

MathBrush A Pen-Based Math System

Mirette Marzouk Symbolic Computation Group University of Waterloo

Project Team

George Labahn

- Mirette Marzouk
- Scott Maclean
- David Tausky
- Igor Rodionov
- Ian Rutherford

With help from Vu-Hong (Maple Soft)

Other team members from UWO.

How Would You Like to Do Math?

$$\frac{(3x^2+2)\sin(x^3+2x-1)}{\cos(x^3+2x-1)^3+12\cos(x^3+2x-1)^2-3}dx$$

Latex

\begin{equation}

\end{equation}

Maple

 $int((3*x^2+2)*sin(x^3+2*x-1)/(cos(x^3+2*x-1)^3 + 12*cos(x^3+2*x-1)^2-3),x);$

Mathematica

Integrate[(3*x^2+2)*Sin[x^3+2*x-1]/(Cos[x^3+2*x-1]^3 + 12*Cos[x^3+2*x-1]^2-3),x]

I wish I can do it the way I do it on a paper, get some math help, and play with it !!

Objective

- Investigate the use of pen-based devices for mathematical computation and exploration
- Study the key issues when combining pen-based interfaces with Computer Algebra Systems (CAS)
- Build a pen-based math system to allow the user to follow a pen and paper paradigm for input and output while taking advantage of the power of CAS

Motivation

- Entering mathematical concepts on a computer for presentation is tedious and difficult. Ex. using MathML and Latex
- The current interface of CAS, although has improved immensely, it constraints the user to express his thoughts in a command line form
- Different CAS systems have different languages and commands
- Manipulation and transformation of expressions in CAS lack intuitiveness when using only keyboard and mouse

Challenges

Text recognizers are not suitable:

- work with ASCII Characters
- depend on language specific dictionaries
- assume input is one dimension

 Mathematical symbols are more ambiguous than regular text

Ex.

Challenges

 Mathematical symbols appear with wide variation in size and do not necessarily follow baselines
 Ex. superscripts and subscripts

 Correct symbols recognition does not lead to a unique math expression.
 Ex. u(x+y) u times x+y or u applied to argument x+y ?

Rendering two-dimensional math expressions with linebreaking and need for interactivity

MathBrush Components

MathBrush Components User Interface

🖶 Math Brush - Ma	in							
Recognizers Tools								
Render	Evaluate	Simplify	Expand	Evaluate N	Maple	Clear	Shorten	
	(.	x ² -	y².) ³⁴		X Refresh		2 3 4
	- 92	7983760y	$42 x^{26} + 2$	$x^{68} - 34y^2$	$x^{66} + 561y$	$x^{4}x^{64} - 598$	4y ⁶ x ⁶²	$76y^8x^{60}$ 16_52
	-	278236y 52451256	$x^{18} x^{50} +$	13112814	x - 5379 $0y^{20}x^{48} - 2642$	286097760	+1813 $y^{22}x^{46}$	X
	+	54835404 18559675	$0y^{24}x^{44}$ $20y^{30}x^{38}$	- 9279837 + 220396	60y ²⁰ x ⁴² 1430y ³² x ³	+ 1391975 ³⁶ - 233360	640y ²⁸ x ⁴⁰ 06220y ³⁴ x ³	34
	+	22039614 54835404	30y ³⁶ x ³	² - 185596 - 2860977	7520y ³⁸ x ³ 60y ⁴⁶ x ²²	³⁰ + 13919 + 1311281	75640y ⁴⁰ x 40y ⁴⁸ x ²⁰	28
	-	52451256 278256y ⁵	$y^{50}x^{18} + x^{8}x^{10} + 46$	18156204 5376y ⁶⁰ x ⁸	y ⁵² x ¹⁶ - 5 - 5984y ⁶²	$x^{6} + 561y^{54}$	$x^{14} + 1344$ $x^{64} x^{4} - 34y^{6}$	$4904y^{56}x^{12}$ $56x^2 + y^{68}$

MathBrush Components Character Recognizer

Phases of Character Recognition

- I. Input (Strokes) Preprocessing
 - Stroke joining
 - Re-sampling
 - Trimming
 - Smoothing
 - Normalization
- 2. Segmentation
 - Heuristic Approach
 Combine hints to choose the number of strokes in the next symbol
 - Feature Extraction Approach
 Compare features and use Confusion Matrix to resolve conflicts

MathBrush Components Character Recognizer

- Phases of Character Recognition
- 1. Input (Strokes) Preprocessing
- 2. Segmentation
- 3. Recognition
 - To produce final confidence the results of the following algorithms are combined
 - Elastic Matching
 - Deformable Template Matching
 - Structural Chain Code Matching

MathBrush Components Structural Analyzer

2. Pre-Parsing

Refine candidates using expected mathematical content Ex. matching brackets, matching Integral and dx, Numbers ..

MathBrush Components Structural Analyzer

Phases of Structural Analysis

- 1. Determine Layout
- 2. Pre-Parsing
- 3. Structural Grouping
 - Use DB information to generate structural confidence
 - Decide on the best candidate using character and structural confidence
- 4. Parsing
 - Consult a database of likely expressions to refine the result

MathBrush Components CAS Interface Tool

MathBrush Components Math Rendering Tool

Main Features

Rendering Presentation MathML following W3C recommendations

■ Line breaking

Output format follows user specifications

Rendering short form for math expressions

Summary

Objective

 Builds a pen-based math system while using the power of CAS.

Current Status

MathBrush a preliminary testbed for testing different modules, investigating key issues and getting feedback !!

Main Features

- Modular system components
- Presentation MathML

■ Interaction between different platforms (C#, C++, and Java)

Future Extensions

- Allow the use of more gestures
- Add dynamic context menus
- Allow for more interaction with the results
- Support new classes of expressions: limits, matrices ..
- Use guided input for better character recognition
- Personalize the character recognizer database
- Train the structural analyzer parameters
- Interface with more math systems

