A Framework for Pen-Based Mathematical Computing

Stephen M. Watt

Ontario Research Centre for Computer Algebra University of Western Ontario

www.orcca.on.ca/PenMath

IAMC Beijing July 24 2005

Ontario Research Centre for Computer Algebra

Symbolic computation group:

Western: Corless, Jeffrey, Moreno Maza, Reid, WattWaterloo: Geddes, Giesbrecht, Labahn, StorjohanAssociate: Carette, Devitt, Kotsireas, Nedialkov, Wolf, Zima

• Problems:

Classical CA: linear algebra, \int and DEs, polynomial systems,... CAS: Maple, Aldor/libalgebra, ... SNAP: gcd, decomposition, factorization, ...

Prog Lang support: type systems, compilers, mem. Management, ... *MKM and Interfaces:* MathML, data conv, web services, *pen*, ...

Outline

- Introduction
- Approach
- Components
- Cheating
- Portability
- Prototype
- Conclusions

Introduction

des bewegten Massenpunktes

MacEdition Feedback : Opinion : May 15, 2002

"Inkwell" is for math / science

Spider-Mac, May 15, 2002, 11:05 am

Ever try to input math / science notation using a keyboard? Ever consider pulling your nails out with pliers? They probably both feel about the same. :-)

Inkwell has the potential to be the 'killer API' for sciece and math applications. Only one thing is missing, Apple needs to make sure Inkwell can handle it.

It's staggering how much ass Apple will kick if they can make Inkwell handle math/science notation.

We're talking whole truckloads of woop-ass here. Choochoo-trains of woop-ass. Nimitz-class carriers woop-ass.

IMHO.

:-)

• <u>Re: "Inkwell" is for math / science</u> (Richard Edgar, May 15, 2002, 1:37 pm)

Por Por "Intwall" is for math / science (CodePitch May 15, 2002, 0.50 pm)

Tablet PC

Long-Term Goals

- Enter and manipulate math naturally by pen
- Support high-powered math transforms
- Support collaboration
- Do so portably, across applications and platforms

Previous Efforts

- Graduate student creates rudimentary version of each element (character recognition, spatial grouping, math semantics)
- Recognize $a^2 + b^2 = c^2$
- Leave "a few remaining cases" to "future work"
- Repeat...
- Exceptions Suzuki et al -- Infty project XThink – elementary math Fateman et al -- OCR

Approach

- Architect for a large problem, with many interacting components
- Combination of drawing and handwriting requiring special APIs
- Recognize that each component requires research related to mathematical nature
- Use CA for expression transformation
- Recognize on-going hardware evolution
- Project with Western, Waterloo, Maple, Microsoft

Typical Handwriting Recognition

- Segment input to words
- Break words into glyph candidates
- Compute possibilities for each glyph
- Dictionary determines most likely alternatives

Pen-based Mathematics System

- Mathematics input:
 - -- character recognition,
 - -- layout parsing,
 - -- linear parsing
- Mathematics editing:
 - -- subexpression selection,
 - -- searching and linking,
 - -- expression re-arrangement,
 - -- expression transformation
 - e.g. expand(sin(a+b))
 - or factor(p)

- Sketching
- Re-winding and re-playing derivations
- Visual scenario/case organization
- Spreadsheet-like recalculation
- Collaboration

Early Projects at ORCCA

- CrossPad w Louie (2000) Off-line analysis
- Pocket PC w Wan (2001) Elastic matching, alternative prompting
- Single-line expression grouping w So (2003)
- Notation Selection Tool w Liu, Smirnova (2000-2003)
- Expression Transformation w Huerter Li Rodionov Smirnova So (1999-2004) TeX ↔ MathML ↔ OpenMath ↔ Maple

Components and relations

Character Recognition

- Large vocabulary of mathematical symbols
- Usual trade off is #symbols vs accuracy

a vs α vs proportionality ...

- ~ 2000 named entities in MathML
- Trick of using special alphabet doesn't work
- Stronger feature identification (w X. Xie)
- Heavier use of context (w So)

i

i

 $z + z = sin \omega t$

Problems

Why is math different?

- The set of symbols is large.
- No specific stroke order and stroke number.
- Spatial relation gives complex contextsensitive two dimensional rules.

Recognition in Large Symbol Sets

- Vendor APIs insufficient

 limited to Roman or Chinese/Japanese
- Normalize input characters (size, slant, jitter)
- Detect specific features (direction, cusps, crossings,...)
- Elastic match within equivalence class of few entries

Data Collection

- Math survey
 - IBM Cross Pad Data
 - Tablet PC Data
- UniPen Data
- 240 symbols and a number of formulas.

🖄 scl.csd.uv	vo.ca - defau	lt - SSH Se	cure Shell			×
<u> </u>						
🖬 🎒 [à 🔳 🎉	B C (2 M 💈) 📁	🎭 🖉	₩?
📙 🗾 Quick C	ionnect 📄 P	rofiles				
<mark>S</mark> troke TimeStart = "2003-05-05 14:50:15:8085248"						
TimeStop :	= "2003-05-	-05 14:5	0:16:68979	920″		
1797	775	7	7			
1797	775	1	14			
1825	746	1	22			
1825	746	1	30			
1825	746	1	39			
1841	720	1	48			
1841	720	1	57			
1841	720	1	65			
1850	691	1	72			
1850	691	1	79			
1850	691	1	87			
1848	661	1	91			
1848	661	1	93			
1848	661	1	93			
1848	661	1	92			
1829	635	1	92			
1829	635	1	92			
1829	635	1	91			
1797	624	1	90			
1797	624	1	89			
1765	626	1	88			
1765	626	1	88			
1723	641	1	87			
1723	641	1	86			
1684	662	1	85			
			1,1		Top	•
Connected to scl.csd.uwo.ca SSH2 - aes128-cbc - hr //						hr //

Variance Analysis

. 444444 TARANIJA HHHAHHHHH EEFEF d L L L L L

• Identify allomorphs \bigcirc \bigcirc \bigcirc ε \sim \sim

Preprocessing

- Re-sample for device independence, writing speed, computation cost.
- Smoothing remove noise.
- Size normalization

Before Smoothing Average Smoothing Gaussian Smoothing

Feature Extraction

- Features split characters into equivalence classes
- Choose features on quality of separation vs cost
- Use to prune the set of character possibilities
- Use elastic matching on pruned prototype set

Intersections

Modified Sweepline Algorithm

Loops

Minimum distance pair: a pair of points with minimum non-local distance

Use parallel line to filter the wrong loops

Elastic Matching

$$D(i, j) = \delta(i, j) + \begin{cases} \sum_{k=0}^{j-1} \delta(0, k) & \text{if } i = 0\\ \sum_{k=0}^{i-1} \delta(k, 0) & \text{if } j = 0\\ \min \begin{cases} D(i-1, j) & \text{if } i > 0, j = 1\\ D(i-1, j-1) & \text{if } i > 0, j = 1\\ D(i-1, j-2) & \text{if } i > 0, j > 1 \end{cases}$$
$$\delta(i, j) = (x_i - x_j)^2 + (y_i - y_j)^2 + C |\phi_i - \phi_j|$$

Without Features

Experiment	# prototypes	Recog.Rate(%)
P1:T1,2,3,4	227	81.8
P1,2:T1,2,3,4	454	90.1
P1,2,3:T1,2,3,4	681	93.9
P1,2,3,4:T1,2,3,4	908	94.8

With Features

Experiment	# prototypes	Candidate	Percent.	Recog.
		prototypes	Pruned	Rate(%)
P1:T1,2,3,4	227	26	88.5	76.0
P1,2:T1,2,3,4	366	38	89.6	85.5
P1,2,3:T1,2,3,4	495	52	89.5	90.0
P1,2,3,4:T1,2,3,4	575	60	89.6	91.9

Comparison

experiment	# prototype		Candio prototy	late vpes	Percenta Pruned	age	Recog. Rate(%)
	J.K's	Our	J.K's	Our	J.K's	Our	J.K's	Our
P1-4:T1-4	121	169	47	24	61.5	85.8	99.0	97.6
P1-4:T1-4	122	288	92	288	N/A	N/A	99.0	99.7

Conclusion

- We have made progress in handwritten mathematical symbol recognition area by using feature sets to prune the prototypes.
- We have attempted to identify these features, and analyzed thousands of handwriting samples.
- Our recognizer can recognize digits, English letters, Greek letters, most of the common mathematical operators and notations.
- Accuracy and speed are improved comparing with a recognizer in the literature.

Dictionary-based methods

- Use word database to disambiguate.
- Database has "hello" but not "hdb" or "heUo"

 We can greatly restrict the set of symbols considered using knowledge of the mathematical context.

 $sin(\omega t + kx)$ vs sin(w t t kx)

Dictionary-based methods

- Build an (*h*,*k*) frequency table
- Collect all sub-expressions of height h and length k
- Replace level-1 sub-expressions by symbols and repeat

```
sqrt(sin(x)^2 + cos(y)^2)
```

```
sin(x) cos(y)

sin(x)^{2} cos(y)^{2}

sqrt(A^{2} + B^{2})
```

 Optionally group symbols by category, e.g. Greek vs Roman letters Letter ranges x, y, z Capital letters, ...

Dictionary-based methods

- Analyzed 20,000 articles from different MR classifications to build database of typical subexpressions
- Step 1: Develop profile of typical expressions by area
- Step 2: Identify user context by expressions used then disambiguate accordingly

Frequency of Symbols

Id Frequencies in 3 Classifications

03 – Logic			
Ucode	ld	Freq	
0069	i	51,565	
006E	n	48,239	
0078	x	41,042	
0058	X	33,862	
0041	A	29,845	
0070	p	26,292	
03B1	α	24,604	
006B	k	24,374	
0066	f	22,671	
0061	a	22,030	
0047	G	21,983	
006D	m	19,893	
006A	j	18,062	
03C9	ω	18,015	
004D	M	17,256	
0053	S	17,122	
0043	C	17,107	
0046	F	16,773	
0079	y	16,764	
0074	t	15,693	

11 –	11 – Num. Th.		
Ucode	ld	Freq	
006E	n	58,186	
0070	p	40,302	
006B	k	38,230	
0078	x	35,294	
0069	i	35,100	
0061	a	25,301	
006D	m	23,642	
0064	d	22,302	
0071	q	21,797	
0073	s	21,319	
006A	j	21,153	
0072	r	19,695	
0074	t	19,654	
0047	G	19,620	
0058	X	19,535	
0041	A	19,107	
004B	K	18,905	
0066	f	18,126	
0046	F	16,524	
004C	L	15.921	

Γ	35 – PDE		
	Ucode	ld	Freq
Γ	0078	x	51,773
	0074	t	49,859
	0075	u	39,841
	006E	n	35,705
	006B	$_{k}$	29,924
	0069	i	28,941
	0073	s	25,234
	006A	j	24,968
	0064	d	24,095
	004C	L	21,094
	03B5	ϵ	20,740
	03BB	λ	20,189
	0070	p	19,107
	0043	C	17,450
	03B1	α	17,087
	0072	r	16,834
	0076	v	16,820
	0061	a	15,931
	0079	y	15,920
	0066	f	15,215

Id Freq from All Classifications

Frequency of Operators

Op Frequencies in 3 Classifications

03 – Logic			
Ucode	Ор	Freq	
003D	=	121,806	
2061		115,262	
002C	,	100,880	
2208	\ni	77,021	
002D	—	60,732	
002B	+	60,121	
002A	*	32,796	
003C	<	28,345	
02C9	-	25,805	
2192	\rightarrow	24,370	
2264	\leq	24,242	
002F	/	14,626	
2026		13,495	
222A	U	12,654	
2229	\cap	12,483	
2286	\subseteq	12,330	
003E	>	11,784	
2223		9,883	
22EF		9,781	
02DC	~	9,428	

11 -	Nun	n. I n.
Ucode	Ор	Freq
003D	=	130,735
002D	—	128,330
2061		112,484
002C	,	104,964
002B	+	94,172
002F	/	40,239
2208	\ni	39,319
2211	\sum	20,165
2264	\leq	19,574
2192	\rightarrow	18,481
002A	*	17,757
00AF	-	14,708
221E	∞	14,627
003E	>	12,926
22EF		12,358
02DC	~	12,209
2265	\geq	11,963
2113	ℓ	10,997
003C	<	10,151
00D7	\times	10.144

35 – PDE			
Ucode	Ор	Freq	
002D	_	138,603	
002C	,	111,176	
2061		103,527	
003D	=	103,376	
002B	+	97,579	
2208	Э	38,370	
2264	\leq	34,575	
2202	∂	28,815	
002F	/	25,985	
221E	∞	23,460	
222B	ſ	23,196	
02DC	~	19,545	
003C	<	16,453	
2207	∇	15,387	
003E	>	15,256	
002A	*	14,470	
2192	\rightarrow	14,381	
22C5		12,669	
2211	\sum	12,394	
2265	\geq	11,531	

Op Freq from All Classifications

Most Popular Expressions of Size 2

03 – Logic (Sz: 2)		
#	Expr	
4337	-1	
1525	x_1	
1496	ω_1	
1462	$\bar{\nu}$	
1309	\bar{E}	
1035	a_i	
900	4i	
826	x_i	
805	$;\gamma$	
740	a_1	
699	X_i	
683	x_n	
678	tp	
676	y_1	
635	ϕ_K	

11 – Num. Th. (Sz: 2)		
#	Expr	
24147	-1	
6380	a_1	
5558	2n	
5303	x_1	
4501	x^2	
3938	2k	
3584	H^1	
3545	(x,y)	
3234	a_2	
2981	k_1	
2942	a_n	
2841	y^2	
2823	a_i	
2720	n_1	
2684	q^2	

35 – PI	DE (Sz: 2)
#	Expr
19752	-1
14565	L^2
8098	dx
5634	t_0
4735	x_0
4628	∂_t
4607	ij
4572	u_0
4183	dt
4142	(t,x)
3599	(x,t)
3420	H^1
3346	ds
3336	R^3
3044	ſ
	Δ

Most Popular Expressions of Size 7

03 – Logic (Sz: 7)		
#	Expr	
86	ϕ_{m+4i-4}	
69	$ u_0,\ldots, u_k$	
62	ϕ_{m+4i-2}	
32	\widetilde{y}_{i-1}^{-1}	
29	$(r_{\nu} \colon \nu \in pos(t))$	
28	ϕ_{m+4i-1}	
28	(17Genr)	
24	$(b_j \mapsto f_{ij})_j$	
24	ϕ_{m+4i-3}	
23	$h + d_1 + d_2$	

11 – Num. Th. (Sz: 7)		
#	Expr	
107	$\sum_{k=1}^{n-1}$	
97	$\sum_{k=0}^{n-1}$	
76	$\sum_{i=0}^{n-1}$	
71	n+m-i-j	
69	$T', \lambda'_{T'}$	
68	$\widetilde{G}_{k,n,d}$	
66	$B^{\dagger,s}_{riq,K}$	
64	$\sum_{j=0}^{n-1}$	
61	$\prod_{j,k=1}^{n}$	
59	$\left(\frac{n+m}{n}\right)^{-1}$	

35 – PDE (Sz: 7)		
#	Expr	
445	$\frac{n+2}{n-2}$	
194	$\frac{n+4}{n-4}$	
110	(x',ξ',μ)	
96	p - 1, q - 1	
90	-(a+1)p+c	
88	$\sum_{i,j=1}^{n}$	
75	$j_1, \tilde{j_2} \ge 0$	
75	(g(t),K(t))	
70	$u^{\frac{2n}{n-2}}$	
69	$(t,x; au,\xi)$	

Expression Analysis and Transformation

• Understanding expression arrangement and re-arrangement

$$\begin{array}{c} ax + by + \\ cz + wt \end{array} \qquad \left[\begin{array}{c} ax & by \\ cz & wt \end{array} \right] \qquad \begin{array}{c} ax = b \ y \\ = c \ z - wt \end{array}$$

 $u_2v_1(a+b+c+z) = u_2F_1(a, b, c; z)$

 $(x+y)^2$

Expression Transformation

- TeX \leftrightarrow MathML \leftrightarrow OpenMath \leftrightarrow Maple
- Naïve approach to TeX \rightarrow MathML translation:
 - * Macro expansion:

 $\mathsf{TeX} \to \mathsf{Low}\text{-}\mathsf{level}\;\mathsf{TeX}$

* Translate:

Low-level TeX \rightarrow Low-level Presentation MathML

• Resulting MathML has correct visual structure, but has lost all the implicit semantics

Implicit Semantics

Conversion must know about macros

$$J_3(z) = \left(\frac{8}{z^2} - 1\right) J_1(z) - 4J_0(z)/z$$

Similarly with XSLT for extensions to MathML.

Less Naïve Approach

• Mapping file: associates TeX macros with XSLT templates,

e.g. $J{u}{z} \leftrightarrow <apply> <xmml:J/> u z </apply>$

- Converter uses mapping file rules to short-circuit detailed translation
- Mapping file can insert additional explicit semantics, e.g. OpenMath

TeX/MathML Conversion

Cheating

Do you want to wash those dishes or do you just want to get them clean?

Bootstrapping techniques

- Initially deal with a limited range of possibilities, requiring palette selection of others
- Prompting areas: x²y
- Build in explicit knowledge of some domains
- Disallow certain selections

Portability

Goals

- Platform Portability
 - Across platforms and applications
 - Over time for evolving platforms and applications
- Digital Ink Portability
 - can be achieved with InkML
 - Wrappers for device-specific ink interfaces
- Mathematical Data Portability
 - OpenMath
 - MathML

Our Architectural Approach

Invariant Components with Replaceable Glue

- * Parts remaining invariant:
 - A. High-level math object manipulation code
 - B. Low-level digital ink analysis code
- * Parts depending on host system:
 - 1. Basic ink collecting software: supports abstract ink representation
 - 2. "Glue" Inter-component interface: links (A) and (B) with (1) and (3)
 - 3. Interface code:

embeds pen-based math input in host application

Framework Components

Implementation Languages

- C#
 - assignment: ink collecting and processing,
 - example of use: connecting to Tablet SDK
- C++
 - assignment: low-level intensive computations
 - example of use: character recognizer, glyph feature determiner
- Java
 - assignment: high-level code for connecting with mathematical engine
 - example of use: math expression manipulation

Instantiating the Architecture

Instantiation for Tablet PC:

- ① For basic ink software we used .NET-based Tablet PC SDK
- ② Specially designed linkage mechanism
 - a number of .NET technologies (C#, managed C++),
 - COM interoperability features and
 - Java Native Interface (as described further)
- ③ Interface to the hosting application vary depending on the application

Testing the Framework

Linkage for the Test Framework

Interface to Host Application

- Java library
- accessing .NET control
- through JNI

- ActiveX control
- accessing .NET control
- via Win32 C++ Wrapper

InkML

Forthcoming standard for digital ink from W3C

```
<?xml version="1.0"?>
<ink>
    <defs>
        <traceFormat id="MSTabletInk">
            <regularChannels>
                <channel name="X" type="integer"/>
                <channel name="Y" type="integer"/>
                <channel name="F" type="integer"/>
            </regularChannels> ...
        </traceFormat>
    </defs>
    <traceGroup>
        <desc>Lambert W example</desc>
        <trace start="1123890433611">
            1030 985 13
            1024 970 32
            1024 970 47
            1024 960 63
            1024 960 75
```

. . .

InkML

Prototype

Architectural Issues

- Coupling between components written variously in C++, Java, Maple
- Feed-back between components
- GUI human-factors issues
 fewest pen movements to accomplish task
- Collaborative back-plane multiple displays, multiple pens, shared math objects

Conclusions

- Math can be a "killer app" for pen-based computing
- Many have stood on the toes of giants, or at least on each other's
- Must plan for a complex project with many components
- Building on experience with PocketPC, MathML, Maple
- Work has been underway for just over one year -we will see what comes out...
- Hopefully Spider-Mac can put away his pliers!