

Νοτατιον Σελεκτιον ιν Μαθεματικαλ Κομπυτινγ Ενσιρονμεντσ

Ελενα Σμιρνοσα ανδ Στεθεν Μ. Ωαττ

Ονταριο Ρεσεαρχ Χεντρε φορ Κομπυτερ Αλγεβρα Τηε Υνισερσιτψ οφ Ωεστερν Ονταριο

e-mail: {eleva, watt}@orcca.ov.ca

Notation Selection in Mathematical Computing Environments

Elena Smirnova and Stephen M. Watt

Ontario Research Centre for Computer Algebra The University of Western Ontario

e-mail: {elena, watt}@orcca.on.ca

How do we write the following?

- 1. the open interval with end points *a* and *b*:
- 2. the base 10 logarithm of x:
- 3. the inner product of p and q:
- 4. the arctangent of 2:

How do we write the following?

1. the open interval with end points *a* and *b*:]*a*, *b*[

2.	the base 10 logarithm of x:	lg x
3.	the inner product of p and q :	$p \bot q$
4.	the arctangent of 2:	tg ⁻¹ 2

Simple test 2

What does it mean for you?

4. *u*′

What does it mean for you?

1. lg <i>x</i>	 log₁₀ x log₂ x
2. tan ⁻¹ <i>a</i>	 cotangent <i>a</i> arctangent <i>a</i>
3. $\left(\frac{p}{q}\right)$	 Legendre symbol Parenthesized fraction
4. <i>u</i> ′	 o derivative of <i>u</i> o <i>u</i> minutes o transformation performed on an original <i>u</i>

Origin of notational ambiguity

Mathematical context

 \circ an ordinary derivative can be denoted as f', f_x , Df, $\frac{df}{dx}$ etc.

Area of application

• *i* for $\sqrt{-1}$ (complex analysis) vs.

j (electrical engineering).

 \circ the integral

 $\int f(x) dx$ (pure math) vs. $\int dx f(x)$ (physics)

Origin of notational ambiguity (cont-d)

National and cultural conventions

 \circ the tangent function:

tan (England, Canada) vs. tg (Russia, China);

 \circ the open interval:

(a, b) (United States) vs.]a, b[(France).

Historical period

 \circ e.g. ancient $3\overline{a+b}$ vs. the modern 3(a + b).

• Level of mathematical sophistication \circ e.g. $a \div b$ vs. b) a vs. $\frac{a}{b}$ vs. a/b vs. $\frac{a}{b}$.

Who needs to understand written math?

- Human readers
- Software tools:
 - \circ CAS,
 - \circ theorem provers,
 - o format converters,
 - \circ pen-based applications

What happens if math is misunderstood?

- Human readers
 - \circ confusion
 - o frustration
 - \circ headache

Edit	⊻iew	Insert	Format	T <u>a</u> ble Plot	Spreadsheet	Sketch	Tools	<u>W</u> indow	Help
SC	olv	e(l	Df(x,y)	= (x	+y)	si	n(x	,y))
				<u>^</u>					
									OK

- Software tools
 - \circ unexpected results
 - \circ incorrect calculation
 - \circ hidden errors

 $\Sigma +$ - 5 X File Edit View Insert Format Table Plot Spreadsheet Sketch Tools Window Help X Da Ba 5 C Ⅲ!◎称也 20 T [> Text Math C 2D Input Times New Roman 🔽 36 🕶 B 🛛 U 💷 🕮 💷 🗄 🗄 *Untitled (1) 🛞 *Untitled (2) 🙁 ~ > $A := binomial(n, m) \cdot p + binomial(n, k) \cdot q$ $p := \langle x_1, y_1 \rangle |$ $q := \langle x_2, y_2 \rangle$ $\binom{n}{x_1}$ $+\binom{n}{k}\binom{x_2}{n}$ > < Memory: 4.93M Time: 0.87s Math Mode Ready

Mathematical content vs. Notation

Separating notation from content

1. To choose which of several

different mathematical notations to use for *the same concept*.

2. To disambiguate where

the same notation could be used

for different concepts.

Rendering math with different notations

• Making your math look the way you want

 $\Sigma +$ - 5 X File Edit View Insert Format Table Plot Spreadsheet Sketch Tools Window Help X Da Ba 5 C Ⅲ!◎称也 20 T [> Text Math C 2D Input Times New Roman 🔽 36 🕶 B 🛛 U 💷 🕮 💷 🗄 🗄 *Untitled (1) 🛞 *Untitled (2) 🙁 ~ > $A := binomial(n, m) \cdot p + binomial(n, k) \cdot q$ $p := \langle x_1, y_1 \rangle |$ $q := \langle x_2, y_2 \rangle$ $\binom{n}{x_1}$ $+\binom{n}{k}\binom{x_2}{n}$ > < Memory: 4.93M Time: 0.87s Math Mode Ready

- 0 X 🐮 *Maple 10 - Untitled (2) - [Server 2] Edit View Insert Format Table Plot Spreadsheet Sketch Tools Window Help File X Da 🖪 为 🔿 🔍 🔍 🔍 📈 2 T ▷ ⇔ ⇒ <u>₩ !</u> ⊙ ☆ 쓰 Text Math C 2D Input 🔽 36 🗸 B 🚺 🖳 💷 🥮 🕮 📰 📰 🖽 Times New Roman *Untitled (1) 😵 *Untitled (2) 🙁 ~ > $A := binomial(n, m) \cdot p + binomial(n, k) \cdot q$ $p := \langle x_1, y_1 \rangle |$ $q := \langle x_2, y_2 \rangle$ $C_m^n \begin{bmatrix} x_1 \\ v_1 \end{bmatrix} + C_k^n \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$ < > Memory: 4.93M Time: 0.87s Math Mode Ready

A Notation Selection Tool outlook

	lotations									
tegrals	Intervals Arithmetic	Linear Al	jebra	Logarithm Co	Power ombination	or Root is	Trig	and a second	Derivatives	
ONTIN	JED FRACT	ION: 🖲	a ₀ +	$-\frac{1}{a_1+\ldots}$	0	[a ₀ ,a	<i>t</i> 1,]	0	$a_0 + \frac{1}{a_1}$	+
NISION	4: 🔘	a ÷ b		0	a/b		0	å	0 b))a
			dist.							
IULTIPL	ICATION:	• a	×b	($a \cdot b$,	00	ab	<i>• a</i>	*b
		• a	×b	(le: @ Radi	a • b) O Drop	O (ab	° a	*b
	ICATION:	• a	×b Sty	(ile: • Radi	a • b) () Drop	O (Down	ab	0 <i>a</i>	*b
	ICATION: Input Styles Input file:	• <i>C</i>	×b Sty data/mn data/sho	te: • Radi	a •b) O Drop	O (ab	 <i>a</i> Browse Browse 	* <i>b</i>
	ICATION: Input Styles Input file: Output file:	• a	×b Sty data/mn data/sho data/sho	te: • Radi nic2mmip.x wx.xml ww_out.xml	a •b) () Drop	O (ab	 <i>C</i> <i>Browse</i> <i>Browse</i> <i>Browse</i> 	* <i>b</i>
	ICATION: Input Styles Input file: Output file: Output Style	A	×b Sty data/mn data/sho data/sho mmlc2p	fe: Radi	a - b) () Drop	O (<i>C</i> <i>Browse</i> <i>Browse</i> <i>Browse</i> <i>Browse</i> 	* <i>b</i>

A Notation Selection Tool spec

- Designed to drive the conversion from XML-based
 conceptually-oriented math documents into
 notationally-oriented formats
- It generates rules to translate between math expressions in different XML formats
- Main feature: extensibility user can introduce additional math concepts along with the set of possible notations

A Notation Selection Tool anatomy

- Java program + web service
- Set of target domains
- Configuration file
- Initial XSLT stylesheet

Notation Selection Tool configuration

- Notation Selection Tool is just a software engine. Its actual behaviour depends on the configuration.
- Configuration defines
 - target mathematical domains,
 - o concepts in each domain,
 - o set of alternative notations for each concept
 - transformation rules for each notational choice
- Core of the tool is the *configuration file*

The configuration file

<catalog>

```
<name> LINEAR ALGEBRA </name>
  <itemlist>
    <item>
      <keyword> INNER PRODUCT </keyword>
      <choicelist>
        <choice>
          <image src = "inn prod1.gif"/>
          <keyvalue> 1 </keyvalue>
          <presentation>
              <converter input="C MathML" output="P MathML>
                ... <!-- XSLT template for this notation-->
           </converter>
          </presentation>
        </choice>
       %other choices,
    %other items,
%other catalogs
```

Features of the Notation Selection Tool

Advantages our this approach:

flexibility and extensibility.

• To *introduce new notations* for existing math concepts the user needs simply update Notation Selection Tool configuration file.

Features of the Notation Selection Tool (2)

Advantages our this approach:

flexibility and extensibility.

- New mathematical concepts can be introduced in existing settings.
 - e.g. binomial or continued fractions are defined neither in Content MathML, nor in Presentation MathML, but they can be introduced as additional stylesheet templates.
 - The same approach allows to set preferred rendering for OpenMath CDs

Notation Selection Tool in action

Mathematical Data formats involved

Application of the notation selection (1)

• Rendering mathematical content produced by CAS

Application of the notation selection (2)

• Syntax disambiguation

Application of the notation selection (3)

- Mathematical handwriting recognition
 - Computer Algebra Systems

29

Application of the notation selection (3)

- Mathematical handwriting recognition
 - $\circ\,$ Document-processing software

30

Application of the notation selection (3)

• Mathematical handwriting recognition

Helps to narrow down a set of recognition candidates without restricting user's writing habits:

- o to eliminate un-used notations.
 Ex. if ∼ is chosen for proportionality, then
 ∞ will not be suggested as a candidate for α Or ∞
- to activate/deactivate various rules in structures recognition.

Ex.]a,b] or $\int dx f(x)$

Application of the notation selection (4)

• Mathematical knowledge management

NS used as a front end for mathematical knowledge databases could help to

- \circ avoid storing duplicated information
- \circ allow queries without forcing a particular notation

Ex. sinh(x) and sh(x)

Should $arcsin(x) - sin^{-1}(x)$ simplify to 0?

Application of the notation selection (5)

• Computer Algebra Systems

The most widely used math software packages are designed with *input* and *output* systems **separate** from one another.

- NS is aimed to ensure consistency in *both* input and output notations
- It allows to set the appearance of new math expressions, generated by CAS, such as J₀(z) instead of bulky BesselJ[0](z)

Application of the notation selection (sum)

- Rendering mathematical content
- Syntax disambiguation
- Mathematical handwriting recognition
- Mathematical knowledge management
- Computer Algebra Systems

Conclusions

- Notation ambiguity often takes place in mathematics
- Software often confuses mathematics with notation
- By forcing too early the choice of notations, flexibility is lost and work is restricted to too narrow context
- Special tools can be used to translate meaningful math constructs both to and from a wide range of notations
- This will allow math documents to be deployed in a wide range of settings with notation customized by country, field, level of sophistication etc.

Conclusions

 Notation Selection Tool is an interactive stylesheet constructor dealing with Content and Presentation MathML

 \rightarrow

• By using it in conjunction with other translators NST covers the following conversions:

Content MathML OpenMath, Maple Axiom Mathematica

Presentation MathML LaTeX

- NS is promising to be useful in application to
 - Context of Computer Algebra
 - Syntax disambiguation
 - Pen-based mathematical interfaces
 - Mathematical knowledge management

Related projects at ORCCA

Software for mathematical interfaces

math communication and math format conversions:

- MathML \leftrightarrow LaTeX

- Maple \leftrightarrow OpenMath
- Pen-Based Interfaces for Mathematics

http://www.orcca.on.ca