
A Framework for

Mathematical Computing
Stephen M. Watt

Ontario Research Centre for Computer Algebra
University of Western Ontario

www.orcca.on.ca/PenMath

IAMC Beijing July 24 2005

• Symbolic computation group:
Western: Corless, Jeffrey, Moreno Maza, Reid, Watt
Waterloo: Geddes, Giesbrecht, Labahn, Storjohan
Associate: Carette, Devitt, Kotsireas, Nedialkov, Wolf, Zima

• Problems:
Classical CA: linear algebra, ∫ and DEs, polynomial systems,…
CAS: Maple, Aldor/libalgebra, …
SNAP: gcd, decomposition, factorization, …
Prog Lang support: type systems, compilers, mem. Management, …
MKM and Interfaces: MathML, data conv, web services, pen, …

Outline
• Introduction
• Approach
• Components
• Cheating
• Portability
• Prototype
• Conclusions

Introduction

Tablet PC

Long-Term Goals

• Enter and manipulate math naturally by pen
• Support high-powered math transforms
• Support collaboration
• Do so portably, across applications and

platforms

Previous Efforts
• Graduate student creates rudimentary version of each

element (character recognition, spatial grouping, math
semantics)

• Recognize a2 + b2 = c2

• Leave “a few remaining cases” to “future work”

• Repeat…

• Exceptions
Suzuki et al -- Infty project
XThink – elementary math
Fateman et al -- OCR

Approach
• Architect for a large problem,

with many interacting components
• Combination of drawing and handwriting

requiring special APIs
• Recognize that each component requires research

related to mathematical nature
• Use CA for expression transformation
• Recognize on-going hardware evolution

• Project with Western, Waterloo, Maple, Microsoft

Typical Handwriting Recognition

• Segment input to words
• Break words into glyph candidates
• Compute possibilities for each glyph
• Dictionary determines most likely alternatives

Pen-based Mathematics System
• Mathematics input:

-- character recognition,
-- layout parsing,
-- linear parsing

• Mathematics editing:
-- subexpression selection,
-- searching and linking,
-- expression re-arrangement,
-- expression transformation

e.g. expand(sin(a+b))
or factor(p)

• Sketching

• Re-winding and re-playing
derivations

• Visual scenario/case
organization

• Spreadsheet-like recalculation

• Collaboration

Early Projects at ORCCA
• CrossPad

w Louie (2000) Off-line analysis

• Pocket PC
w Wan (2001) Elastic matching, alternative
prompting

• Single-line expression grouping
w So (2003)

• Notation Selection Tool
w Liu, Smirnova (2000-2003)

• Expression Transformation
w Huerter Li Rodionov Smirnova So (1999-2004)
TeX ↔ MathML ↔ OpenMath ↔ Maple

Components and relations
 Ink C om ponent

C haracter
R ecognizer

App lica tion

M ath E xpression
D irect

M anipu la tion Tool

M ath E xpression
Validation Tool

M ath E xpression
R ender Tool

G lyph Feature
D etector

M ath C har
C andidates Se lector

M ath characters
sam ples D B

2 2
3 − Ink

abstract ink

M ath E xpressions
Pattern M atch ing

M ath E xpression
C and idates Selector

M ath express ions
patte rns D B

M athM L(C+P)

ink + reco

ink + reco

M athM L + D A G

M
at

hM
L

M athM L

M APLE
M ath Engine

M ath E xpression
Structure
Ana lyzer

M athM L

input: ink

M Boxes + M athM L

Legend

DA TA

JAVA

C++

ink

C
 M

at
hM

L

M
at

hM
L

ink + reco

Ink-Enabled P latfo rm
output: math

Character Recognition

• Large vocabulary of mathematical symbols
• Usual trade off is #symbols vs accuracy

a vs α vs proportionality …

• ~ 2000 named entities in MathML
• Trick of using special alphabet doesn’t work

• Stronger feature identification (w X. Xie)
• Heavier use of context (w So)

Ambiguities

Ambiguities

Ambiguities

Ambiguities

Problems

Why is math different?

• The set of symbols is large.
• No specific stroke order and stroke number.
• Spatial relation gives complex context-

sensitive two dimensional rules.

Recognition in Large Symbol Sets

• Vendor APIs insufficient
– limited to Roman or Chinese/Japanese

• Normalize input characters (size, slant, jitter)

• Detect specific features (direction, cusps, crossings,…)

• Elastic match within equivalence class of few entries

Data Collection

• Math survey
– IBM Cross Pad Data
– Tablet PC Data

• UniPen Data

• 240 symbols and a number of formulas.

()

Variance Analysis

• Identify allomorphs

Feature Family

Geometric
Features

#loops #intersections

#cusps

Ink related
features

#strokes

Point density

Directional
Features

Ini dir End dir

Ini-end dir

Global
Features

WHRatio
Ini and
End pos

Preprocessing

• Re-sample for device independence,
writing speed, computation cost.

• Smoothing remove noise.
• Size normalization

Gaussian
Smoothing

Before
Smoothing

Average
Smoothing

Feature Extraction
• Features split characters into equivalence

classes

• Choose features on quality of separation vs cost

• Use to prune the set of character possibilities

• Use elastic matching on pruned prototype set

Intersections

Modified Sweepline Algorithm

Line segments are
ordered.

Loops

Minimum distance pair:
a pair of points with
minimum non-local
distance

Use parallel
line to filter the
wrong loops

Cusps

Elastic Matching

Without Features

Experiment # prototypes Recog.Rate(%)
P1:T1,2,3,4 227 81.8

P1,2:T1,2,3,4 454 90.1

P1,2,3:T1,2,3,4 681 93.9

P1,2,3,4:T1,2,3,4 908 94.8

With Features

Experiment # prototypes Candidate
prototypes

Percent.
Pruned

Recog.
Rate(%)

P1:T1,2,3,4 227 26 88.5 76.0

85.5

90.0

91.9

P1,2:T1,2,3,4 366 38 89.6

P1,2,3:T1,2,3,4 495 52 89.5

P1,2,3,4:T1,2,3,4 575 60 89.6

Comparison

prototype Candidate
prototypes

Percentage
Pruned

Recog.
Rate(%)

J.K’s Our J.K’s Our J.K’s Our J.K’s Our
P1-4:T1-4 121 169 47 24 61.5 85.8 99.0 97.6

P1-4:T1-4 122 288 92 288 N/A N/A 99.0 99.7

experiment

JK = J.Kurtzberg

Conclusion
• We have made progress in handwritten mathematical

symbol recognition area by using feature sets to prune
the prototypes.

• We have attempted to identify these features, and
analyzed thousands of handwriting samples.

• Our recognizer can recognize digits, English letters,
Greek letters, most of the common mathematical
operators and notations.

• Accuracy and speed are improved comparing with a
recognizer in the literature.

Dictionary-based methods

• Use word database to disambiguate.
• Database has “hello” but not “hdb” or

“heUo”

• We can greatly restrict the set of symbols
considered using knowledge of the
mathematical context.

sin(ω t + k x) vs s i n(w t t k x)

Dictionary-based methods
• Build an (h,k) frequency table
• Collect all sub-expressions of height h and length k

• Replace level-1 sub-expressions by symbols and repeat

sqrt(sin(x)^2 + cos(y)^2) sin(x) cos(y)
sin(x)^2 cos(y)^2
sqrt(A^2 + B^2)

• Optionally group symbols by category, e.g.
Greek vs Roman letters
Letter ranges x, y, z
Capital letters, …

Dictionary-based methods
• Analyzed 20,000 articles from different MR

classifications to build database of typical
subexpressions

• Step 1: Develop profile of typical expressions by area

• Step 2: Identify user context by expressions used then
disambiguate accordingly

Frequency of Symbols

Id Frequencies in 3 Classifications

Id Freq from All Classifications

Frequency of Operators

Op Frequencies in 3 Classifications

Op Freq from All Classifications

Most Popular Expressions of Size 2

Most Popular Expressions of Size 7

Expression Analysis and Transformation

• Understanding expression arrangement and re-arrangement

cz wt
ax by[]ax + by +

cz + wt
a x = b y

= c z - wt

u2v1(a+b+c+z) u2F1(a, b, c; z)

(x+y)²

Expression Transformation

• TeX ↔ MathML ↔ OpenMath ↔ Maple

• Naïve approach to TeX → MathML translation:
* Macro expansion:

TeX → Low-level TeX
* Translate:

Low-level TeX → Low-level Presentation MathML

• Resulting MathML has correct visual structure,
but has lost all the implicit semantics

Implicit Semantics

Conversion must know about macros

Less Naïve Approach

• Mapping file: associates TeX macros with XSLT templates,

e.g. \J{u}{z} ↔ <apply> <xmml:J/> u z </apply>

• Converter uses mapping file rules to short-circuit detailed
translation

• Mapping file can insert additional explicit semantics,
e.g. OpenMath

TeX/MathML Conversion

High Level TeX High Level MathML

Low Level TeX Low Level MathML

mapping files

Cheating
Do you want to wash those dishes
or do you just want to get them clean?

Bootstrapping techniques
• Initially deal with a limited range of possibilities,

requiring palette selection of others

• Prompting areas: x2y▀ ■

• Build in explicit knowledge of some domains

• Disallow certain selections

a1| a2| a3|
a0 + ---- + ---- + ---- + ...

|b1 |b2 |b3

Portability

Goals

• Platform Portability
– Across platforms and applications
– Over time for evolving platforms and

applications
• Digital Ink Portability

– can be achieved with InkML
– Wrappers for device-specific ink interfaces

• Mathematical Data Portability
– OpenMath
– MathML

Our Architectural Approach
Invariant Components with Replaceable Glue

* Parts remaining invariant:
A. High-level math object manipulation code
B. Low-level digital ink analysis code

* Parts depending on host system:
1. Basic ink collecting software:

supports abstract ink representation

2. “Glue” – Inter-component interface:
links (A) and (B) with (1) and (3)

3. Interface code:
embeds pen-based math input in host application

Framework Components

Interface to Host Application

Basic Ink collecting software

“Glue”: Inter-Component Interface

A
High-level math object

manipulation code
Java

B
Low-level digital ink

analysis code
C++

Implementation Languages
• C#

– assignment: ink collecting and processing,
– example of use: connecting to Tablet SDK

• C++
– assignment: low-level intensive computations
– example of use: character recognizer, glyph feature

determiner
• Java

– assignment: high-level code for connecting with
mathematical engine

– example of use: math expression manipulation

Instantiating the Architecture
Instantiation for Tablet PC:

• For basic ink software
we used .NET-based Tablet PC SDK

• Specially designed linkage mechanism
• a number of .NET technologies (C#, managed C++),
• COM interoperability features and
• Java Native Interface (as described further)

• Interface to the hosting application
vary depending on the application

Testing the Framework

TABLET SDK

MAPLE

JAVAA

C++B

INTERFACE TO MAPLE

TABLET SDK

MS WORD
INTERFACE TO MS WORD

JAVAA

C++B

Linkage for the Test Framework

B:
C++

1: Tablet PC SDK

2: Ink Component

A:
JAVA•

.NET

3: Interface to Host App.

LINKAGE

JNI +
JAWT• NI +

COM Interop•
COM Interop

+ PInvoke

JNI

Interface to Host Application

MAPLE

Ink
Component

JAVA lib

JNI + JAWT NI

COM Interop

.NET C#

Tablet PC SDK

MS WORD

Ink
Component

ActiveX Ctrl

JNI + JAWT NI

COM Interop

.NET C#

Tablet PC SDK

• ActiveX control
• accessing .NET control
• via Win32 C++ Wrapper

• Java library
• accessing .NET control
• through JNI

JAVA

 MAPLE

JNI C ++

A

B

JNI

 ActiveX

 MS WORD

b

a

b

JNI +
JAWT NI COM Interopc Win32

Wrapper
c

.NET

TABLET PC SDK 1

3

2

 Java 3

2

a

InkML
Forthcoming standard for digital ink from W3C

<?xml version="1.0"?>
<ink>

<defs>
<traceFormat id="MSTabletInk">

<regularChannels>
<channel name="X" type="integer"/>
<channel name="Y" type="integer"/>
<channel name="F" type="integer"/>

</regularChannels> ...
</traceFormat>

</defs>
<traceGroup>

<desc>Lambert W example</desc>
<trace start="1123890433611">

1030 985 13
1024 970 32
1024 970 47
1024 960 63
1024 960 75
...

InkML

Prototype

Architectural Issues
• Coupling between components

written variously in C++, Java, Maple

• Feed-back between components

• GUI human-factors issues
fewest pen movements to accomplish task

• Collaborative back-plane
multiple displays, multiple pens, shared math objects

Conclusions
• Math can be a “killer app” for pen-based computing

• Many have stood on the toes of giants,
or at least on each other’s

• Must plan for a complex project with many components

• Building on experience with PocketPC, MathML, Maple

• Work has been underway for just over one year --
we will see what comes out…

• Hopefully Spider-Mac can put away his pliers!

