earlier, the allowance for identical symbols to have different meanings based

on context often prevents, or makes difficult, expression analysis beyond the character

level. While many symbols have well defined meanings across all domains (“3” always

Mathematical Expression Properties 43

means three, “=” always means equal) this is not true for all symbols. Fortunately, many

symbols do have a well defined meaning once its context is determined. Three popular

examples of symbols that depend on context include:

1) “.” This dot may mean a decimal place, multiplication operator or

a symbol annotation, i.e., a time derivative or repeating digit.

2) “—” The horizontal line may mean subtraction operator or a

fraction line, depending on the length and location of operators

surrounding the symbol

3) “dx” The group of characters dx may have separate meanings

depending on context. Clearly in ∫
π2

0
2 dxx , dx is a part of the

integral expression. However in “cy + dx”, it likely represents the

multiplication of the symbols d and x.

These three notational categories of symbol identification, segmentation and context

awareness provide a means of identifying properties of mathematical expressions.

Furthermore, it is possible to differentiate natural language and mathematical notations

by the differences in their respective uses of dimensions to portray additional

information.

5.3 Visual versus Written Languages

Written string languages, such as most of the world’s languages, are composed of

characters that make use of a one dimensional direction, often left to right, right to left or

top to bottom. The only meaning included with syntax is what is explicitly portrayed in

the text while making use of simple notations, i.e.: spaces between words provide a

means of association; special characters provide a means to emphasize, insert pauses and

denote questions. These meanings are defined by each language, the rules of which are

grammar.

Mathematical Expression Properties 44

Unlike string languages, mathematics, music and some engineering disciplines make use

of the syntax of visual languages to portray a user’s intentions [34]. According to

Anderson [35], the primary differences between string and visual languages is the use of

appropriate syntax in a visual language. Visual language syntax takes advantage of

higher dimensions in portraying the intended meaning. Marriott et al [34] more

accurately defines a visual language in suggesting it is a set of diagrams whose spatial

relationships are considered meaningful in the language definition.

5.4 Conclusions

In identifying the differences between mathematical or visual languages and string based

or textual languages it is hoped that the recognition process can be adapted and further

specialized for mathematics. Furthermore, three unique properties of mathematics that

effect recognition, including: symbol identification, segmentation and context, present

unique challenges that must be addressed by a math recognizer in order to provide a

functional mathematical recognizer, the foundation of any end-to-end solution that will

be adapted by end users.

 45

Chapter 6 Mathematical Recognition
Survey

6.1 Overview

Mathematical handwriting recognition is an area of increasing interest for ORCCA; the

benefits of merging the ease of natural language input with a mathematical computation

engine would be far-reaching within industry and the everyday lives of anyone involved

with mathematics. This chapter presents a review of certain problems that are understood

in the field of mathematical handwriting.

Introduced in this chapter is a three step process that is commonly used when attempting

to recognize mathematics; then we discuss a fourth step borrowed from handwriting

recognizers of natural, string based languages. In addition to the popularly used three

step recognition process, this borrowed idea from the recognition of string or natural

languages is the ability to include dictionaries and grammar rulebooks during the

recognition processes for additional feedback. It is believed that the addition of a

dictionary or grammar book could be used to further refine and improve accuracy in

future works. This is the subject of ongoing work of other members of our research

group.

6.2 Overview of Recognition Process

This chapter examines the generally accepted process involved in recognizing

mathematics. By summarizing research completed by other references in the field, it is

hoped to demonstrate how our mathematical framework and specifically, PDIA can assist

in math recognition by providing foundational layer APIs for ink manipulation. It is also

recognized that a math engine would be a separate process from PDIA, as seen in Figure

6-14; PDIA would not be responsible for the implementation of such an engine.

Mathematical Recognition Survey 46

PDIA

Device B

Manufacture APIsCustom Implementation

Device A Device C

.Net Managed Extensions

Unified Interface

Implementation

Device Wrapper

Java Native Interface

User Interface 3rd Party Application

Application Layer

Recognition Engine

Figure 6-14 Application layer exists on top of PDIA, and may access C++, JNI or .Net extensions of

PDIA

Different views or implementations of the mathematical handwriting recognition process

have led to the creation of numerous stages and sub-stages in the recognition process. In

upcoming sections we examine each of these stages, presenting the work that occurs

along with examining how our mathematical framework and PDIA can assist the

recognition process. Presented here are generalizations of the three stages that accurately

represent the accepted stages in mathematical handwriting recognition:

1) Data Collection and Normalization

2) Symbol Recognition

3) Structural Analysis

Mathematical Recognition Survey 47

A fourth step envisioned by ORCCA is also examined along with these three commonly

accepted stages of recognition. Accepted as a common practice in string language

recognition, post analysis of handwriting samples typically include a comparison against

a dictionary or grammar rulebook. This post analysis allows for higher accuracy levels

by providing feedback between a recognizer and an independent entity, the dictionary or

grammar rulebook. It is our hope to capitalize on a similar process, by providing

additional, automatic feedback to the recognizer in the same manner. We therefore

introduce a fourth stage, which in our model examines the context of the recognized

structure and compares against a “dictionary” of known mathematical expressions:

4) Context Analysis

For a more complete survey of online symbol recognition, Chan et al. [33] provides a

comprehensive summary of several methods of symbol recognition as presented by

industry peers. Methods that are adoptable to ink handwriting recognition are presented

in Table 6-6.

Table 6-6 Categorization of symbol recognition methods used in different systems by Chan et al.
Major Method Example

Structural feature extraction and decision
tree

Beláid and Haton [36]

Flexible structural matching Chan and Yeung [37]
Feature extraction and nearest neighbor
classification

Chen and Yin [38], Fukuda et al. [39],
Smithies et al. [13]

ART-based neural architecture and elastic
matching

Dimitriadis and Coronado [40]

Hidden Markov model Winkler et al. [41, 42, 43, 44], Sakamoto et
al. [45]

Three-layered back propagation network Marzinkewitsch [46]
Traditional template matching Nakayama [47]

Mathematical Recognition Survey 48

6.3 Stage 1: Data Collection and Normalization

This early processing stage is typically for the collection and normalization of

handwriting samples. By performing simple noise reductions and correcting other

irregularities in input such as skews or heavy data concentrations, it is possible to provide

faster algorithms for character recognition. Another form of normalization that was

found to significantly impact the amount of processing was slope conforming. By

combing line segments whose difference in slopes was less than a pre-defined constant,

Tablet PC and desktop stroke sizes were often reduced by half with little visual

differences apparent.

Looking beyond handwriting recognition, Yu and Cai [48] use this stage of recognition to

normalize line segments into approximate objects. In their attempt to create a domain

independent recognizer, they utilize simple, low level geometric features including: lines,

arcs, circles, ellipses and helixes. Blending the lines between stage 1 (data collection and

normalization) and stage 2 (symbol recognition), Yu and Cai derived the following

hypothesis on recognizing geometric features:

Simpler is better which favors a smaller number of constituent primitive shapes,

and more specific is better which prefers circles, ellipses and helixes than lines

and arcs.

In blending the first and second stage processes, Yu and Cai are able to recognize

increasingly complex objects, as seen in Figure 6-15.

With PDIA’s primary purpose being a responsibility to provide a unified and complete

inking experience, this stage provides two areas in which PDIA will be able to assist in

math recognition: 1) Data Collection and 2) Ink Normalization.

Often prototyped recognition engines are responsible for data collection, ink

manipulation and text recognition. Recognition engines built on top of PDIA will be able

to take advantage of the existing ink functionalities, accepting as input only normalized

Mathematical Recognition Survey 49

ink in standardized containers. Developers of a recognition engine may safely assume

ink will be given to them for recognition; they do not have to collect it from applications.

`

Figure 6-15 Examples of hybrid shapes with recognition results inYu and Cai’s domain independent
sketch recognition application.

6.4 Symbol Recognition

During the second stage of recognition, symbol or character recognition is responsible for

detecting individual characters. Table 6-6 provides an introduction to various types of

recognition methods and papers in which samples are provided.

If the segmentation stage has not already done so, this stage is responsible for piecing

together or grouping related line segments, creating a Strokes object. For a more

complete overview of the class hierarchy used in this thesis refer to section 4.3. A set of

Stroke class objects, Strokes are created when individual line segments are thought to be

related and grouped. While the first release of PDIA will not support auto grouping of

line segments, it is possible that future researchers will improve on this functionality.

Simplistic yet effective methods of grouping line segments into Strokes include bounding

box analysis, timing information, spatial proximity or a combination of these methods. In

comparing bounding boxes, two Strokes whose bounding box overlap by a predefined

percentage are assumed to be related. Using timing information, strokes that are drawn in

quick succession are thought to be related, with a predefined limit of 1 – 3 seconds often

representing a break in Strokes. Using spatial information, strokes that are nearby or

Mathematical Recognition Survey 50

within a predefined radius are thought to be related. Most frequently a combination of

timing and spatial relationships is used when creating groups of line segments.

It will be necessary at this stage for most implementations of a math recognizer to

reference an independent database for symbol, feature or other forms of comparisons.

These databases typically include either graphical samples for Optical Character

Recognition (OCR) or in the case of online recognition, ink data representing each

character that is recognizable. For additional information on the database created by

ORCCA of which I was a part, please refer to Section 8.7.

6.5 Structural Analysis

After recognizing individual characters, the next step of handwriting recognition is the

construction of meaningful equations or expressions that represent the original intent. By

identifying spatial relationships between symbols, it is possible to use parse or

relationship trees to construct expressions that are meaningful in memory. If ambiguous

equation is encountered, it will be necessary to acquire additional input from the user to

resolve such uncertainty. We can then identify logical relationships between symbols

and operators, further refining the output to an expression that follows predefined rules of

mathematics. Many prototype recognition engines ignore this phase, Blostein and

Grbavec [32] note that many researchers assume perfect symbol recognition,

concentrating primarily on symbol arrangement analysis as seen in [49, 50, 51, 52].

After recognizing the spatial and logical relationships of symbols, it is possible to further

analyze the overall structure of an expression often by examining the relative positions of

symbols. By understanding the typographical identification of symbols, it is often

possible to compare for other relative spatial relationships such as “in-lining, subscript, or

superscript … we may further decide its corresponding association, namely, implicit

multiplication, subscripting or exponentiation, respectively” [33]. Figure 6-16 illustrates

expected typographical patterns of ascending, regular and descending symbols.

Mathematical Recognition Survey 51

Figure 6-16 Typographical centers for different types of symbols

Structural analysis is the most independent stage of the mathematical recognition process.

Because of its independent nature, it will likely exist as a modular plug-in that interact

with PDIA only to acquire information related to ink strokes. If additional functionalities

are added to PDIA beyond the work of this thesis, it is conceivable that simple API calls

will assist in aiding contextual information construction. Examples of future API calls

may include determining relative positions of the X & Y minimum, center and maximum

properties of strokes objects. If such properties were added, it would likely remain the

task of the recognizer to determine relative positions of symbols in contrast to others,

while forming an overall picture of the input. PDIA will be able to help in ink

manipulation, if further processing of ink is needed.

6.6 Context Analysis

A dictionary and grammar lookup is a common post-recognition step in handwriting

recognition, significantly improving translation results. Microsoft has invested

substantial effort to allow customizable dictionaries for the recognition of legal, medical

and other specialized terminologies to allow high accuracy. For example, Figure 6-17

with symbol recognition returns only “nello vorld”. After running a post-recognition

spell check, the intended results “hello world” is returned.

Figure 6-17 Ink collected by the Tablet PC. Once processed by a spell checker, it will be clear that

the text should say “hello world”

Mathematical Recognition Survey 52

The ability to perform a similar process on mathematical expressions is envisioned by

ORCCA as a necessity for achieving highly accurate results. While the intrinsic details

that make the creation of a “mathematical dictionary” are complex enough to become a

thesis by itself, the concept is relatively simple. The creation of such a database has been

already initiated, and members of the ORCCA lab have downloaded over four years,

approximately 20,000 articles, of mathematical archives from the Los Alamos National

Library1 for dictionary prototyping. The next steps include creating or adapting an

architecture that allows for the interior storage, archiving, indexing and traversal of

mathematical expressions.

Upon completion, this dictionary will represent yet another application that will support

PDIA, adding to the value of a mathematical framework and improving the success of

eventual mathematical handwriting recognition engines.

6.7 Conclusions

In the creation of any online mathematical recognition engine, it is clear that significant

dependencies exist on the underlying ink architecture. By creating a math API coupled

with PDIA, substantial amounts of development not directly related to recognition is

made modular. For instance, all ink manipulation such as normalization methods or

property retrieval will become a part of the PDIA and math APIs. This allows a

separation of inking and recognition APIs and a more modular framework. This

organization will improve both the developer and end user experience, ultimately

improving the recognition experience and contributing to the success of a recognition

engine.

Lastly, we presented a commonly accepted three stage process of mathematical

recognition. Data collection and normalization, Symbol recognition and Structural

analysis categorize this process, along with ORCCA’s vision of a fourth process: Context

analysis, which is a post recognition process commonly used in recognizing string

1 Downloaded from http://xxx.lanl.gov/archive/math, ORCCA lab members have downloaded and are
processing all mathematical content available from January 2000 – July 2004

Mathematical Recognition Survey 53

languages. It is our belief that the addition of context analysis will significantly improve

our results in the same ways handwriting recognition has benefited from the additions of

dictionary and grammar checks. Topped with an effective user interface that provides

users with visual clues and immediate feedback, this fourth stage will hopefully provide

visual language recognition results comparable to string languages.

 54

Chapter 7 User Interface Requirements

7.1 Overview

As the purpose of this thesis is to identify the effects of a mathematical framework on the

handwriting recognition of mathematics, it is appropriate to discuss additional means in

which the math recognition process can be improved.

Figure 7-18 Dynabook Mockup provided by Larry Press [54]. While Kay's goal was a machine less
than 2.5cm thick, the first version of the Dynabook, the "Interim" Dynabook was built using a desk-

sized workstation.

This chapter outlines our expectation of the requirements necessary of a User Interface to

be used in conjunction with our mathematical framework and a math recognition engine.

Unlike Chapter 4, which discussed the PDIA architecture in great depth, this chapter is

meant to provide an overview of how pen computing interfaces have evolved and what to

expect of future interfaces. Through a review of past hardware and software interfaces

and our own experiments with inking, we identify both requirements and suggestions in

forthcoming applications that make use of our math framework.

Pen computing is not new: In 1945 Vannevar Bush [53] described a theoretical machine

that would recall information of interest while recording thoughts, at the same time

sharing information with others – all while using a pen like object for input. In 1975 Kay

[54] envisioned the Dynabook as seen in Figure 7-18. The Dynabook was designed to

 55

use voice, pen and possibly a camera for input and output. Further emphasizing the

importance of the pen as a method of input, Yourdon [55] prophesized about the future of

computing in 1991 in saying: “I have seen the future and it is spelled P-E-N”.

What is new in recent innovations in pen computing is that the accompanying hardware

over the past decade has made real time and online processing of high resolution pen

computing possible. Continual improvements in hardware have provided commercial

products to the public, at affordable prices with acceptable levels of input resolution and

the CPU power necessary to process these high resolution input devices.

7.2 Text Based Mathematics Today

As stated in previous sections, the input of mathematics to a computer today is a

cumbersome procedure. Users have a choice of two models: the graphical input /

template method or through the use of any of several methods of text input. With

substantial levels of differences in GUI based applications, and even variations in the text

required for displaying versus solving mathematics, it is clear that a math recognition

engine coupled with a proper user interface and stylus supported input as is needed.

Illustrating the choices available for entering text via mathematics, we present in Table

7-7, Table 7-8 and Table 7-9 a total of eight different methods of displaying to the screen

the formula ∫
π

π

2

)sin(x . Table 7-7 illustrates three popular, full scale mathematical

applications that are capable of solving complex equations. Instead of using a single

industry standard for all three applications, each company has chosen to use proprietary

notation that it believes is superior to other formats.

Table 7-8 illustrates the popular Microsoft Equation Editor, a component of the Microsoft

Office suite of software. Useful only for displaying mathematics, users are forced to use

a template system. While Latin characters are typically entered by the keyboard, all other

symbols are entered with the mouse.

 56

This technique is sufficient for many novice users; however more advanced users may

find menus restrictive, navigation by mouse slow, and the ability to use third party plug-

ins non-existent. If users require a more complete program, they are encouraged by

Microsoft to purchase Design Science’s MathType application where they must learn a

new system of menu navigation. A more comprehensive solution, MathType offers

advanced users the ability to export or input MathML or LATEX [56], as well as the ability

to choose between a user friendly menu driven mode or an expert based keyboard entry

mode.

In addition to these four methods of input, if users are interested only in displaying

mathematics on screen for print or manuscript creation, there are numerous options, four

of which are displayed in Table 7-9. LATEX1 is a popular choice for manuscripts, while

Presentation MathML is often used in web browsers.

Table 7-7 Notational differences between three popular, high level, technical math solution engines

for the formula ∫
π

π

2

)sin(x

Maple Mathematica Matlab2
int

(sin(x), x = 0 .. 2 *Pi)
Integrate

[Sin[x], {x,0, 2* Pi}]
int

(sin(x), x, 0, 2 * pi)

1 LATEX is a popular variation on TeX. Other variations include AMS-TeX and AMS-LaTeX
2 There are several syntax options for Matlab, because it does not integrate, rather it applies a numerical
method for estimating the integral. Therefore there are several commands, each one named after the
method it implements.

User Interface Requirements 57

Table 7-8 Screenshots and Instructions on how to use Microsoft Equation Editor to enter a common

formula: ∫
π

π

2

)sin(x . Equation Editor is an add-on for Microsoft Office.

Step 1: User must find Integral template with correct upper and lower bounds

Step 2: User may enter Latin characters via keyboard

Step 3: Entry of Greek characters (π) must occur individually through menus

58 User Interface Requirements

T
able 7-9 N

otational differences betw
een four conventions used to display or otherw

ise present the form
ula ∫ ππ 2

)
sin(x

L
AT

EX

C
ontent M

athM
L

Presentation M

athM
L

O

pen M
ath

\int_
{0}^{2 \pi} \sin(x)
{dx}

<m
ath xm

lns=
"http://w

w
w

.w
3.org/1998/M

ath/M
athM

L">
 <apply>
 <int/>
 <bvar>
 <ci> x </ci>
 </bvar>
 <low

lim
it>

 <cn> 0 </cn>
 </low

lim
it>

 <uplim
it>

 <cn> 2 </cn> < pi/>
 </uplim

it>
 <apply>
 <sin/> <ci> x </ci>
 </apply>
 </apply>
</m

ath>

<m
ath xm

lns=
"http://w

w
w

.w
3.org/1998/M

ath/M
athM

L">
 <m

row
>

 <m
underover>

 <m
o>&

Integral;</m
o>

 <m
n>0</m

n>
 <m

n>2 </m
n>

 <m
o>&

InvisibleTim
es;</m

o>
 <m

n> &
pi;</m

n>
 </m

underover>
 <m

row
>

 <m
i>sin</m

i>
 <m

o>&
A

pplyFunction;</m
o>

 <m
fenced>

 <m
i>x</m

i>
 </m

fenced>
 </m

row
>

 <m
o>&

InvisibleTim
es;</m

o>
 <m

row
>

 <m
o>&

D
ifferentialD

;</m
o>

 <m
i>x</m

i>
 </m

row
>

 </m
row

>
</m

ath>

<O
M

O
BJ xm

lns=
"http://w

w
w

.openm
ath.org/O

penM
ath">

 <O
M

A
>

 <O
M

S cd="calculus1"
nam

e="defint"/>
 <O

M
A

>
 <O

M
S cd="interval1"

 nam
e="interval"/>

 <O
M

I> 0 </O
M

I>
 <O

M
S cd="num

s1" nam
e="pi"/>

 </O
M

A
>

 <O
M

BIN
D

>
 <O

M
BV

A
R>

 <O
M

V
 nam

e="x"/>
 </O

M
BV

A
R>

 <O
M

A
>

 <O
M

S cd="transc1"
nam

e="sin"/>
 <O

M
V

 nam
e="x"/>

 </O
M

A
>

 </O
M

BIN
D

>
 </O

M
A

>
</O

M
O

BJ>

User Interface Requirements 59

7.3 Early Requirements for Stylus Input Applications

One of the earliest recognized, yet still relevant requirements in pen computing is the

need for visual feedback, ideally in real or near real time [57, 58]. This feedback could

be obvious – the appearance of an ink stroke as the user moves the pen - or

inconspicuous, such as smoothing of ink strokes as normalization occurs on user input.

The Tablet PC is an example of both obvious and inconspicuous visual feedback; it

provides users with a real time ink strokes and then performs normalization on the input,

displaying a smoothed version of the input.

Hayashi et al [57] of Harvard developed a system for graphically inputting nonstandard

(i.e., non-ASCII) or Chinese characters and recognized the following four advantages of

a pen solution, they stated:

1) Nonstandard characters can be used without necessitating manual

encoding arbitrarily assignment numerical or alphabetical codes

2) [Pen solutions] are flexible in that [they] can deal with any

orthography or combinations thereof, allowing users to add custom

symbols to the system’s repertoire as encountered

3) Text may be proofread and edited as it is encoded and displayed on

the screen

4) The text inputting component can be accomplished as quickly as

the user can find [existing] characters or as quickly as characters

can be inputted by hand.

Identified in 1968, these four benefits relate to mathematical input in the same way that

they coincide with Chinese characters; entry was difficult and often requires arbitrary

numeric codes, visual feedback was not always immediately available and the addition of

new symbols was difficult. Today’s mathematical software applications have the

User Interface Requirements 60

potential to significantly improve their user interfaces, should the stylus become an

acceptable manner of input.

7.4 Stylus Supported User Interface Requirements

Another early solution, developed by Allen et al [58] of Yale University in 1981 was

PEN1 document editing system. PEN’s purpose was “directed towards the preparation of

manuscripts containing significant mathematical notation”. At the time, it was

recognized that document compilers like Scribe and TEX offered substantial

customization in displaying mathematics, but lacked real-time capabilities. PEN

provided real-time visual feedback by displaying the formatted document as it was typed,

i.e. with specified fonts, visualizations of equations, or if a reference was made, by

showing an icon of the reference instead of a number.

Recognizing that mathematics places unique requirements on software solutions, Allen et

al provide us with a partial list of “desiderata for [the PEN] system”, found in Table 7-10.

Some of these criteria may be considered outdated (i.e.: support for a variety of alphabets

and fonts) or keyboard specific (i.e.: it should not penalize too severely the entry of

mathematical text). On re-examination of these criteria, it is clear how closely these

requirements of math inputting via keyboard relate to a desirable math-pen computing

experience as described in this thesis.

7.5 User Interface Requirements

Continuing the work by Allen et al, we use the seven requirements presented in Table

7-10 as key guidelines in creating our stylus based mathematical user interface. In this

section, we reexamine these requirements and provide prototypes, mockups or examples

1 Somewhat deceiving, the system entitled ‘PEN: A Hierarchical Document Editor’, actually uses a
keyboard for input. Looking beyond this, the paper still identifies many of the problems related to
displaying and editing mathematics onscreen.

User Interface Requirements 61

of how these requirements will influence user interactions with a math handwriting

recognition engine.

Table 7-10 Contrast of original PEN requirements and a theoretical application with similar goals
but which uses a stylus for input.
Desiderata for PEN Document Editor,

provided by Allen et al [58]

Reexamination of Desiderata for Stylus

Based Mathematical Input

It should be interactive Displays should be interactive with a stylus
as primary input

It should not be unduly restricted by
previous dependencies on paper as the
display medium

Workspaces should not be restricted by
previous dependencies on paper; display
mediums may come in a variety of sizes
and resolutions and user interfaces must
take this into account

It should not penalize too severely the entry
of mathematical text

Entry of mathematics should be mostly
through free hand entry, and should not be
too penalizing depending on system
modalities

A character string representation of the text
should be available for archiving and
network transmission

Text representations of ink should be
available for archiving and network
transmissions

It should support programming and
computation

Support programming and computation.
For example, graph equations should
generate (upon request) graphs by
definition

It should be capable of adapting text to a
reasonable output representation on paper

Capability should exist to adapt ink to
displays with different output capabilities.

It should support a variety of alphabets and
fonts.

Support for a reasonable variety of
alphabets, symbols and writing styles.

7.5.1 Interactivity

Introduced in section 2.6, the need for real time visual feedback was recognized as being

important by several authors [20, 54, 55, 57, 58, 59]. Devices that are to be targeted by a

math framework need to be capable of providing immediate visual prompts and cues to

users, aiding in highly accurate recognition and creating a natural human computer

interaction environment.

User Interface Requirements 62

One form of immediate feedback used by Kurtenbach et al [60], and later marketed as

one of the biggest improvements to Microsoft’s Office Suite, was the concept of

“SmartTags” or “Intellisense”. These features were designed as an aftermarket plug-in

for Office and their function is described below.

To illustrate, one could type an address in Microsoft Word, which recognizes a “place”

event occurred. Table 7-11 illustrates just this occurring; an address is entered into a

Word document, which then immediately provides feedback on the address. Other

SmartTags provided by Microsoft include: Date, Financial, Names, Places, Telephone

Numbers, and Time. Another form of Intellisense is also illustrated in Table 7-11; the

word “Intellisense” is not found within the default dictionary and is underlined in red.

This provides immediate feedback to the user alerting them to possible spelling mistakes.

It is foreseeable that a math based application would provide a similar experience for

allowing users to confirm recognition results. A SmartTag like function would allow

users to choose the correct recognition output, resulting in the meaning of such ink

translations to become static or fixed, based on user input.

Table 7-11 Illustration of the Microsoft Address Smart Tag and the options presented to the user
Event 1: User enters an Address, Place, Landmark, etc.

Event 2: Application provides user with a list of actions related to the address.

User Interface Requirements 63

Another form of visual feedback is the use of subtle clues to guide users. Figure 7-19

illustrates an example of a recognized integral symbol. The user is then presented with

clues of where to enter the parameters. This visual aid is one means of limiting the use of

soft conventions, which were identified asproblematic in section 5.1. By providing users

with a restrictive environment, the use of visual clues could greatly improve accuracy

with little inconvenience to users. Another visual clue used in Figure 7-18 is the use of

blue horizontal lines. These lines are reminiscent of those found in elementary school

work books, and are common place in natural language recognizers. Although subtle,

they guide users and allow them to write in more level lines, although with mixed

success. This allows for increased accuracy for recognizers, by providing an approximate

baseline that is more easily identified, as shown in Figure 7-19.

Figure 7-19 Recognized Integral with visual clues of where to enter parameters

7.5.2 Display Medium Restrictions

Moving away from the 8.5” x 11” sheet of paper, a user interface should not penalize the

user for not having a display of sufficient size. For instance, when deployed to devices

with smaller screens such as a Pocket PC, the interface may resemble mini whiteboards

or blank slates, with few options or visual clues as screen real-estate becomes more

precious. On devices with larger screens such as a Tablet PC, a complex variety of visual

clues may be presented to the user. These may include options to set mathematical

domain information or an area that is dedicated to displaying optional recognition results,

allowing the user to easily choose the correct result.

User Interface Requirements 64

7.5.3 Entry of Mathematics

Entry should be provided either through a freehand, template free whiteboard or via a

template-based solution which acknowledges the use of domain information as provided

by the user.

Used by Lank et al. [61] in the creation of their domain specific UML recognizer, it is

understood that a “domain specific refinement [enables one] to achieve highly accurate

recognition results” [61]. While it should not be required, it would be useful if the user

provided the UI with domain information based on the type of mathematics entered. For

instance, domains will skew post recognition results by comparing input against

commonly used formulae of the respective domain, as in the ongoing work by So, Watt et

al.

7.5.4 Persistent Storage and Transmission of Data

Any application that makes use of PDIA will have a means of saving ink information.

For details on PDIAs persistent storage mechanisms, please refer to section 4.4. Once

saved to disk, an application could use any network protocol to transfer information over

a network. Furthermore, because of the use of InkXML, other applications will be able to

easily interoperate with ink data produced by PDIA.

7.5.5 Support for Programming and Computation

To be truly interactive, a handwriting user interface for math could allow users to solve

mathematics as it is recognized. For example, Figure 7-20 illustrates the input of an

equation (above) with the solution provided (below).

These interactive capabilities will involve creating or partnering with one of the many

mathematical engines such as Maple, Mathematica or Matlab. Historically, ORCCA’s

affiliation with MapleSoft suggests future products will use their software to drive any

computation of mathematics involved.

User Interface Requirements 65

Figure 7-20 After entering a function, users will expect a feature rich application to provide them
with the computational result to the provided equation

7.5.6 Output of Mathematics

In addition to being capable of transmitting data, a UI should provide a means of adapting

and optimizing ink and accommodate the limitations of various input devices. For

instance, when moving ink from a Pocket PC to a Tablet PC, several screens worth of

data may be capable of being displayed at once. A UI should take advantage of this,

displaying as much ink as possible without scaling or otherwise modifying the original

ink beyond pre-defined criteria.

7.5.7 Support for Symbol and Handwriting Variations

Any mathematical handwriting recognition application that is fully functional will have

to address extremely large symbol sets, as well as variations in each symbol. It will be

the responsibility of the recognition engine to accommodate each domain and its

respective symbol set, although the UI may request domain information from the user.

7.6 Conclusions

The seven requirements presented in sections 7.5.1 to 7.5.7, as well other suggestions

provided in this chapter, may help ensure users will have a complete end to end solution

for handwriting mathematics. Users could take notes on a Pocket PC, transmit over a

network to a Tablet PC or desktop, further refine and ultimately print finished works on

paper or to a manuscript for electronic distribution.

User Interface Requirements 66

It is the ability to provide this complete solution that will ensure computer-based

mathematical handwriting recognition gains acceptance. This acceptance will further

drive the need for a comprehensive math framework, as outlined in this thesis.

 67

Chapter 8 Implementation and
Experiments

8.1 Overview

This chapter presents challenges in implementing the inking architecture and introduces

our experiments and tests. These include creating a survey to collect handwriting

recognition and implementing a Bentley-Ottmann line sweep algorithm

This chapter also presents other notable conclusions from our smaller experiments and

prototypes that were done during the main study. These include implementation

decisions, extending to the choice of interpreted language such as Java and C#, user

interface and survey questionnaires as well as questions on the importance of efficiency.

8.2 Priorities of Properties within a Math Framework

As in any project with identified properties, it was important to assign priorities to the

individual requirements of the math framework discussed in this thesis. Each

requirement presented offered a potential advantage for the framework.

While it was difficult to assess the priority of each requirement, it was clear that before a

recognizer could be implemented, a working ink environment must exist. While

prototypes for inking have been created twice before at ORCCA, we felt it was necessary

to begin work on a production quality API that would allow the progression of research

in other areas. The first of these prototypes was a proof of concept based on an older

model IPAQ Pocket PC. The second was a proof of concept that illustrated the ability to

generalize ink data collected either from the Tablet PC or an IBM CrossPad into a

common format. Results from both prototypes helped in the implementation of this

thesis.

Implementation, Experiments & Results 68

The creation of a functional inking experience has been the primary focus during testing

and implementation of this thesis. Using the requirements identified in Chapter 3 and the

architecture presented in Chapter 4, we have implemented the necessary class objects:

Point, Line, Rectangle Stroke and Strokes. Functionally, this has allowed us the

opportunity to permit a nearly complete inking interface on the desktop, Tablet PC and

Pocket PC, and to study how they can be related.

8.3 Choosing a Language

In order to create a platform independent of processor or operating system, C++ was the

language decided upon for low-level code. If limited to the standard template libraries

and ANSI / ISO specifications, C++ proves to be flexible as well as portable, with

compilers available for most hardware platforms of interest. C++ is also capable of being

extended by both Java and C#, allowing future development to take advantage of these

environments. By strictly adhering to standard C++ specifications, often all that was

required to port code to another platform was to recompile the code; this was true for

Windows XP to Linux as well as Windows XP to Windows Mobile (Windows CE). The

standard template libraries are the only dependencies on external libraries in PDIA.

Given that our application is by design CPU intensive, it was important that as little

overhead as possible be added to our software. At present, C++ requires less processing

power than an interpreted language such as Java or C#. When comparing C and C++, the

object oriented nature of C++ proved to be better suited then using C alone.

8.4 Building for Individual Platforms

Given the hardware requirements identified in section 2.6 and the recommended software

platforms described in section 2.7, it was decided that we would implement PDIA on

three major platforms: The Windows XP Tablet (Tablet PC), Widows XP (desktop) and

Windows Mobile (Pocket PC). These three platforms were chosen for their

representative nature, ease of deployment and broad user base. The Palm, Apple and

Linux platforms could be address at a later date.

Implementation, Experiments & Results 69

These platforms are related to each other, in regard to PDIA implementation. The Tablet

PC runs a superset of Windows XP called Windows XP Tablet edition. It is a complete

version of the Windows XP operating system with additional support for inking. Any

application compiled on a desktop will also run on a Tablet PC. Surprisingly, the desktop

and Pocket PC also have one common property: neither platform has any native inking

functionality that is available for developers to use. Therefore an application built for the

Pocket PC will require as much custom implementation as a desktop version.

8.4.1 Build Environment

Wanting to produce a maintainable project, the logical layout of each module on disk is

illustrated in Figure 8-21. This screen shot (from within Visual Studio.Net 2003)

illustrates the directory layout used to ensure each module of PDIA can be easily traced,

ensuring maintenance and extension is as simplistic as possible.

Figure 8-21 Implementation hierarchy from within Visual Studio.Net 2003

8.4.2 Tablet PC

For PDIA to operate on a Tablet PC, the only requirement was to use the well defined

interfaces and create thin wrappers over existing ink functionalities. Table 8-12

illustrates an example of returning a bounding box of an Ink object from the Tablet PC

Implementation, Experiments & Results 70

SDK. As seen in Table 8-13, our implementation of the Ink object will take advantage of

the Tablet PC SDK, acquiring the bounding box using the native Tablet PC SDK.

Table 8-12 C# code that utilizes the Tablet PC SKD to acquire the bounding box of an Ink object
// Returns the bounding box of an Ink Object
System.Drawing.Rectangle BoundingBox(Microsoft.Ink.Ink inputInk)
{
 System.Drawing.Rectangle inkBB = inputInk.GetBoundingBox();
 return inkBB;
}

Table 8-13 PDIA Managed C++ code that determines the bounding box of an Ink Object
// Returns a rectangle representing the bounding box of the stroke
__property mRectangle * get_BoundingBox()
{
 // Note, mSession is a wrapper to a managed pointer to the Tablet
 PC’s ink object.
 return new mRectangle(mSession->BoundingBox());
}

In the previous example, it is seen that there is additional overhead to the PDIA

implementation existing on top of the Tablet PC API. In more complex operations, this

overhead is negligible. In section 8.10 the cost and difficulties in computing intersections

are discussed, requiring a runtime of O(n log n + k), where n is the number of points in a

stroke and k the number of intersections. This computational cut dominates any O(n)

cost associated with a wrapper layer.

8.4.3 Desktop PC

With no native ink support, creating an inking environment for the desktop required a

complete, custom implementation of all class objects, described in Chapter 4.

Creating an ink object required capturing mouse down clicks, sequential x, y coordinates

and storing this captured data within a custom implementation of a Stroke class. By

building a complete implementation with no dependencies for the desktop environment,

Implementation, Experiments & Results 71

we ensure all other platforms can support PDIA, even if they simply use a copy of this

platform’s implementation. This implementation could serve as a starting point for any

other platform.

8.4.4 Pocket PC

Similar to the desktop, Pocket PCs do not have much in the support of interactive inking

API beyond support for creating point objects. As stated in section 8.4.3, much of the

implementation for the Pocket PC is identical to the desktop. The only changes are in the

default reserved sizes for underlying data structures – for instance a Pocket PC is

expected to collect significantly less data per Stroke object than a desktop.

8.5 Extending to the Microsoft .Net Framework

To take advantage of the Microsoft .Net framework support for rapid prototyping of

graphical user interfaces, PDIA was extended to support the Microsoft Common

Language Runtime. This involved using Microsoft’s “managed” extensions to C++ to

create a dynamically linked library (dll) capable of interoperating with both native C++

code as well as code on the .Net framework. This is essentially an interface between the

two programming paradigms.

Table 8-14 illustrates a complete yet simple1 example of how one could use native C++

classes, extend them with Microsoft’s managed extensions for C++ and ultimately use

this code in a C# application. The example in Table 8-14 defines an interface for a Point

class that is then implemented in native C++. Using managed extensions for C++, the

native class is referenced through a pointer, using appropriate methods to expose its

original functionalities. This managed class can be used in any language supported by

the .Net framework.

1 While Table 8-14 does include all code necessary to extend a C++ object unto the Microsoft .Net
Framework, additional configuration and environmental settings have to be changed. Please refer to
MSDN articles 814472, 148652 and “Converting Managed Extensions for C++ Projects from Pure
Intermediate Language to Mixed Mode”.

Implementation, Experiments & Results 72

8.6 Extending to Java

Using either Sun Microsystem’s Java Native Interface (JNI) or Microsoft’s Raw Native

Interface (RNI) it is possible to use native C++ code onto the Java runtime environment.

The differences between JNI and RNI are found in the libraries provided by each to

provide a Native Interface and in the ways each is implemented. The Java code will be

similar in both cases, but the C++ code will be slightly different. Sun provides “jni.h”

library and Microsoft the “native.h” library. Both, methods use similar concepts although

the syntax is different. Furthermore, Microsoft’s implementation does not hide

implementation details whereas Sun’s implementation uses abstractions to prevent

exposing this information.

This thesis does not preclude extending PDIA to Java, providing hardware and software

requirements are tailored to accommodate any additional needs the Java runtime may

require. In implementing the concepts presented in this thesis we did not produce Java

code that was satisfactory or useful, so we leave this work to future colleagues working

on PDIA.

Implementation, Experiments & Results 73

Table 8-14 Illustration of how to extend Native C++ code with Managed Extensions for C++. Once
extended to the Microsoft .Net Frame, all supported languages such as C# or Visual Basic.Net can
make use of the original c++ classes.
Native C++ Code: Interface & Implementation for a Point Class
class IPoint
{
public:
 virtual float X() const = 0 ; // Returns X Coordinate
 virtual void X(float x) = 0 ; // Sets X Coordinate
 virtual float Y() const = 0 ; // Returns Y Coordinate
 virtual void Y(float y) = 0 ; // Sets Y Coordinate
};

class Point: public IPoint
{
protected:
 float _X, _Y // The values representing X & Y

public:
 // Creates an Point object with default coordinates (0,0)
 Point(void) : _X(0), _Y(0) {}

 // Creates an Point object with specified coordinates
 Point(float x, float y) : _X(x), _Y(y) {}

 // Copy Constructor
 Point(const IPoint &pt) : _X(pt.X()), _Y(pt.Y()) {}

 float X() const { return _X; }
 void X(float x) { _X = x; }
 float Y() const { return _Y; }
 void Y(float y) { _Y = y; }
};

Managed Extensions for C++: Extending the Point Class for use on the Microsoft

.Net Framework
// Allow use of managed objects from the .Net Framework
using namespace System;

public __gc class mPoint :
// Necessary for Copy Constructors on .Net Framework
 public ICloneable {

private:
 Point __nogc * mSession; // An unmanaged Point object

public:
 // Creates an mPoint object with default coordinates (0,0)
 mPoint(void) : mSession(new Point()) {}

 // Creates an mPoint object with specified coordinates
 mPoint(float x, float y) : mSession(new Point(x, y)) {}

Implementation, Experiments & Results 74

 // Creates an mPoint object referencing an existing Point object
 mPoint(Point * pt) : mSession(pt) {}

 // Copy Constructor, as defined by the interface ICloneable
 virtual Object* Clone()
 {
 mPoint * managedPoint = new mPoint;
 *(managedPoint->mSession) = *mSession;
 return managedPoint;
 }

 // Destructor
 ~mPoint(void) { delete mSession; }

 // Returns a non-Garbage collected Point object
 __property Point __nogc * get_PointPtr() { return mSession; }

 // returns the value representing the X coordinate of the point
 __property float get_X() { return mSession->X(); }

 // Sets the value representing the X coordinate of the point
 __property void set_X(float value) { mSession->X(value); }

 // returns the value representing the Y coordinate of the point
 __property float get_Y() { return mSession->Y(); }

 // Sets the value representing the Y coordinate of the point
 __property void set_Y(float value) { mSession->Y(value); }

};

C#: Using Managed C++ Object in C#

Note that C# or any other language supported by the .Net framework can use the

class above, mPoint. No special syntax or steps are required, beyond manually

adding a reference to mPoint.
using System;

namespace CSharp_Execution_of_Managed_CPP
{
 class MainDriver
 {
 [STAThread]
 static void Main(string[] args)
 {
 mPoint p1 = new mPoint(9,9);
 mPoint p2 = new mPoint(100,100);
 }
 }
}

Implementation, Experiments & Results 75

8.7 Data Collection Survey

Available in its entirety in Appendix A, the math survey was first created by ORCCA in

2002 by Dr. Stephen Watt and Xiaojie Wu as a means of surveying individuals to collect

mathematical ink samples on the IBM CrossPad. It was revised during the timeframe of

this thesis by myself to collect ink surveys through the Tablet PC.

The survey is broken down into seven sections, including samples of:

1) Alphanumeric

2) Latin

3) Greek

4) Script

5) Simple Formulae

6) Complex Formulae

7) Matrices.

This comprehensive survey takes approximately 20 minutes to complete. It collects 301

unique symbols as well as, 68 formulae and matrix samples. On the Tablet PC each

survey generates approximately 1 MB of data. The types of data recorded by the

questionnaire are explained in Table 8-15.

Currently, there have been two stages of ink collection surveys, the first by Ben Huang

with the IBM Crosspad and the second by myself on the Tablet PC. A total of

approximately 40 surveys were captured on each of the IBM Crosspad and an Acer

Tablet PC. Because of the nature of the device, those collected on the Crosspad include

significantly less data than the Tablet, and do not include pressure, off screen coordinates

or detailed timing information. Having data from a “poor” device as well as a “rich”

device is useful in designing a cross-architecture framework.

Implementation, Experiments & Results 76

The Tablet PC surveys are responsible for creating 15,000 samples of ink, or almost 90

MB total in raw data. Using some of the recognition methods illustrated in Table 6-6,

including elastic matching and feature matching, this database of ink collected is

ORCCA’s primary source of known ink samples for mathematics.

Table 8-15 Type of data collected by Tablet PC version of the ORCCA Ink Survey
Data Type Description

X, Y Coordinates Every X, Y coordinate reported by the stylus was recorded during
the survey, including those reported when the status was 0, or the
pen was off the screen. The algorithm used to record coordinates
was as follows:
if (stylus touches screen) { then record coordinates }
While (stylus is within ink-able area) {
 record coordinates
 if (stylus leaves ink-able area)
 break & mark area as non-ink-able
}

Stylus Status 1 or 0, toggled for the stylus being on or off of the screen. A 1
was recorded when the stylus was on the screen, 0 otherwise

Pressure The Acer Tablet PC used during collection was capable of 255
levels of pressure. An integer representing the pressure was
recorded with each X, Y coordinate. This information may be
used in discovering outlying data points, such as the beginning or
end of a stroke.

Timing At the beginning and end of each stroke, a timestamp was made.

8.8 User Interface Experiments

Focusing on creating a functional ink architecture, two limited purpose interfaces were

created to assist the creation of our math framework. As seen in the screen shot of Figure

8-22, the first was for testing and debugging PDIA. The second interface, as seen

digitally altered in Figure 8-23, was used to survey individuals for data collection

purposes. Neither of these interfaces addressed specific requirements necessary for a

math framework, although both interfaces provided results beyond initial purposes.

Implementation, Experiments & Results 77

Figure 8-22 Screen shot from the PDIA test application. Designed only as a means of testing inking
functionality, it was noticed in this application that putting menu driven functionality below the

inking experience was more convenient than above.

Implementation, Experiments & Results 78

Figure 8-23 A representative, digitally composed image comprising of three sections from different
pages of the ORCCA ink collection survey. Each section in this image is separated by a horizontal

line, which was not a part of the survey application.

Implementation, Experiments & Results 79

8.8.1 Ink Tester: User Interface Results

The screen shot provided in Figure 8-22 demonstrates the application that was used to

test our PDIA implementation. Designed to provide a means of testing the functionality

of each class object, it also yielded results that are beneficial to future user interfaces.

It was discovered with this user interface that important menu driven commands are more

conveniently placed at the bottom of the screen. While placing menus at the bottom of

the screen is convenient, it is also against commonly accepted practices in computing. It

appears that in this setting ease of hand movement is more important than visual

organization. The acceptable UI practice is that menu items at the bottom of the screen

have the potential to create a disjointed or confusing user experience. Instead, it would

be possible to use the bottom of the panel for other important tasks.

8.8.2 Questionnaire: User Interface Results

The screen shot in Figure 8-23 is a representative image, combining sections from three

pages of the math collection survey into one image. In the image, each of the three

regions is separated by a horizontal black bar. Notable about this survey is that while

inking, people tend to require more space on a computer than on paper. Other

conclusions include:

8) Individual characters were reproduced at a size comparable to a

size 24 point font on a 14” display with 1024 x 768 resolution

9) Formulas required approximately 50% more space horizontally to

reproduce, but only 25% more space vertically

When reproducing large formulas from a sample, having the sample formula below the

inking field was easier for most right handed people. Left handed people found it more

convenient to have the larger sample formulas on top of the inking panel.

Implementation, Experiments & Results 80

8.9 Efficiency of PDIA Implementation

It was important during development of PDIA that efficiency be considered at all times.

It would not be unusual to work with thousands of point segments at any given moment

and require real-time response.

Together the Point,Line and Rectangle classes are clearly capable of executing all

functionalities in constant time; the amount of data contained within each object is

constant. It is also true that certain functions within these classes require more CPU

cycles than others: returning the X coordinate of a Point versus rotating a Rectangle or

finding the intersection point of two Line objects.

Unlike the foundational classes (Point, Line and Rectangle), the more complex Stroke,

Strokes and Ink classes hold a variable amount of data. With Ink depending on the

number of contained Strokes, and Strokes depending on the number of contained stroke

objects, both of these objects’ runtimes depend directly on the Stroke class. Because of

the impact of the Stroke class on the efficiency on PDIA and the math framework overall,

it is critical that all functionalities of the Stroke object are implemented efficiently. Table

2-2 illustrates the run-time complexities of every function within our implementation of

the Stroke object for PDIA.

Implementation, Experiments & Results 81

Table 8-16 Sample of public functions within the Stroke class along with respective worst case
runtime
Function Prototype Runtime (worst case)

// Constructors
Stroke(void);
Stroke(int initalSize);
Stroke(const Stroke ©);
virtual ~Stroke(void);

// Properties
int ID() const;
void ID(int newID);
void addPoint(const IPoint & newPoint);
void removePoint(int index);
Rectangle * BoundingBox() const;
int PointCount() const;
vector<IPoint *> * Points() const;
Point * ReturnPoint(int index) const;
bool Deleted() const;
void Deleted(bool newFlag);
bool PenDown() const;
void PenDown(bool newFlag);

// Methods
void clip (const IRectangle & newBoundingBox);
void rotate(float angleDeg);
void rotate(float angleDeg, const IPoint &

centerPt);
void scale(float scaleX, float scaleY);
void scale(const IRectangle & rect);
void smooth();
void shear(float angleDeg);
void deslant();
void interpolate();
void resampling();

// Complex Methods
void Intersection(vector<Point *> & iPts)

const;
void Intersection(vector<Point *> & iPts,

const Stroke * s) const;

O(1)
O(1)
O(1)
O(1)

O(1)
O(1)
O(1)
O(1)
O(n) or O(1)*
O(1)
O(1)
O(1)
O(1)
O(1)
O(1)
O(c)

O(n)
O(n)

O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)

O(n log(n) + k)

O(n log(n) + k)

* If the bounding box has already been found, runtime is constant. If the stroke has

been modified in any way, runtime is O(n)

Implementation, Experiments & Results 82

8.10 Finding Intersection Points

Unlike the intersection between two line segments, which can be done in constant time,

finding the intersection between two Stroke objects is the most CPU intensive algorithm

we have implemented. Because Stroke objects are not a solid interconnected stream of

data but rather a series of sample points, it is not sufficient to check for overlapping data

points. Figure 8-24 illustrates the word “hello” by indicating data points with red dots.

Although only a representative image, it is clear only checking overlapping data points is

not a reliable means of finding intersections.

Figure 8-24 A representative image illustrating the sequences of data points that once connected by a

solid line, constructs the word "hello", with arrows indication intersection points

8.10.1 Brute Force Intersection Algorithm

Clearly effective and simple to implement as shown in Table 8-18, a brute force method

has a runtime of O(n2). This is unacceptable for a critical function for use in

handwriting recognition.

8.10.2 Bentley-Ottmann Line Sweep Intersection Algorithm

Accepted as optimal and proven in [62, 63], the Bentley-Ottmann line sweep algorithm

uses contextual information to determine which line segments could possibly intersect at

any given time, and only checks against these segments for intersection points. With

appropriate data structures, it is possible to execute this algorithm in time O(n log(n) +

k). This is illustrated in Table 8-17. For details in implementing this algorithm as well as

a complete analysis of its complexity, see [63].

Implementation, Experiments & Results 83

Table 8-17 Pseudo code and respective runtimes for using the Bentley-Ottmann line sweep algorithm
to find self intersection points within a Stroke object
Pseudo code for Bentley-Ottmann Line Sweep Algorithm Runtime

Bentley_Ottmann {
 Initialize event queue x = all segment endpoints;
 Sort x by increasing x and y;
 Initialize sweep line SL to be empty;
 Initialize output intersection list L to be empty;

 While (x is nonempty) {
 Let E = the next event from x;
 If (E is a left endpoint) {
 Let segE = E's segment;
 Add segE to SL;
 Let segA = the segment above segE in SL;
 Let segB = the segment below segE in SL;
 If (I = Intersect(segE with segA) exists)
 Insert I into x;
 If (I = Intersect(segE with segB) exists)
 Insert I into x;
 }
 Else If (E is a right endpoint) {
 Let segE = E's segment;
 Let segA = the segment above segE in SL;
 Let segB = the segment below segE in SL;
 Remove segE from SL;
 If (I = Intersect(segA with segB) exists)
 If (I is not in x already)
 Insert I into x;
 }
 Else { // E is an intersection event
 Add E to the output list L;
 Let segE1 above segE2 be E's intersecting
 segments in SL;
 Swap their positions so that segE2 is now
 above segE1;
 Let segA = the segment above segE2 in SL;
 Let segB = the segment below segE1 in SL;
 If (I = Intersect(segE2 with segA) exists)
 If (I is not in x already)
 Insert I into x;
 If (I = Intersect(segE1 with segB) exists)
 If (I is not in x already)
 Insert I into x;
 }
 remove E from x;
 }
 return L;
}

O(n)
O(n log n)
O(1)
O(1)

O(n)
O(1)

O(1)
O(log n)
O(1)
O(1)
O(1)
O(log n)
O(1)
O(log n)

O(1)
O(1)
O(1)
O(log n)

O(log n)

O(k)

O(1)

O(1)
O(1)
O(1)

O(log n)

O(log n)

Implementation, Experiments & Results 84

Table 8-18 Pseudo code and respective runtimes for using a brute force algorithm to find self
intersection points within a Stroke object
Pseudo code for Brute Force Intersection Discovery Runtime

Brute_Force {
 For Each (seg1, line segment in Stroke) {
 For Each (seg2, line segment in Stroke) {
 If (I = Intersect(segE2 with segA) exists)
 Add I to the output list L;
 } } }
 return L;
}

O(n)
O(n)
O(c)
O(c)

8.10.3 Conclusions in Intersection Point Algorithms

The graphs in Figure 8-25 and Figure 8-26 illustrate the measured time to compute

intersections against the number of points involved. The sampling was preformed on a

machine with the minimal hardware requirement of Section 2.6, a Tablet PC with a

Pentium 3 700 MHz processor and 256 MB of ram. Examined were 170 randomly drawn

stroke objects which had intersection points computed and recorded.

y = 2E-05x2 + 4E-05x - 0.0029

y = x log(x) / 4782

-20

0

20

40

60

80

100

0 500 1000 1500 2000 2500

Point Count

Ti
m

e
(s

ec
)

Brute Force
Bentley Ottaman

Figure 8-25 Overview of Brute Force compared to Bentley-Ottmann algorithm, illustrating the time
required number of points in the Stroke object. The scale of this graph represents Sets of Stroke or

Strokes objects, of the size to represent entire equations.

Implementation, Experiments & Results 85

y = 2E-05x2 + 4E-05x - 0.0029

y = x log(x) / 4782

-1

0

1

2

3

4

5

0 100 200 300 400 500

Point Count

Ti
m

e
(s

ec
)

Brute Force
Bentley Ottaman

Figure 8-26 Overview of Brute Force compared to Bentley-Ottmann algorithm, illustrating the time
required per number of points in the Stroke object. This scale of this graph represents expected size

of Stroke objects, of the size to represent individual characters.

As seen in Figure 8-26, even for computing intersections in simple cases, the lower

computational complexity of Bentley-Ottmann algorithm outweighs the simplicity of the

brute force algorithm. In our implementation of nearly 2000 lines of code (excluding the

standard template library (STL) objects Set and Vector), the Bentley-Ottmann algorithm

will still be able to outperform the 10 line brute force algorithm.

Superimposed on top of the data points are approximate trend lines. In each figure, the

upper parabolic line represents the brute force algorithm, and the lower almost

logarithmic line represents the Bentley-Ottmann algorithm.

8.11 Conclusions

Each decision for the implementation of the different parts of this thesis required

examination and impact analysis. Early decisions, such as programming languages and

platforms initially targeted, would leave a lasting impression on our framework,

influencing its uptake by future developers or researchers.

We have described in detail in this chapter the investigating of several problems

including: choosing languages, targeting individual platforms, user interface experiments

Implementation, Experiments & Results 86

and determining self intersections. In each case we have presented the problem and our

results. Together, these form the elements of a cross platform mathematical framework.

 87

Chapter 9 Conclusions & Future Work

We have examined all the primary issues in defining a digital ink architecture that can

support mathematics. We established the hardware and software requirements of a

recognizer; software must be able to capture and act on ink related events while hardware

must have an interactive screen as well as the processing power and memory to provide a

real time inking environment. Beyond hardware and software requirements, a

mathematical framework also has requirements to ensure its success. Identified are four

requirements: platform independence, high-level ink manipulation, device API

abstraction and resource abstraction which ensure our solution will accommodate as

many targeted devices as possible while still providing a full suite of functionality and

resources.

Given that no dominant handwriting platform exists which could be used by our

mathematical framework, the creation of a Portable Digital Ink Architecture or PDIA was

necessary to ensure applications that make use of our framework are abstracted from the

details of manipulating ink. For instance, ink manipulation such as normalization

methods or property retrieval will become a part of the PDIA. Taking advantage of

existing infrastructure where possible, the described and implemented three-tiered PDIA

provides a means of addressing each of the identified requirements (platform

independence, high-level ink manipulation, device API abstraction and resource

abstraction) of a mathematical framework. Initial versions of PDIA will support the

desktop, Tablet PC and Pocket PC platforms.

By illustrating the differences between string based or textual languages and

mathematical or visual languages, one is able to understand text based handwriting

recognizers cannot be adapted to recognize mathematics. There are three primary

properties of mathematical expressions that affect recognition: symbol identification,

segmentation and context. Understanding these properties presents a challenge that must

be addressed in order to provide a functional mathematical recognizer.

Conclusions and Future Work 88

In creating an online mathematical recognizer, it is clear that significant dependencies

will exist on the underlying ink architecture. We identify those dependencies to the

extent that it is portable. Such an organization will improve both the developer and end

user experience.

After surveying methods used to recognize mathematics, we decided upon a stage

process of mathematical recognition: data collection and normalization, symbol

recognition and thirdly, structural analysis. ORCCA’s vision introduces a fourth stage:

context analysis, a post recognition process commonly used in recognizing string

languages. We believe adding context analysis capabilities will significantly improve our

results in the same ways handwriting recognition has benefited from the additions of

dictionary and grammar checks.

Adding to the value of our framework is the introduction of seven requirements for a user

interface: interactivity, minimal restrictions on screen size input or output size, non-

penalty for entering mathematics, persistant storage and networkability, computationally

intelligent, and finally support for all mathematical symbols. The requirements will

ensure users will have a complete end to end solution, allowing scenarios that permit

users to take notes on a Pocket PC, transmit over a network to a Tablet PC or desktop,

further refine and ultimately print finished works on paper or to a manuscript for

electronic distribution.

The vision of this thesis is to provide a well engineered solution that is efficient and

extendable. During implementation, each decision made required an examination of its

impact. These choices, i.e. programming languages and initially supported platforms will

leave a lasting impression on our mathematical framework, influencing its uptake by

future developers or researchers. The result is a framework for mathematics and a PDIA

that is functional, providing a foundation to other members of the ORCCA research lab

and the mathematical community.

As PDIA is a foundational technology, providing other applications and solutions a

means of targeting their goals quickly, i.e. allowing research on recognition to occur

Conclusions and Future Work 89

without having to concentrate on ink manipulation, there are no dependencies within our

solution beyond needing a standards-compliant C++ compiler. This document does

identify many requirements ranging from software and hardware to user interface and

other features, but this is part of the definition of a math framework and is not considered

a dependency.

With respect to the PDIA, the foundational classes including: Point, Line, Rectangle and

Stroke class have been implemented and tested. However due to time restrictions, the

higher level classes: strokes and ink are well defined and prototyped, although not fully

implemented.

9.1 Future Work

Almost every product from the field of software has high aspirations. The scope of this

thesis is no exception, only a small subset of a complete mathematical framework is

discussed in great detail, with other topics being outlined and presented with

requirements. We present below a short list of features that we feel is necessary for

future works to address.

As opposed to providing a list of features that would be desirable to see in future versions

of PDIA, we limit future work only to additional requirements we see as being necessary

for the success of the framework presented by this thesis.

9.2 Automatic Creation of Strokes Objects
Groups of strokes or Strokes currently have to be added manually. Future work will need

to provide considerable dedication to the automatic segmentation of ink strokes. A long

outstanding problem, the ability to analyze and understand the physical layout of ink

input has been addressed by substantial research including most recognizer prototypes.

9.3 Networking Capabilities
While the ability to support networking was considered in this thesis, there is no chapter

dedicated to the topic. Beyond acknowledging that InkXML supports streaming ink

packets, the impact of networking support have not been studied. While we see no major

Conclusions and Future Work 90

implications in adding network support to PDIA or as a requirement in general to the

math framework, additional studies should be made to ensure the risks and effects are

well understood.

 91

References

1 S. Mori, C. Y. Suen, and K. Yamamoto. Historical review of OCR research and development.
Proceedings of the IEEE, 80(7):1029-1058, July 1992

2 C. C. Trappert, C. Y. Suen, and T. Wakahara. The state of the art in on-line handwriting recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(8):787-808, 1990

3 R. Narasimhan. Labeling sSchemata and Syntactic Descriptions of Pictures. Information and Control,
7:151-179, 1964.

4 A. Beláid and J.P. Haton. A Syntactic Approach for Handwritten Mathematical Formula Recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(1):105-111, January 1984.

5 L. H. Chen and P. Y. Yin. A System for On-Line Recognition of Handwritten Mathematical Expressions.
Computer Processing of Chinese and Oriental Languages, 6(1):19-39, June 1992

6 Y. A. Dimitriadis and J. L. Coronado. Towards an ART Based Mathematical Editor that uses On-Line
Handwritten Symbol Recognition. Pattern Recognition, 29(6):807-822. 1995

7 H. J. Lee and M. C. Lee. Understanding Mathematical Expressions Using Procedure-Oriented
Transformation. Pattern Recognition, 29(3):447-457, 1994.

8 De Solla Price, Derek J. “Ancient Greek Computer” Scientific American, June 1959, pages 60 - 67

9 Bashe, Charles J.; Lyle R. Johnson; John H. Palmer; Emerson W. Pugh, IBM's Early Computers, MIT
Press (1985).

10 Ivan E. Sutherland. “Sketch pad a man-machine graphical communication system”. Proceedings of the
SHARE design automation workshop, January 1964, pages 329 - 346.

11 xThink News: MathJournal Released. 28 July 2004. xThink Corporation..
http://www.xthink.com/company_news.html. 1 August 2004.

12 Avitzur, Ron “Your Own Handprinting Recognition Engine”, Dr. Dobbs Journal, April 1992

13 Steve Smithies, Kevin Novins, James Arvo. A handwriting-based equation editor. In Proceedings of
Graphics Interface ’99, June 1999, pages 84 - 91.

14 Nicholas E Matsakis. Recognition of Handwritten Mathematical Expressions. Master thesis, MIT, 1999.

15 Richard Zanibbi. Recognition of mathematics notation via computer using baseline structure. Technical
Report ISBN-0836-0227-2000-439.

16 Sobel, Alan, "Electronic Numbers", Scientific American, June 1973, pages 64 - 73.

17 Bager, J., and Bleich, J. (2000): WAP-Galerie. C’T Magazin Septemeber 2000, pages 200 - 207.

18 Myers, B. A., Stiehl, H. and Gargiulo R. Collaborating Using Multiple PDAs Connected to a PC.
Proceedings of the ACM Conference on Computer Supported Cooperative Work (CSCW’98), 1998, pages
285 - 294.

References 92

19 Rob Jarrett, Philip Su. “Building Tablet PC Applications”. Microsoft Press, September 2002.

20 Hideyuki Hayashi, Sheila Duncan and Susumu Kunto. “Computational Linguistics: Graphical Input /
Output of Nonstandard Characters”. Communications of the ACM Volume 11 / Number 9 / September
1968, pages 613 – 618

21 Moore, Gorden E. “Cramming More Components onto Integrated Circuits”. Electronics, April 19, 1965,
pages 114 - 117.

22 Hull, Jonathan. “A database for handwritten text recognition research”. IEEE Transactions Pattern
Analysis and Machine Intellegince,vol. 16, no. 5, 1994, pages 550 – 554.

23 PalmSource Press Release: PalmSource Ships Faster, More Powerful Palm OS 5. PalmSource Inc. June
10, 2002. http://www.palmsource.com/press/2002/061002_1.html

24 Microsoft Tablet PC SDK 1.7: http://msdn.microsoft.com/tabletpc . Microsoft Corporation. 2004

25 Paul Thurrot. SuperSite for Windows: WinHEC 2004 Report.
http://www.winsupersite.com/reviews/winhec_2004.asp . May 2004

26 Carsten Magerkurth and Thorsten Prante. Towards a Unifying Approach to Mobile Computing.
SIGGROUP Bulletin. Vol 22, No. 1. April 2001, pages 16 - 21.

27 W3C Ink Markup Language (InkML). http://www.w3.org/2002/mmi/ink

28 Todd Allen, Robert Nix, Alan Perlis. PEN: A Hierarchical Document Editor. Proceedings of the ACM
SIGPLAN SIGOA symposium on Text manipulation. 1981, pages 74 – 81.

29 Xiaojie Wu. Achieve Interoperability of Pen Computing among Heterogeneous Devices and Digital Ink
Formats, Master thesis, UWO 2004.

30 W. Martin. Computer input/output of Mathematical Expressions. Proceedings of Second Symposium on
Symbolic and Algebraic Manipulations. New York, 1971, pages 78 - 87.

31 Dorothea Blostein. General diagram-recognition methodologies. Lecture Notes in Computer Science,
Volume 1072, pages 106-122. Springer Verlage, New York. 1995.

32 Dorothea Blostein and Ann Grbavec. Recognition of Mathematical Notation: Handbook on Optical
Character Recognition and Document Image Analysis. World Scientific Publishing Company, 1996.

33 Kam-Fai Chan, Dit-Yan Yeung. Mathematical Expression Recognition: A Survey. International
Journal on Document Analysis and Recognition, Vol 3, No 1, 2000, pages 3-15.

34 Kim Marriott, Bernd Meyer, and Kent D. Wittenburg. A Survey of Visual Languages Specification and
Recognition. Visual Language Theory. Springer-Verlag, New York. 1998, pages 5 – 80.

35 R.H. Anderson. Syntax-Directed Recognition of Hand-Printed Two-Dimensional Equations. PhD thesis,
Harvard University, Cambridge, MA. January 1968.

36 A. Beláid and J.-P. Haton. A Syntactic Approach for Handwritten Mathematical Formula Recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(1):105-111, January 1984.

37 K. F. Chan and D. Y. Yeung. Recognizing On-Line Handwritten Alphanumeric Characters through
Flexible Structural Matching. Patter Recognition, 32(7):1099-1114, July 1999

References 93

38 L. H. Chen and P. Y. Yin. A System for On-Line recognition of Handwritten mathematical expressions.
Computer Processing of Chinese and Oriental Languages, 6(1):19-39, June 1992

39 R. Fukuda, S. I, F. Tamari, M. Xie, and M. Suzuki. A technique of mathematical expression structure
analysis for the handwriting input system. ICDAR’99, pages 131-134.

40 Y. A. Dimitriadis and J. L. Coronado. Towards an ART based mathematical editor, that uses on-line
handwritten symbol recognition. Pattern Recognition, 28 (6):807-822, 1995.

41 M. Koschinski, H.-J. Winkler, and M. Lang. Segmentation and recognition of symbols within
handwritten mathematical expressions. ICASSP’95, pages 2439-2442.

42 S. Lehmberg, J.-J. Winkler, and M. Lang. A soft-decision approach for symbol segmentation within
handwritten mathematical expressions. ICASSP’96, pages 3434-3437.

43 H.-J. Winkler. HMM-based handwritten symbol recognition using on-line and off-line features.
ICASSP’96, pages 3438-3441.

44 H.-J. Winkler and M. Lang. Online symbol segmentation and recognition in handwritten mathematical
expressions. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, Volume 4, Munich, Germany, 1997, pages 3377-3380.

45 Y. Sakamoto, M. Xie, R. Fukuda, and M. Suzuki. On-line recognition of handwriting mathematical
expressions via network. ATCM’98 [4], pages 271-279.

46 R. Marzinkewitsch. Operating computer algebra systems by handprinted input. Proceedings of the 1991
International Symposium on Symbolic and Algebraic Computation, Bonn, Germany, July 1991, pages 411-
4134.

47 Y. Nakayama. A prototype pen-input mathematical formula editor. Proceedings of ED-MEDIA 93 –
World Conference on Educational Multimedia and Hypermedia, Orlando, FL, June 1993, pages 400 – 407.

48 Bo Yu, Shijie Cai. A Domain-Independent System for Sketch Recognition. Proceedings of the 1st
international conference on Computer graphics and interactive techniques in Austalasia and South East
Asia, 2003, pages 141 – 147.

49 R. Anderson. Two-dimensional Mathematical Notation. Syntactic Pattern Recognition, Applications,
ed. K. S. Fu (Springer – Verlag, 1977), pages 147 - 177.

50 S. Chang, A Method for the Structural Analysis of Two-dimensional Mathematical Expressions.
Information Sciences 2, 3 (1970) pages 253 - 272

51 A. Grbavec and D. Blostein. Mathematics Recognition using Graph Rewriting. Third International
Conference on Document Analysis and Recognition. Montreal, Canada, Aug 1995, pages 417 – 421

52 H. Twaakyondo and M. Okamoto. Structure Analysis and Recognition of Mathematical Expressions.
Proceedings of the Third International Conference on Document Analysis and Recognition. Montreal,
Canada. August 1995, pages 430 – 437.

53 Vannevar Bush. “As We May Think”. Atlantic Monthly, July 1945, Volume 176, No. 1, pages 101 -
108.

54 Larry Press “Dynabook revisited—portable computers past, present and future”. Communications of the
ACM. Volume 35, Issue 3, March 1992, pages 25 - 32

References 94

55 Ed Yourdon. “The Pen is Mightier than the Mouse”. American Programmer, Volume 4, No 12,
December 1991, pages 16 - 24.

56 Leslie Lamport. LaTeX: A Document Preparation System (2nd Edition). Addison Wesley Professional.
ISBN 0201529831. June, 1994.

57 Hideyuki Hayashi, Sheila Duncan and Susumu Kunto. “Computational Linguistics: Graphical Input /
Output of Nonstandard Characters”. Communications of the ACM, Volume 11, Number 9, September
1968, pages 613 – 618.

58 Todd Allen, Robert Nix, Alan Perlis. PEN: A Hierarchical Document Editor. Proceedings of the ACM
SIGPLAN SIGOA symposium on Text manipulation, 1981, pages: 74 – 81.

59 L. H. Chen and P. Y. Yin. A System for On-Line Recognition of Handwritten Mathematical
Expressions. Computer Processing of Chinese and Oriental Languages, 6(1):19-39, June 1992

60 Gordon Kurtenbach and William Buxton. Issues in Combining Marking and Direct Manipulation
Techniques. Proceedings of the 4th annual ACM symposium on User interface software and technology,
Hilton Head, South Carolina, United States, November 1991, pages 137-144.

61 Edward Lank, Jeb S. Thorley and Sean Jy-Shyang Chen. An Interactive System for Recognizing Hand
Drawn UML Diagrams. Proceedings of the 2000 conference of the Centre for Advanced Studies on
Collaborative Research. Mississauga, Ontario, Canada, 2000, pages 7 – 22.

62 Bernard Chazelle and Herbert Edelsbrunner. An optimal algorithm for intersecting line segments in the
plane. Journal of the ACM. Volume 39, Issue 1, January 1992, pages: 1 – 54.

63 Wolfgang Freiseisen, Petru Pau: A Generic Plane-Sweep for Intersecting Line Segments
RISC-Linz Report Series No. 98-18, November 1998.

Appendixes

Appendix A:

Copy of Survey Used to Collect

Mathematical Handwriting Samples on the

IBM CrossPad and Tablet PC Computers

Created by Dr. Stephen Watt, Ben Huang and Xiaojie Wu during 2002 – 2003,

this survey was used to collect data on the IBM CrossPad. It later became the

basis for the survey used to collect data on the Tablet PC.

� � ����� ���	�
���
�
��� �
��

� � � �

� � � �

� �

� � � �

� � �

� � � �

� � �

! " # �

$ % & '

()

* + , -

. / 0 1

2 3 4 5

� 6 7 8

� 9 : ;

< = > ?

@ A

�

1 2 3 4

5 � 6 7

8 � 9 :

; < = >

? @ A B

C �
 	

� �

1 2 3 4

5 � 6 7

8 � 9 :

; < = >

? @ A B

C �
 	

� �

+ ,

D

D

D

D

*

� �� 	 E

 F E

G �

: < ; �

� �H

I J K

� � ����� ���	�
0#�������� ��� �
��

L
�

�
$� �"#)

�

�
$� �"#)

�

�
$� �"#)

$ L

�
$� �"#)

�

�
L
�

� L �

�
$� �"#)

�
�:

�M �
�

�
$� �"#)

:

�I I �M �

���

�
$� �"#)

: �
�M �N �H� �

�
�

�
$� �"#)

�;

�M �
N L �H

�
$� �"#)

; �
�M �N�L �H �L

: �
�M � �

�
$� �"#)

�:

�M �

�;

�M �
N H

�
$� �"#)

:

� �+� ��
�I �M ��

� �

�
$� �"#)

���
&O �

��#��
��#��

�
$� �"#)

��� �O �

: �
�M �

�

�
$� �"#)

>

$�>

N H
�=

�M �
�

�
$� �"#)

?

��=
NH

�
$� �"#)

�@

�M �
�

�
$� �"#)

� �'
 $ M �

�
$� �"#)

� �'
����+�

NH

�
$� �"#)

D �
�

� L
�

� L
�

�

�
$� �"#)

�
�

�
$� �"#)

$ N H

�
$� �"#)

�
$� �"#)

�
$� �"#)

B

&�I '� ; �

N H

�
$� �"#)

B &

�

��

�
$� �"#)

B �

�

BB

1 P

�
$� �"#)

6

0

L D �

�
$� �"#)

Q

<

�

�
$� �"#)

B

�

� D

B

.�

�
$� �"#)

B �

�

�

�
$� �"#)

�� � L �� � L L �� � D �

�� � L �� � L L �� � D �

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

�� � L �� � L L �� � D �

�
$� �"#)

�I �
&)('

�

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
/

� �
III �

� �
III �

III �
III

III

�
III

III �

� �
III �

III �
III �

III
III

III
III

� �
III �

�

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
0

L�I �J L�I �J

�
$� �"#)

�

1
1
/

�� ��

�� ��

�

2
2
0

�
$� �"#)

L�+�+***+�J:

 �, �, , $ #

 � �*** $ #
 � �*** $ #

:

!�, !�, , !#

!�!� !�!#

!�!� !�!#
III

III
III

!#!� !#!#

�
$� �"#)

� L L

�
$� �"#)

� ��#
&)('

���#
&)('

('&)
�I ����� ���#

�
$� �"#)

�
�

�
$� �"#)

+�+� D +�+�

�
$� �"#)

�� D ���
���

�

�
$� �"#)

L�J

�
� D

L�J

�
�

�
$� �"#)

�� �

�
$� �"#)

&

�
$� �"#)

'P

�
$� �"#)

L

�
$� �"#)

��� � D
#��

�L ��#

�
$� �"#)

L L

�
$� �"#)

D

�
$� �"#)

��O
��O��O��O

�
$� �"#)

D
O

ON HO

�
$� �"#)

D L

�
$� �"#)

L � N� �� �H

�
$� �"#)

R �

�
$� �"#)

#���� D �
�N � �H

�
$� �"#)

���
D N � �H

�
$� �"#)

� �

�
$� �"#)

�
$� �"#)

RD

�
$� �"#)

1 6 3

�
$� �"#)

D
8

��< �

�
$� �"#)

� R � �

�
$� �"#)

R9 9 " 9 L�I �J� 9 �

�
$� �"#)

N HD N HL N H

�
$� �"#)

N H

�
$� �"#)

, �I �- D B , �- �

�
$� �"#)

N H D

�
$� �"#)

�� D �

�
$� �"#)

�

�
$� �"#)

Curriculum Vita

Name: Kevin J. Durdle
 2771 First Ave, Suite 305
 Seattle, Washington, United States
 98121

Post-secondary The University of Western Ontario
Education and London, Ontario, Canada
Degrees: N6A 5B8
 1999 – 2003 B.Sc

Related Work Teaching Assistant
Experience : The University of Western Ontario
 2003 – 2004

 Research Assistant
 Ontario Research Center for Computer Algebra
 The University of Western Ontario
 2003 – 2004

