Lecture 9: AVL Trees

- Definition
- Properties
- Insertion
BST Performance

- Recall that for a binary search tree with \(n \) nodes and of height \(h \)
 - methods find, insert and remove take \(O(h) \) time
- The height \(h \) is \(O(n) \) in the worst case and \(O(\log n) \) in the best case
- Thus in the worst case, find, insert and remove take \(O(n) \) time
Balanced Tree Motivation

- If we find a way to make sure the height h of a binary search tree is always $O(\log n)$, then search tree will be much more efficient, the worst case complexity for find, insert, remove will be $O(\log n)$, significantly better than $O(n)$ for a BST.

- To make sure height h of a tree is always $O(\log n)$, the tree must be “balanced”, that is for any node its left subtree should not be much higher than its right subtree.
Balanced Trees

- We have already seen an example of a balanced tree, that is the complete binary tree.

- Complete binary tree is not the only example of a balanced tree, that is tree with logarithmic height.

- How to implement a balanced tree which allows operations find, remove, insert in $O(\log n)$?

- One way is with AVL trees.
Recall that the **height of a tree** is the maximum over all node depths, or, equivalently, the longest path in the tree.

The **height of a tree node** v is defined as the height of the subtree rooted at node v.
AVL Tree Definition

- An AVL Tree is a binary search tree which satisfies the **height-balance property**:

 - for every internal node \(v \) of \(T \), the heights of the children of \(v \) can differ by at most 1.

- We will say that AVL trees are balanced.

- Inventors: Adel'son-Vel'skii and Landis 1962.

- The **height-balance property** guarantees that the height of an AVL tree is logarithmic in the number of items in the tree.

![Example of an AVL Tree](image)
Height of an AVL Tree

- **Theorem:** Height h of AVL tree storing n keys is $O(\log n)$.

- **Proof:** Let us bound $f(h)$: the minimum number of internal nodes of an AVL tree of height h.

 We easily see that $f(1) = 1$ and $f(2) = 2$.

 For $h > 2$, an AVL tree of height h contains the root node, one AVL subtree of height $h-1$ and the other of height at least $h-2$.

 That is, $f(h) = 1 + f(h-1) + f(h-2)$.

 Knowing $f(h-1) > f(h-2)$, we get $f(h) > 2f(h-2)$.

 - The number of nodes doubles after 2 steps down the AVL tree.
 - So $f(h) > 2f(h-2), f(h) > 4f(h-4), f(h) > 8f(h-6), \ldots \ldots$, $f(h) > 2^{i}f(h-2i)$.

 Solving the base case ($h-2i=1$) we get $i=(h-1)/2$.

 Therefore $f(h) > 2^{(h-1)/2} f(1) = 2^{(h-1)/2}$.

 Taking logarithms of both sides: $h < 2 \log f(h) + 1$.

 Thus the height of an AVL tree is $O(\log n)$.
Operations in an AVL Tree

- The height of an AVL tree is $O(\log n)$
- Thus the search operation takes $O(\log n)$
 - Performed just like in BST since any AVL tree is a BST
- All that’s left to do is to show how to insert and remove in AVL trees, while maintaining
 1. the height-balance property
 2. the binary search tree order
Insertion in an AVL Tree

- Insertion starts as in a binary search tree
- Always done by expanding an external node.
- Example:

Before inserting 54:

```
        44
       /   \
      17    78
     /     /   \
   32     50    88
  /     /     /    \
48     62     54    88
```

After insertion:

```
        44
       /   \
      17    78
     /     /   \
   32     50    88
  /     /     /    \
48     62     54    88
```
Insertion in an AVL Tree

- After inserting a new item at a leaf, the height-balance property of the AVL tree is very likely lost.

- Recall that **height-balance** property requires that for any internal node the height of its children can differ by at most 1.

- To make it an AVL tree again, need to restore the balance by restructuring the tree.

- “Pictorial” notation:
Analysis After Insertion

- Let us call a node unbalanced if the difference in heights of its left and right subtrees is more than 1.
- After insertion, the heights could change (increase) only for ancestors of the insertion node w.
 - height of a node is the length of the longest path from that node to a leaf.
- Thus the only possibly unbalanced nodes are the ancestors of insertion node w.
- we should search up the tree from the insertion node w, looking for any unbalanced nodes and correcting this unbalance somehow.
 - also update the height of each node on the path from w to the root, as the heights of nodes on this path may have changed.
Analysis After Insertion

- So after inserting at node w, we follow the path from w to the root (the path of ancestors of w), checking the balance of nodes
 - Usually, in about 50% of cases there is no unbalanced node after insertion
- Suppose the first unbalanced node (as you go from w up the tree) is at position z
 - Height difference between the left and the right subtree of z is more than 1
 - tree was balanced before the insertion
 - each insertion can change height only by 1
 - Thus this height difference is exactly 2
 - One subtree has height p, the other height $p+2$
 - w was inserted into the higher subtree
Analysis After Insertion

- Height difference between left and right subtrees of z is exactly 2
- One subtree has height p, the other height $p+2$
 - w was inserted into the higher subtree
- There are 2 cases: right subtree is higher or left subtree is higher

case 1:

- Name the highest subtree S
- Since tree was balanced before insertion, height of S was $p+1$ before insertion
- Name the root of S with y
- Since y is balanced after insertion, and z is not balanced after insertion, both subtrees of y have height exactly p before insertion
Analysis After Insertion

Case 1:
- Height $p+2$
- Height p

Case 2:
- Height $p+2$
- Height p

S before insertion, height $p+1~
S after insertion, height $p+2~

Case a
- Height p
- Height p

Case b
- Height $p+1$
- Height $p+1$
- Height p
After Insertion: 4 cases

- **case 1:**
 - Height p
 - Height p

- **case 2:**
 - Height p

- **case 3:**
 - Height p
 - Height $p + 1$

- **case 4:**
 - Height p
 - Height $p + 1$
Analysis After Insertion

case 1:

- Let R be the name of the right subtree of y
- R contains w, which is an internal node
- Therefore, R has at least one internal node
- Let x be the root of R
- There are 2 cases
 - Case 1: $x = w$ in which case $p = 0$ and both subtrees of w are leafs
 - Case 2:
 - height of R went from p before insertion to $p+1$ after insertion
 - x was balanced before insertion and is balanced after insertion
 - both subtrees of x had height $p-1$ before insertion
 - After insertion, one subtree of x has height p, the other height $p-1$
Analysis After Insertion: 4 cases

Case 1:
- Tree structure with nodes labeled `z`, `y`, and `x`.
- Heights: `height p`, `height p`, `height p`, and `height p`, respectively.

Case 2:
- Tree structure with nodes labeled `z`, `y`, and `x`.
- Heights: `height p`, `height p`, and `height p`, respectively.

Case 3:
- Tree structure with nodes labeled `z`, `y`, and `x`.
- Heights: `height p`, `height p`, and `height p`, respectively.

Case 4:
- Tree structure with nodes labeled `z`, `y`, and `x`.
- Heights: `height p`, `height p`, and `height p`, respectively.
One More Picture

after insertion

before insertion
Rebalance, Finally! Case 1

- Tree is unbalanced at node z
 - left subtree of z has height p
 - right subtree of z has height $p+2$

- Tree is balanced at node y
 - left subtree of y has height $p+1$
 - right subtree of y has height $p+1$

- Tree is balanced at nodes z, x
- The binary search tree order is preserved
Rebalance, Case 2, 3, 4

Case 4:

Case 3:

Case 2:

height p, height p-1
Trinode Restructuring

- All 4 cases can be coded with the same algorithm, called **trinode restructuring**

- In all 4 cases, out of 3 nodes \(x, y, z \), we make
 - the node with the **middle** key the new parent
 - the smallest key node as its left child
 - the largest key node as its right child
 - for the “new parent” the old 1 or 2 subtrees not rooted at \(x, y, z \) need to be put in the appropriate locations
 - The left subtree (if present) goes with the new left child
 - The right subtree (if present) goes with the new right child
PseudoCode for Trinode Restructuring

Algorithm $\text{TriNodeRestructure}(x,y,z)$

Input: node x, its parent y, its grandparent z. Node z is not balanced
Output: position of the node that goes in the place of z in the tree structure

if $\text{key}(z) \leq \text{key}(x)$ and $\text{key}(x) \leq \text{key}(y)$ then $a = z; b = x; c = y$
if $\text{key}(z) \geq \text{key}(x)$ and $\text{key}(x) \geq \text{key}(y)$ then $a = y; b = x; c = z$
if $\text{key}(z) \leq \text{key}(y)$ and $\text{key}(y) \leq \text{key}(x)$ then $a = z; b = y; c = x$
if $\text{key}(z) \geq \text{key}(y)$ and $\text{key}(y) \geq \text{key}(x)$ then $a = x; b = y; c = z$

if $(z = \text{root})$ then
 $\text{root} = b;$ //In this case, root changes after triNodeRestructure
 $\text{b.parent} = \text{null}$
else // reconnect parent of z to the node replacing z
 if $z.\text{Parent.leftChild} = z$ then MakeLeftChild($z.\text{Parent}$, b);
 else MakeRightChild($z.\text{Parent}$, b);

if $b.\text{LeftChild} \neq x$ and $b.\text{LeftChild} \neq y$ and $b.\text{LeftChild} \neq z$ then
 MakeRightChild(a, $b.\text{LeftChild}$);
if $b.\text{RightChild} \neq x$ and $b.\text{RightChild} \neq y$ and $b.\text{RightChild} \neq z$ then
 MakeLeftChild(c, $b.\text{RightChild}$);

$\text{MakeLeftChild}(b, a)$;
$\text{MakeRightChild}(b, c)$;

return b
PseudoCode for Trinode Restructuring

- On the previous slide, method
 - \textit{MakeLeftChild}(a,b): makes node \textit{b} the left child of node \textit{a}. This involves 2 steps
 - \textbf{a.leftchild} = \textit{b}
 - \textbf{b.parent} = \textit{a}

- \textit{MakeRightChild}(a,b): makes node \textit{b} the right child of node \textit{a}. This involves 2 steps:
 - \textbf{a.rightchild} = \textit{b}
 - \textbf{b.parent} = \textit{a}

- Trinode restructuring takes \textit{O(1)}
 - no loops, no recursive calls, just a constant number of comparisons and changes in parent-child relationships
Insertion and Trinode Restructuring

- **Only 1 trinode restructuring is necessary per insertion**
 - After restructuring, the height of the subtree formerly rooted at z (now rooted at x or y) is the same as before insertion, namely $p+2$, and the tree was balanced before insertion.
 - Thus, after insertion, trinode restructuring restores height-balance order *globally*.

Before insertion:

- z (height $p+2$)
- y (height $p+1$)

After insertion, but before trinode restructuring:

- z (height $p+3$)
- w (height $p+2$)

After insertion and trinode restructuring:

- x or y (height $p+2$)
PseudoCode for Insertion into AVL Tree

Algorithm $AVLtreeInsert(k,o)$
Input: key k and value o; Output: node where the entry was inserted

\[w = TreeInsert(k, o, T.root) \] \(w \) holds position of new entry \((k,o)\)
// now need to check and if needed, restore height-balance property
\[z = w \]

while \(z \neq \text{null} \) // traverse up the tree, checking for imbalance
 \[\text{setHeight}(z); \] // reset the height of \(z \) since it may have changed
 if \(|\text{getHeight}(z.left) - \text{getHeight}(z.right)| > 1 \) then
 \[z = \text{TriNodeRestructure}(\text{tallerChild(\text{tallerChild}(z))}, \text{tallerChild}(z), z) \]
 \[\text{setHeight}(z); \text{setHeight}(z.left); \text{setHeight}(z.right); \text{setHeight}(z); \]
 break; // exit while loop, tree is balanced after 1 trinodeRestructure
 \[z = \text{parent}(z) \]

return \(w \)

- $\text{setHeight}(z) = 1 + \max(z.left.height, z.right.height)$
- $\text{tallerChild}(\text{node})$ gives the child with larger height. Thus $y = \text{tallerChild}(z)$, and $x = \text{tallerChild(tallerChild}(z))$
- complexity of $AVLtreeInsert(k,o) : O(\log n)$
Insertion Example, continued

unbalanced...

...balanced
Insertion in AVL Tree: Summary

- After inserting into binary tree at node w, we go up the tree, following the ancestor path from w, checking if any node on this path has become unbalanced.

- If an unbalanced node is found, perform **tri-node restructuring**
 - Since after 1 such restructuring, the tree has become balanced and thus is an AVL tree, can return right after tri-node restructuring.

- Travel up the tree is $O(\log n)$, and tri-node restructuring is $O(1)$.