Investigating the Characteristics of Mathematical Notations

Clare So clare@scl.csd.uwo.ca

Stephen Watt

watt@scl.csd.uwo.ca

Ontario Research Centre for Computer Algebra

ORCCA Joint Lab Meeting. UWO. April 8, 2005.

Why Studying Math Notations?

- Guide the mathematical expressions handwriting recognizer to eliminate results of recognition that does not make sense
- \bullet Preserve semantical information of expressions when translating between T_EX and MathML

Math Notation is a Language

- A natural language have certain *patterns* of usages
 - For example, "x" and "z" are not letters commonly used in English words
- Usages of math notation mainly based on conventions
 - -f and g for functions
 - -i and j for integers
 - A and B for sets
 - i for $\sqrt{-1}$
 - ...

Previous Knowledge of Language Important

- Why we recognize the words "cat" and "hat" although "H" and "A" are writen similarly?
- In natural language handwriting recogition, a built-in dictionary is used to eliminate results that does not make sense

How About Math?

- We need a dictionary for math in a handwriting recognizer
- Not many studies related to math "linguistics"
- This project provides a foundation of building a math dictionary

Data Collection

- All mathematical articles in ArXiv database from 2000 to 2005 are collected
- Articles are put into their repective top-level *Mathematical Subject Classification* (2000). There are 63 classification in total representing a field in advanced mathematics.
- Math expressions are extracted from articles TeX source and translated to MathML

Analyzing Each Classification

- We keep track of the following information in each classification
 - Common expressions
 - Frequency of single character symbols
 - * Frequency of identifiers
 - * Frequency of different operators
 - Patterns of expressions
- Histrograms are to be built for keeping track of symbols' frequencies

Generating Patterns by Antiunification

- We want to recognize commons parts in expressions
 - Let's say we have expressions F(x, G(x, y), z) and F(a, G(a, b), z). It would be useful to obtain the pattern $F(\alpha_1, G(\alpha_1, \alpha_2), z)$
- Concept of antiunification was first discussed by Robinson in 1965
- Algorithm for generating such patterns (aka antiunifiers) was discovered by Plotkin in 1970
- We are performing antiunification to MathML expression trees
 - For example, x^1 , x^2 and x^3 all have x^{α} as the antiunifier

- The most common identifiers in classifications:
 - 08 (General algebraic systems):
 - $n \quad A \quad , \quad a \quad i$
 - 12 (Field theory and polynomials):
 - , n x i K
 - 31 (Potential theory):
 - x , n z d
 - 42 (Fourier analysis):
 - , n x k j
 - 83 (Relativity and gravitational theory):
 - $, \quad i \quad x \quad M \quad t$

- The most popular expressions in classifications:
 - 08 (General algebraic systems):

<mrow><mi>A</mi></mrow>
<mrow><mo>-</mo><mn>1</mn></mrow>
<mrow><mi>G</mi></mrow>
<mtd/>
<mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow>

- 12 (Field theory and polynomials):

<mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow>
<mrow><mo>-</mo><mn>1</mn></mrow>
<mrow><mi>K</mi></mrow>
<mrow><mi>p</mi></mrow>
<mrow><mi>n</mi></mo>-</mo><mn>1</mn></mrow>

- The most popular expressions in classifications:
 - 31 (Potential theory):

```
<mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow>
<mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow>
<mtd/></mrow><mo>-</mo><mn>1</mrow>
```

<mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow>

- 42 (Fourier analysis):

```
<mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow>
<mrow><mo>-</mo><mn>1</mn></mrow>
<mtd/>
<mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow>
<msup><mi>L</mi><mn>2</mn></msup>
```

- The most popular expressions in classifications:
 - 83 (Relativity and gravitational theory):

```
<mrow><mo>-</mo><mn>1</mrow>
<mrow><mo>(</mo><mi>t</mi><mo>(/mo></mrow>
<mrow><mo>(</mo><mi>x</mi><mo>(/mo></mrow>
<mrow><mo>(</mo><mn>1</mo>)</mo></mrow>
```

- Some antiunifiers:
 - 00 (General):

<mfrac><mi></mi><orccaPattern index="0"/></mfrac> <mfrac><mi>k</mi><orccaPattern index="0"/></mfrac> <mfrac><mn>1</mn><mrow><mn>1</mn><mo>-</mo><orccaPattern index="0"/> </mrow></mfrac> <mfrac><mn>1</mn><mrow><mn>5</mn><mo></mo><mn>1</mn><msup><mn>0</mn> <orccaPattern index="0"/></msup></mrow></mfrac> <mfrac><mrow><mi>d</mi><orccaPattern index="0"/></mrow></mfrac> <mfrac><mrow><mi>d</mi><orccaPattern index="0"/></mfrac> <mfrac><mn>25</mn><orccaPattern index="0"/></mfrac>